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Last time we have shown that a class of infinite VC-dimension is not learnable. The converse statement is
also true, leading to the fundamental theorem of statistical learning theory.

Theorem 0.1 (Fundamental Theorem of Statistical Learning) Let H be a hypothesis class of func-
tions from X to {0, 1} and let the loss function be the 0-1 loss. Then the following statements are equivalent:

1. H has the uniform convergence property.

2. ERM is a successful PAC learner for H.

3. H is PAC learnable.

4. The VC-dimension of H, denoted by d, is finite.

We have shown 1) → 2) in previous lectures. The implication 2) → 3) is trivially by the definition of PAC
learnability. The implication 3) → 4) follows from No Free Lunch Theorem: if the VC-dimension of H is
infinite, then H is not learnable. Here we will show that 4)→ 1). The proof is based on two main claims:

• Sauer’s Lemma: If VC-d(H) = d, then even though H might be infinite, when restricting it to a finite
set C ⊆ X , its “effective” size, |HC |, is only O(|C|d).

• Uniform convergence holds whenever the hypothesis class has a “small effective” size, i.e. |HC | grows
polynomially with |C|.

1 Sauer’s Lemma and the Growth Function

Definition 1.1 (Growth Function) The growth function of a hypothesis class H, denoted by τH : N→ N,
is defined as

τH(n) = max
C⊆X :|C|=n

|HC |.

In words, τH(n) is defined as the maximal number of different functions from a set C of size n to {0, 1} that
can be obtained by restricting H to C.

Obviously, if VC-d(H) = d, then for any n ≤ d we have τH(n) = 2n. In such cases, H induces all possible
functions from C to {0, 1}. The following lemma, proposed independently by Sauer, Shelah and Perles, shows
that when n becomes larger than the VC-dimension, the growth function increases polynomially rather than
exponentially with n.

Lemma 1.1 (Sauer-Shelah-Perles) Let H be a hypothesis class with VC-d(H) = d <∞. Then for all n,

τH(n) ≤
∑d
i=0

(
n
i

)
. In particular, if n > d then τH(n) ≤ (en/d)d.
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2 Uniform Convergence for Classes of Small Effective Size

We now show that uniform convergence holds whenever the hypothesis class has a “small effective” size,
i.e. |HC | grows polynomially with |C|. In particular, we have the following theorem, which relates the
generalization error to the growth function of H.

Theorem 2.1 Let H be a class and let τH be its growth function. Then for every P and every δ ∈ (0, 1),
we have

Pn

(
sup
h∈H
|L(h, P )− L(h, PZn)| ≤

4 +
√

log(τH(2n))

δ
√

2n

)
≥ 1− δ. (1)

2.1 Proof of Theorem 0.1

Before we prove Theorem 2.1, we will first use it to conclude the proof of Theorem 0.1, i.e. to show 4)→ 1)
in Theorem 0.1. From Sauer’s lemma we have that for n > d, τH(2n) ≤ (2en/d)d. Combining this with
Theorem 2.1, we have

Pn

(
sup
h∈H
|L(h, P )− L(h, PZn)| ≤

4 +
√
d log(2en/d)

δ
√

2n

)
≥ 1− δ.

For simplicity assuming that
√
d log(2en/d) ≥ 4, we have

Pn

(
sup
f∈F
|L(f, P )− L(f, PZn)| ≤ 1

δ

√
2d log(2en/d)

n

)
≥ 1− δ.

To ensure the generalization error is at most ε we need that

n ≥ 2d log n

(δε)2
+

2d log(2e/d)

(δε)2
.

A sufficient condition for the above to hold is that

n ≥ 4
2d

(δε)2
log(2d/(δε)2) +

4d log(2e/d)

(δε)2
.

3 Proof of Uniform Convergence

To show Theorem 2.1 we will show that

EZn∼Pn

[
sup
h∈H
|L(h, P )− L(h, PZn)|

]
≤

4 +
√

log(τF (2n))√
2n

, (2)

which will then imply (1) via Markov inequality. To show (2), we will apply a two-sample trick so that we
can restrict H to some C, forming an small effective size hypothesis class HC , and then apply the union
bound over HC .
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3.1 Two-Sample Trick

To bound the L.H.S. of (2), we will use the two-sample trick. First note that for every h ∈ H, we can rewrite

