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Last time we have shown that a class of infinite VC-dimension is not learnable. The converse statement is
also true, leading to the fundamental theorem of statistical learning theory.

Theorem 0.1 (Fundamental Theorem of Statistical Learning) Let H be a hypothesis class of func-
tions from X to {0,1} and let the loss function be the 0-1 loss. Then the following statements are equivalent:

1. H has the uniform convergence property.

2. ERM 1is a successful PAC learner for H.

3. H is PAC learnable.

4. The VC-dimension of H, denoted by d, is finite.

We have shown 1) — 2) in previous lectures. The implication 2) — 3) is trivially by the definition of PAC
learnability. The implication 3) — 4) follows from No Free Lunch Theorem: if the VC-dimension of H is
infinite, then H is not learnable. Here we will show that 4) — 1). The proof is based on two main claims:

e Sauer’s Lemma: If VC-d(H) = d, then even though H might be infinite, when restricting it to a finite
set C C X, its “effective” size, |H¢/, is only O(|C|%).

e Uniform convergence holds whenever the hypothesis class has a “small effective” size, i.e. |H¢c| grows
polynomially with |C].

1 Sauer’s Lemma and the Growth Function

Definition 1.1 (Growth Function) The growth function of a hypothesis class H, denoted by 73 : N — N,
is defined as

t4(n) = max |[Hcl
CCX:|C|=n
In words, Ty(n) is defined as the mazimal number of different functions from a set C of size n to {0, 1} that
can be obtained by restricting H to C.

Obviously, if VC-d(#H) = d, then for any n < d we have 7 (n) = 2". In such cases, H induces all possible
functions from C' to {0,1}. The following lemma, proposed independently by Sauer, Shelah and Perles, shows
that when n becomes larger than the VC-dimension, the growth function increases polynomially rather than
exponentially with n.

Lemma 1.1 (Sauer-Shelah-Perles) Let H be a hypothesis class with VC-d(H) = d < co. Then for all n,
T (n) < Zj:o (). In particular, if n > d then Ty (n) < (en/d)?.
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2 Uniform Convergence for Classes of Small Effective Size

We now show that uniform convergence holds whenever the hypothesis class has a “small effective” size,
ie. |Hc¢| grows polynomially with |C|. In particular, we have the following theorem, which relates the
generalization error to the growth function of #.

Theorem 2.1 Let H be a class and let 7 be its growth function. Then for every P and every ¢ € (0,1),
we have
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2.1 Proof of Theorem 0.1

Before we prove Theorem 2.1, we will first use it to conclude the proof of Theorem 0.1, i.e. to show 4) — 1)
in Theorem 0.1. From Sauer’s lemma we have that for n > d, 7 (2n) < (2en/d)?. Combining this with
Theorem 2.1, we have
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To ensure the generalization error is at most € we need that
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A sufficient condition for the above to hold is that
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3 Proof of Uniform Convergence

To show Theorem 2.1 we will show that

44 +/log(7x(2n))
Egnpn |sup |L(h, P) — L(h, Pza)|| < ,
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which will then imply (1) via Markov inequality. To show (2), we will apply a two-sample trick so that we
can restrict H to some C, forming an small effective size hypothesis class H¢, and then apply the union
bound over Hc.

(2)
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3.1 Two-Sample Trick

To bound the L.H.S. of (2), we will use the two-sample trick. First note that for every h € H, we can rewrite
L(ha P) = EZTI'NP” [L(f7 PZ")])

where Z" is an additional i.i.d. sample. Therefore,
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Since (Z", Z") are chosen i.i.d., nothing will change if we swap Z; and Z; in (3); if we do so, instead of

the term (£(h(X;),Y;) — £(h(X;),Y;)) we will have —(€(h(X;),Y;) — £(h(X;),Y;)) in (3). Therefore, for every
v™ € {£1}"™ we have that the R.H.S. of (3) equals

> wil(h(X),Y7) = £(h(X3), V7))
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Since this holds for every v™ € {£1}", it also holds if we sample each component of v™ according to the
uniform distribution U on {£1}. Hence the R.H.S. of (3) also equals
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3.2 Restrict H to C

We now show that the inner expectation in (4) can be upper bounded irrespective of Z" and Z™. For any
Z"™ and Z", let C(Z"™, Z™) be the instances appearing in Z™ and Z™. Then we can take the supremum in
(4) only over h € Hegn zmys 1€,
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For any h and ¢ € [1 : n], let W}, ; be defined as
Wi = Vi(t(h(X5),Y;) = £(h(X), Yi)).

Clearly, {W},;}?_, are a sequence of independent random variables, each of which takes values in [—1, 1] and
has mean 0. Therefore, we have by Hoeffding’s inequality that for any h and any p > 0,
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Applying the union bound over h € HC(Z",Z")’ we have for any p > 0,
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which, via some technical lemma, implies that
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Plugging this back into (4), we have proved (2).

4 Quantitative Version of Fundamental Theorem of Learning

Finally, we provide a stronger, quantitative version of the fundamental theorem of statistical learning.

Theorem 4.1 (Fundamental Theorem of Statistical Learning — Quantitative Version) Let H be
a hypothesis class of functions from X to {0,1} and let the loss function be the 0-1 loss. Then there exists
C4,Cy such that

1. H has the uniform convergence property with sample complexity satisfying

%) d—Ho%(l/é) < n%c(e,é) < CZd—Ho%(l/é);
€ €
2. H is PAC learnable with sample complexity satisfying
log(1 log(1
o D) < e,y < €, 4B
€ €



