
ELEG/CISC 867: Advanced Machine Learning Spring 2019

Lecture 3: PAC Learning
Lecturer: Xiugang Wu 02/21/2019, 02/26/2019 & 02/28/2019

In the previous lecture, we have introduced a simplified learning model, and shown that for a finite hypothesis
class with realizability assumption, if ERM rule is applied on a sufficiently large training sample (whose size is
independent of the underlying distribution or labeling function), then the output hypothesis will be probably
approximately correct. This lecture will discuss the PAC (Probably Approximately Correct) learning model
in its full generality.

1 PAC Learning Model

Last lecture, we have made several assumptions on the following learning model to simplify our discussion.
We now relax these assumptions and introduce the general PAC learning framework.

Learning:

Prediction:

X

{(Xi, Yi)}n
i=1

Learner

h
Ŷ = h(X)

h 2 H

Figure 1: PAC learning model.

Label set. Last time, we assumed the label set Y = {0, 1}, which corresponds to predicting a binary label
to a given example X. However, many learning tasks take a different form. For example, one may wish to
predict a real valued number (say, the temperature at 9:00 p.m. tomorrow), or a label picked from a finite
set of labels (like the topic of the main story in tomorrow’s paper). One can easily extend our model to such
regression or multiclass classification problems by relaxing the label set to be the set of real vectors or the
set of multiple labels. This generalized Y set is also often referred to as the target set.

Data-Generation Mechanism. Last time, we assumed that the target variable Y is fully determined by
the input X, which may not be a realistic assumption in many cases, e.g. think of predicting which team will
win a basketball game based on their history. From now on, we will replace the “target labeling function”
with a more flexible notion, i.e. a data-labels generating distribution. In particular, we consider a joint
distribution PXY , or simply P , over X × Y. One can view such a distribution as being composed of two
parts: a distribution PX over unlabeled domain points (sometimes called the marginal distribution) and a
conditional distribution over labels for each domain point, PY |X .

Performance Measure of a Predictor. We now introduce a general framework of quantifying the
performance of a predictor. Given a target set Y and a reconstructed target set Ŷ, let ` be any function
from Y × Ŷ to the set of nonnegative real numbers, ` : Y × Ŷ → R+. Such functions are referred to as
loss functions as they are used to quantify how bad we feel about our reconstruction ŷ once we find out the
ground truth y. Define the risk L(h, P) associated with a predictor h under data-generating distribution P

1

2 Lecture 3: PAC Learning

as the expected loss when applying h to X, i.e.

L(h, P) , E(X,Y)∼P [`(Y, h(X))].

This risk is also called the true risk as it statistically measures the true performance of predictor h on unseen
data. In contrast, one can also consider the empirical risk that the predictor h incurs over the training
sample,

1

n

n∑
i=1

`(yi, h(xi)).

It can be readily seen that the the empirical risk is simply the risk of h evaluated under the empirical
distribution Pn, i.e. L(h, Pn).

Several widely used loss functions are as follows:

• 0-1 loss: The 0-1 loss, widely used in classification, is defined as

`0−1(y, ŷ) = I(y 6= ŷ).

The risk of h under distribution P and loss function `0−1 is simply the probability of error,

EP [`0−1(Y, h(X))] = P (Y 6= h(X)).

• Square loss: The square loss, also known as `2 loss or quadratic loss, is usually used in the regression
problem and is defined as

`sq(y, ŷ) = ‖y − ŷ‖2.

The risk of h under distribution P and loss function `sq is generally known as the Mean Square Error
(MSE),

EP [`sq(Y, h(X))] = EP [‖Y − h(X)‖2].

• Logarithmic loss: The logarithmic loss, or log loss in short, is a loss function widely used in classification
when the reconstruction is “soft” and ŷ represents a distribution over Y,

`log(y, ŷ) = log
1

ŷ(y)
.

The risk of h under distribution P and loss function `log is given by

E(X,Y)∼P [`log(Y, h(X))] = E(X,Y)∼P [− log [h(X)](Y)].

