ELEG/CISC 867: Advanced Machine Learning	Spring 2019
Lecture 6: Fundamental Theorem of Statistical Learning	
Lecturer: Xiugang Wu 03/1	12/2019, 03/14/2019

Last time we have shown that a class of infinite VC-dimension is not learnable. The converse statement is also true, leading to the fundamental theorem of statistical learning theory.

Theorem 0.1 (Fundamental Theorem of Statistical Learning) Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then the following statements are equivalent:

- 1. \mathcal{H} has the uniform convergence property.
- 2. ERM is a successful PAC learner for H.
- 3. \mathcal{H} is PAC learnable.
- 4. The VC-dimension of \mathcal{H} , denoted by d, is finite.

We have shown $1 \to 2$ in previous lectures. The implication $2 \to 3$ is trivially by the definition of PAC learnability. The implication $3 \to 4$ follows from No Free Lunch Theorem: if the VC-dimension of \mathcal{H} is infinite, then \mathcal{H} is not learnable. Here we will show that $4 \to 1$. The proof is based on two main claims:

- Sauer's Lemma: If VC-d(\mathcal{H}) = d, then even though \mathcal{H} might be infinite, when restricting it to a finite set $C \subseteq \mathcal{X}$, its "effective" size, $|\mathcal{H}_C|$, is only $O(|C|^d)$.
- Uniform convergence holds whenever the hypothesis class has a "small effective" size, i.e. $|\mathcal{H}_C|$ grows polynomially with |C|.

1 Sauer's Lemma and the Growth Function

Definition 1.1 (Growth Function) The growth function of a hypothesis class \mathcal{H} , denoted by $\tau_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$, is defined as

$$\tau_{\mathcal{H}}(n) = \max_{C \subseteq \mathcal{X}: |C|=n} |\mathcal{H}_C|.$$

In words, $\tau_{\mathcal{H}}(n)$ is defined as the maximal number of different functions from a set C of size n to $\{0,1\}$ that can be obtained by restricting \mathcal{H} to C.

Obviously, if VC-d(\mathcal{H}) = d, then for any $n \leq d$ we have $\tau_{\mathcal{H}}(n) = 2^n$. In such cases, \mathcal{H} induces all possible functions from C to {0, 1}. The following lemma, proposed independently by Sauer, Shelah and Perles, shows that when n becomes larger than the VC-dimension, the growth function increases polynomially rather than exponentially with n.

Lemma 1.1 (Sauer-Shelah-Perles) Let \mathcal{H} be a hypothesis class with $VC\text{-}d(\mathcal{H}) = d < \infty$. Then for all n, $\tau_{\mathcal{H}}(n) \leq \sum_{i=0}^{d} {n \choose i}$. In particular, if n > d then $\tau_{\mathcal{H}}(n) \leq (en/d)^{d}$.

2 Uniform Convergence for Classes of Small Effective Size

We now show that uniform convergence holds whenever the hypothesis class has a "small effective" size, i.e. $|\mathcal{H}_C|$ grows polynomially with |C|. In particular, we have the following theorem, which relates the generalization error to the growth function of \mathcal{H} .

Theorem 2.1 Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then for every P and every $\delta \in (0,1)$, we have

$$P^{n}\left(\sup_{h\in\mathcal{H}}|L(h,P)-L(h,P_{Z^{n}})|\leq\frac{4+\sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\delta\sqrt{2n}}\right)\geq1-\delta.$$
(1)

2.1 Proof of Theorem 0.1

Before we prove Theorem 2.1, we will first use it to conclude the proof of Theorem 0.1, i.e. to show 4) \rightarrow 1) in Theorem 0.1. From Sauer's lemma we have that for n > d, $\tau_{\mathcal{H}}(2n) \leq (2en/d)^d$. Combining this with Theorem 2.1, we have

$$P^n\left(\sup_{h\in\mathcal{H}}|L(h,P)-L(h,P_{Z^n})|\leq\frac{4+\sqrt{d\log(2en/d)}}{\delta\sqrt{2n}}\right)\geq 1-\delta.$$