L(h, P ) = EZ̃n∼Pn [L(f, PZ̃n)],

where Z̃n is an additional i.i.d. sample. Therefore,

EZn∼Pn

[
sup
h∈H
|L(h, P )− L(h, PZn)|

]
= EZn∼Pn

[
sup
h∈H
|EZ̃n∼Pn [L(h, PZ̃n)− L(h, PZn)]|

]
≤ EZn∼Pn

[
sup
h∈H

EZ̃n∼Pn |L(h, PZ̃n)− L(h, PZn)|
]

≤ EZn∼PnEZ̃n∼Pn

[
sup
h∈H
|L(h, PZ̃n)− L(h, PZn)|

]
= EZn,Z̃n∼Pn

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

(`(h(X̃i), Ỹi)− `(h(Xi), Yi))

∣∣∣∣∣
]
. (3)

Since (Zn, Z̃n) are chosen i.i.d., nothing will change if we swap Zi and Z̃i in (3); if we do so, instead of
the term (`(h(X̃i), Ỹi)− `(h(Xi), Yi)) we will have −(`(h(X̃i), Ỹi)− `(h(Xi), Yi)) in (3). Therefore, for every
vn ∈ {±1}n we have that the R.H.S. of (3) equals

EZn,Z̃n∼Pn

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

vi(`(h(X̃i), Ỹi)− `(h(Xi), Yi))

∣∣∣∣∣
]
.

Since this holds for every vn ∈ {±1}n, it also holds if we sample each component of vn according to the
uniform distribution U on {±1}. Hence the R.H.S. of (3) also equals

EV n∼UnEZn,Z̃n∼Pn

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

Vi(`(h(X̃i), Ỹi)− `(h(Xi), Yi))

∣∣∣∣∣
]

= EZn,Z̃n∼PnEV n∼Un

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

Vi(`(h(X̃i), Ỹi)− `(h(Xi), Yi))

∣∣∣∣∣
]
. (4)

3.2 Restrict H to C

We now show that the inner expectation in (4) can be upper bounded irrespective of Zn and Z̃n. For any
Zn and Z̃n, let C(Zn, Z̃n) be the instances appearing in Zn and Z̃n. Then we can take the supremum in
(4) only over h ∈ HC(Zn,Z̃n), i.e.,

inner expectation of (4) = EV n∼Un

[
max

h∈HC(Zn,Z̃n)

1

n

∣∣∣∣∣
n∑
i=1

Vi(`(h(X̃i), Ỹi)− `(h(Xi), Yi))

∣∣∣∣∣
]
.

For any h and i ∈ [1 : n], let Wh,i be defined as

Wh,i = Vi(`(h(X̃i), Ỹi)− `(h(Xi), Yi)).

Clearly, {Wh,i}ni=1 are a sequence of independent random variables, each of which takes values in [−1, 1] and
has mean 0. Therefore, we have by Hoeffding’s inequality that for any h and any ρ > 0,

P

(
1

n

∣∣∣∣∣
n∑
i=1

Wh,i

∣∣∣∣∣ ≥ ρ
)
≤ 2e−2nρ

2

.
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Applying the union bound over h ∈ HC(Zn,Z̃n), we have for any ρ > 0,

P

(
max

h∈HC(Zn,Z̃n)

1

n

∣∣∣∣∣
n∑
i=1

Wh,i

∣∣∣∣∣ ≥ ρ
)
≤ 2|HC(Zn,Z̃n)|e

−2nρ2 ,

which, via some technical lemma, implies that

E

[
max

h∈HC(Zn,Z̃n)

1

n

∣∣∣∣∣
n∑
i=1

Wh,i

∣∣∣∣∣
]
≤

4 +
√

log(|HC(Zn,Z̃n)|)
√

2n

≤
4 +

√
log(τH(2n))√

2n
.

Plugging this back into (4), we have proved (2).

4 Quantitative Version of Fundamental Theorem of Learning

Finally, we provide a stronger, quantitative version of the fundamental theorem of statistical learning.

Theorem 4.1 (Fundamental Theorem of Statistical Learning – Quantitative Version) Let H be
a hypothesis class of functions from X to {0, 1} and let the loss function be the 0-1 loss. Then there exists
C1, C2 such that

1. H has the uniform convergence property with sample complexity satisfying

C1
d+ log(1/δ)

ε2
≤ nUC

H (ε, δ) ≤ C2
d+ log(1/δ)

ε2
;

2. H is PAC learnable with sample complexity satisfying

C1
d+ log(1/δ)

ε2
≤ nH(ε, δ) ≤ C2

d+ log(1/δ)

ε2
.