The empirical risk of h under training sample zn and loss function `log is given by

1

n

n∑
i=1

log
1

[h(xi)](yi)
,

which can be also written as

1

n

n∑
i=1

H(pi, qi),

Lecture 3: PAC Learning 3

where H(pi, qi) is the cross entropy between the distributions pi and qi over Y, defined as

H(pi, qi) ,
∑
y∈Y

pi(y) log
1

qi(y)
,

and pi and qi are respectively the distribution induced by seeing yi and the distribution the predictor
outputs, i.e.

pi(y) = I(y = yi),

qi(y) = [h(xi)](y).

For this reason, log loss is also widely known as the cross-entropy loss.

Bayes Predictor. Suppose that one knows the underlying distribution P . Then the predictor

f = argmin
h

L(h, P)

that minimizes the true risk is called the Bayes predictor, or Bayes estimator, or Bayes decision rule, and
its resultant risk

min
h
L(h, P)

is called the Bayes risk. Under different loss functions, the Bayes predictor takes different forms:

• 0-1 loss: Under the 0-1 loss, the Bayes predictor f is given by the well-known maximum a posteriori
(MAP) rule, i.e.,

f(x) = argmax
y∈Y

pY |X(y|x),

with the Bayes risk

L(f, P) = 1−
∑
x∈X

max
y∈Y

pX,Y (x, y).

• Square loss: Under the square loss, the Bayes predictor f is given by the conditional expectation of Y
given X = x, i.e.,

f(x) = EP [Y |X = x],

with the Bayes risk

L(f, P) = EP [Var(Y |X)].

• Log loss: Under the log loss, the Bayes predictor f is given by the conditional distribution of Y given
X = x, i.e.,

[f(x)](y) = pY |X(y|x),

with the Bayes risk being the conditional entropy of Y given X:

L(f, P) = E(X,Y)∼P [− log pY |X(Y |X)] = HP (Y |X).

Unfortunately, since we do not know P , we cannot utilize the above Bayes predictors to achieve the minimal
possible error. Instead, what the learner does have access to is the training sample. So we will choose some
hypothesis class, and require that the learner will, based on the training sample, find a predictor whose error
is not much larger than the best possible error achievable by any hypothesis within the class. This idea is
formalized in the following definition of PAC learnability.

4 Lecture 3: PAC Learning

1.1 PAC Learnability

Given the above general formulation of a learning model, we are now ready to define PAC learnability.

Definition 1.1 (PAC Learnability) A hypothesis class H is PAC (Probably Approximately Correct) learnable
if there exist a function nH : (0, 1) × (0, 1) → N and a learning algorithm with the following property: For
every ε, δ ∈ (0, 1) and every distribution P , if n ≥ nH, then

PZn∼Pn
(
L(hZn , P) ≤ min

h∈H
L(h, P) + ε

)
≥ 1− δ.

Several remarks about the above definition of PAC learnability are as follows:

• Accuracy and confidence parameters: The definition of PAC learnability contains two approximation
parameters mentioned before. The accuracy parameter ε determines how far the output predictor can
be from the optimal one within the class (this corresponds to the “approximately correct”), and the
confidence parameter δ indicates how likely the output predictor is to meet that accuracy requirement
(corresponds to the “probably” part of “PAC”).

• Sample complexity: The function nH determines the sample complexity of learning H, that is, how
many examples at least are required to guarantee a probably approximately correct solution. The sam-
ple complexity is a function of the accuracy and confidence parameters. It also depends on properties
of the hypothesis class H — for example, in last lecture we showed that for a finite class satisfying
the realizability assumption the sample complexity depends on log of the size of H. In fact, using the
above definition of PAC learnability, one can rephrase the result we showed in the last lecture as the
following: Every finite hypothesis class H satisfying the realizability assumption is PAC learnable with

sample complexity nH(ε, δ) ≤ log(|H|/δ)
ε .

• Agnostic PAC learning: This framework is also generally known as agnostic PAC learning as it doesn’t
assume realizability. We will often omit the prefix “agnostic” in this course, in which case PAC learning
refers to this general agnostic case.