For simplicity assuming that $\sqrt{d \log(2en/d)} \ge 4$, we have

$$P^n\left(\sup_{f\in\mathcal{F}}|L(f,P)-L(f,P_{Z^n})|\leq \frac{1}{\delta}\sqrt{\frac{2d\log(2en/d)}{n}}\right)\geq 1-\delta.$$

To ensure the generalization error is at most ϵ we need that

$$n \ge \frac{2d\log n}{(\delta\epsilon)^2} + \frac{2d\log(2e/d)}{(\delta\epsilon)^2}.$$

A sufficient condition for the above to hold is that

$$n \ge 4\frac{2d}{(\delta\epsilon)^2}\log(2d/(\delta\epsilon)^2) + \frac{4d\log(2e/d)}{(\delta\epsilon)^2}.$$

3 Proof of Uniform Convergence

To show Theorem 2.1 we will show that

$$\mathbb{E}_{Z^n \sim P^n} \left[\sup_{h \in \mathcal{H}} |L(h, P) - L(h, P_{Z^n})| \right] \le \frac{4 + \sqrt{\log(\tau_{\mathcal{F}}(2n))}}{\sqrt{2n}},\tag{2}$$

which will then imply (1) via Markov inequality. To show (2), we will apply a two-sample trick so that we can restrict \mathcal{H} to some C, forming an small effective size hypothesis class \mathcal{H}_C , and then apply the union bound over \mathcal{H}_C .

3.1 Two-Sample Trick

To bound the L.H.S. of (2), we will use the two-sample trick. First note that for every $h \in \mathcal{H}$, we can rewrite

$$L(h,P) = \mathbb{E}_{\tilde{Z}^n \sim P^n}[L(f,P_{\tilde{Z}^n})],$$

where \tilde{Z}^n is an additional i.i.d. sample. Therefore,

Ì

$$\mathbb{E}_{Z^{n} \sim P^{n}} \left[\sup_{h \in \mathcal{H}} |L(h, P) - L(h, P_{Z^{n}})| \right] = \mathbb{E}_{Z^{n} \sim P^{n}} \left[\sup_{h \in \mathcal{H}} |\mathbb{E}_{\tilde{Z}^{n} \sim P^{n}} [L(h, P_{\tilde{Z}^{n}}) - L(h, P_{Z^{n}})]| \right]$$

$$\leq \mathbb{E}_{Z^{n} \sim P^{n}} \left[\sup_{h \in \mathcal{H}} \mathbb{E}_{\tilde{Z}^{n} \sim P^{n}} |L(h, P_{\tilde{Z}^{n}}) - L(h, P_{Z^{n}})| \right]$$

$$\leq \mathbb{E}_{Z^{n} \sim P^{n}} \mathbb{E}_{\tilde{Z}^{n} \sim P^{n}} \left[\sup_{h \in \mathcal{H}} |L(h, P_{\tilde{Z}^{n}}) - L(h, P_{Z^{n}})| \right]$$

$$= \mathbb{E}_{Z^{n}, \tilde{Z}^{n} \sim P^{n}} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^{n} (\ell(h(\tilde{X}_{i}), \tilde{Y}_{i}) - \ell(h(X_{i}), Y_{i}))| \right| \right]. \quad (3)$$

Since (Z^n, \tilde{Z}^n) are chosen i.i.d., nothing will change if we swap Z_i and \tilde{Z}_i in (3); if we do so, instead of the term $(\ell(h(\tilde{X}_i), \tilde{Y}_i) - \ell(h(X_i), Y_i))$ we will have $-(\ell(h(\tilde{X}_i), \tilde{Y}_i) - \ell(h(X_i), Y_i))$ in (3). Therefore, for every $v^n \in \{\pm 1\}^n$ we have that the R.H.S. of (3) equals

$$\mathbb{E}_{Z^n, \tilde{Z}^n \sim P^n} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^n v_i(\ell(h(\tilde{X}_i), \tilde{Y}_i) - \ell(h(X_i), Y_i)) \right| \right].$$