2 Finite Hypothesis Class: Agnostic Case

We now revisit the finite hypothesis class and show that any finite hypothesis class is learnable with ERM
in the agnostic case, i.e. even without the realizability assumption.

2.1 Uniform Convergence Is Sufficient For Learnability

For ERM to work, it suffices to ensure that the empirical risk of all hypothesis in H are good approximations
of their true risk. In other words, we need that uniformly over all hypothesis in H, the empirical risk is close
to the true risk. This is formalized in the following.

Definition 2.1 (ε-representative sample) A training sequence Zn is called ε-representative if

∀h ∈ H, |L(h, Pn)− L(h, P)| ≤ ε.

Lemma 2.1 If Zn is ε/2-representative, then the output hZn of ERMH(Zn) satisfies

L(hZn , P) ≤ L(h∗, P) + ε,

where we assume that h∗ achieves the minimum risk within the class H.

Lecture 3: PAC Learning 5

Proof:

L(hZn , P) ≤ L(hZn , Pn) + ε/2 ≤ L(h∗, Pn) + ε/2 ≤ L(h∗, P) + ε/2 + ε/2 = L(h∗, P) + ε.

�

The above lemma implies that to ensure that ERM is a PAC learner, it suffices to show that with probability
of at least 1− δ, Zn is ε-representative. The uniform convergence condition formalizes this requirement.

Definition 2.2 (Uniform convergence) We say H has the uniform convergence property if there exists
a function nUC

H : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and P , if Zn ∼ P with n ≥ nUC
H then with

probability of at least 1− δ, Zn is ε-representative.

Corollary 2.1 If H has the uniform convergence property with a function nUC
H , then the class is PAC

learnable with sample complexity nH(ε, δ) ≤ nUC
H (ε/2, δ), and in this case ERM is a successful PAC learner

for H.

2.2 Finite Classes Are Agnostic PAC Learnable

We now show that finite classes are agnostic PAC learnable by showing that uniform convergence holds for
any finite hypothesis class. For this, we first introduce a measure concentration inequality due to Hoeffding,
which quantifies the gap between empirical averages and their expected value.

Lemma 2.2 (Hoeffding’s Inequality) Let X1, X2, . . . , Xn be a sequence of independent random variables
and assume that for all i, E[Xi] = µ and P(Xi ∈ [a, b]) = 1. Then, for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ
∣∣∣∣∣ ≥ ε

)
≤ 2e

− 2nε2

(b−a)2 .

Now consider the empirical risk of any h ∈ H under training sample Zn,

L(h, Pn) =
1

n

n∑
i=1

`(Yi, h(Xi)),

where `(Yi, h(Xi)), i ∈ [1 : n] are i.i.d. with mean L(h, P) for any i ∈ [1 : n]. Let us further assume that the
range of ` is [0, 1]. Then applying Hoeffding’s inequality to the sequence of `(Yi, h(Xi)), we obtain

Pn (|L(h, Pn)− L(h, P)| ≥ ε) ≤ 2e−2nε
2

,

and therefore

Pn (∃h ∈ H, s.t. |L(h, Pn)− L(h, P)| ≥ ε) ≤ 2|H|e−2nε2 .

This shows that if

n ≥ log(2|H|/δ)
2ε2

,

then

Pn (|L(h, Pn)− L(h, P)| ≤ ε,∀h ∈ H) ≥ 1− δ,

and the corollary below follows immediately.

6 Lecture 3: PAC Learning

Corollary 2.2 Let H be a finite hypothesis class and ` be a loss function with range [0, 1]. Then H enjoys
the uniform convergence property with sample complexity

nUC
H (ε, δ) ≤ log(2|H|/δ)

2ε2
.

Furthermore, the class is agnostically PAC learnable using the ERM algorithm with sample complexity

nH(ε, δ) ≤ nUC
H (ε/2, δ) =

2 log(2|H|/δ)
ε2

.