Since this holds for every $v^n \in \{\pm 1\}^n$, it also holds if we sample each component of v^n according to the uniform distribution U on $\{\pm 1\}$. Hence the R.H.S. of (3) also equals

$$\mathbb{E}_{V^n \sim U^n} \mathbb{E}_{Z^n, \tilde{Z}^n \sim P^n} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^n V_i(\ell(h(\tilde{X}_i), \tilde{Y}_i) - \ell(h(X_i), Y_i)) \right| \right]$$

= $\mathbb{E}_{Z^n, \tilde{Z}^n \sim P^n} \mathbb{E}_{V^n \sim U^n} \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \left| \sum_{i=1}^n V_i(\ell(h(\tilde{X}_i), \tilde{Y}_i) - \ell(h(X_i), Y_i)) \right| \right].$ (4)

3.2 Restrict \mathcal{H} to C

We now show that the inner expectation in (4) can be upper bounded irrespective of Z^n and \tilde{Z}^n . For any Z^n and \tilde{Z}^n , let $C(Z^n, \tilde{Z}^n)$ be the instances appearing in Z^n and \tilde{Z}^n . Then we can take the supremum in (4) only over $h \in \mathcal{H}_{C(Z^n, \tilde{Z}^n)}$, i.e.,

inner expectation of (4) =
$$\mathbb{E}_{V^n \sim U^n} \left[\max_{h \in \mathcal{H}_{C(Z^n, \tilde{Z}^n)}} \frac{1}{n} \left| \sum_{i=1}^n V_i(\ell(h(\tilde{X}_i), \tilde{Y}_i) - \ell(h(X_i), Y_i)) \right| \right].$$

For any h and $i \in [1:n]$, let $W_{h,i}$ be defined as

$$W_{h,i} = V_i(\ell(h(\tilde{X}_i), \tilde{Y}_i) - \ell(h(X_i), Y_i)).$$

Clearly, $\{W_{h,i}\}_{i=1}^{n}$ are a sequence of independent random variables, each of which takes values in [-1, 1] and has mean 0. Therefore, we have by Hoeffding's inequality that for any h and any $\rho > 0$,

$$\mathbb{P}\left(\frac{1}{n}\left|\sum_{i=1}^{n} W_{h,i}\right| \ge \rho\right) \le 2e^{-2n\rho^2}.$$

Applying the union bound over $h \in \mathcal{H}_{C(\mathbb{Z}^n, \mathbb{Z}^n)}$, we have for any $\rho > 0$,

$$\mathbb{P}\left(\max_{h\in\mathcal{H}_{C(Z^{n},\tilde{Z}^{n})}}\frac{1}{n}\left|\sum_{i=1}^{n}W_{h,i}\right|\geq\rho\right)\leq 2|\mathcal{H}_{C(Z^{n},\tilde{Z}^{n})}|e^{-2n\rho^{2}},$$

which, via some technical lemma, implies that

$$\mathbb{E}\left[\max_{h\in\mathcal{H}_{C(Z^{n},\tilde{Z}^{n})}}\frac{1}{n}\left|\sum_{i=1}^{n}W_{h,i}\right|\right] \leq \frac{4+\sqrt{\log(|\mathcal{H}_{C(Z^{n},\tilde{Z}^{n})}|)}}{\sqrt{2n}} \leq \frac{4+\sqrt{\log(\tau_{\mathcal{H}}(2n))}}{\sqrt{2n}}.$$

Plugging this back into (4), we have proved (2).

4 Quantitative Version of Fundamental Theorem of Learning

Finally, we provide a stronger, quantitative version of the fundamental theorem of statistical learning.

Theorem 4.1 (Fundamental Theorem of Statistical Learning – Quantitative Version) Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then there exists C_1, C_2 such that

1. H has the uniform convergence property with sample complexity satisfying

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le n_{\mathcal{H}}^{UC}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2};$$

2. \mathcal{H} is PAC learnable with sample complexity satisfying

$$C_1 \frac{d + \log(1/\delta)}{\epsilon^2} \le n_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$$