
ELEG/CISC 867: Advanced Machine Learning Spring 2019

Lecture 2: A Simplified Learning Model
Lecturer: Xiugang Wu 02/19/2019 & 02/21/2019

Last time, we have introduced the basic idea of machine learning using the example of image classification.
From this lecture, we will start our mathematical analysis of such learning problems. As a gentle start, the
lecture today will introduce a simplified learning model, and demonstrate how successful learning can be
achieved under this model.

1 A Simple Learning Model

Recall the following general statistical learning framework we introduced in the last lecture.

Learning:

Prediction:

X

{(Xi, Yi)}n
i=1

Learner
h

h
Ŷ = h(X)

Figure 1: Supervised machine learning.

Later in this course, we will discuss this framework in its full generality. In today’s lecture, however, we will
make the following assumptions to simplify our discussion.

Learner’s Input. The learner has access to the following:

• Domain set: An arbitrary set, denoted by X , which contains all the possible inputs. For example, it
could be the set of images in the image classification task. Usually, a domain point (or an instance) x
is represented by a vector of features.

• Label set: The set of possible outputs, denoted by Y. For our current discussion, we restrict the label
set to be Y = {0, 1}, where, e.g., 0 could represent label “cat” and 1 could represent label “dog” in
image classification.

• Training data: The training data {(Xi, Yi)}ni=1 is a finite sequence of (domain point, label) pairs in
the product set X ×Y. For notational convenience, we also write X ×Y as Z, and denote the training
data by Zn = {(Xi, Yi)}ni=1.

Learner’s Output. The learner outputs a prediction rule h : X → Y. This function f is also called a
predictor, a hypothesis, or a classifier.

Data-Generation Mechanism. The training data is generated in the following manner. First, instances
{Xi}ni=1 are i.i.d. generated according some probability distribution P over X . Then, each instance Xi is
labeled according to some labelling function f so that Yi = f(Xi), for any i ∈ [1 : n]. The testing data point
X is generated independently of the training data Zn, according to the same distribution P .

1

2 Lecture 2: A Simplified Learning Model

Note that both the probability distribution P and labelling function f are unknown to the learner — in fact,
f is exactly what the learner is trying to figure out and for this reason we will also call f the target function.

Performance Measure of a Classifier. We measure the performance of the learned classifier h by looking
at its resultant probability of error during the prediction stage, i.e.,

L(h, P, f) , PX∼P (h(X) 6= f(X)) = P ({x : h(x) 6= f(x)}),

where we have assumed that the data generating distribution is P and the target function is f . We will call
L(h, P, f) the true error (the true risk, or the test error, interchangeably throughout this course) associated
with a classifier h under the distribution P and target labelling function f . Note that here we use the letter
“L” for “error” since we can view this error as the loss of the learner — next lecture we will see other
formulations of such loss.

2 Empirical Risk Minimization

We now describe a simple learning paradigm for the above setup and analyze its performance.

As we have seen, a learning algorithm takes a training sequence Zn as input, which is sampled from an
unknown distribution P and labeled by some target function f , and outputs a predictor hZn : X → Y,
where we use the subscript Zn to emphasize the dependence of the learned predictor on Zn. The goal of
the learning algorithm is to find hZn that achieves small generalization error L(hZn , P, f) even though the
underlying distribution P and target function f are unknown to the learner.

Since the learner doesn’t know what P and f are, it cannot directly calculate the true error L(h, P, f)
associated with a predictor h. Instead, what the learner can calculate is the training error L(h, Zn) — the
error a predictor h incurs over the training sample Zn, defined as

L(h, Zn) =
|{i ∈ [1 : n] : h(Xi) 6= Yi}|

n
.

Note that this training error is in fact the error L(h, Pn, fn) of h evaluated under the empirical distribution
Pn and the labelling function fn, where

Pn(X = x) ,
|{i ∈ [1 : n] : Xi = x}|

n

fn(x) ,

{
Yi if ∃i ∈ [1 : n] s.t. Xi = x

0 otherwise
.

The terms empirical error and empirical risk are also interchangeably used for this error. Since the training
sample is a snapshot of the world that is available to the learner, it makes sense to search for a solution that
works well on the training data. This learning pradigm – coming up with a predictor h that minimizes the
empirical risk L(h, Zn) – is called Empirical Risk Minimization or simply ERM.

2.1 ERM with Inductive Bias

Although the ERM approach seems very natural, without being careful, it may fail miserably. For example,
think of the predictor fn. Clearly, no matter what the training sample is, fn results in a training error
L(fn, Pn, fn) = 0 and therefore fn may be chosen by an ERM algorithm; however, such fn may perform
very poorly on testing data! (Can you think of an example here?) That said, ERM may lead to a predictor

Lecture 2: A Simplified Learning Model 3

whose performance on the training set is excellent, yet its performance on the true world is very poor. This
phenomenon is called overfitting.

A solution to the above overfitting problem is to apply ERM learning rule over a restricted search space.
In particular, the learner should choose in advance (before seeing the data) a set of predictors. This set is
called a hypothesis class and is denoted by H. Each h ∈ H is a function mapping from X to Y. For a given
class H and a training sample Zn, the ERMH learner uses the ERM rule to choose a predictor h ∈ H with
the smallest training error over Zn, i.e.,

ERMH(Zn) ∈ argmin
h∈H

L(h, Zn).

By restricting the learner to choosing a predictor from H, we bias it toward a particular set of predictors.
Such restrictions are often called an inductive bias. Since the choice of such a restriction is determined before
the learner sees the training data, it should ideally be based on some prior knowledge about the problem
to be learned. (Try to appreciate the formula: “Data + Prior Knowledge = Generalization”, if you haven’t
heard of it or haven’t realized its importance. We’ll come back to this when introducing “no free lunch
theorem”.)

A fundamental question in learning theory is, over which hypothesis classes ERMH learning will not result
in overfitting. We will study this question later in the course. Also, intuitively, choosing a more restricted
hypothesis class better protects us against overfitting but at the same time might cause us a stronger inductive
bias. We will get back to this fundamental tradeoff later as well.

3 Finite Hypothesis Classes with Realizability Assumption

We now consider perhaps the simplest type of restriction on a hypothesis class, i.e. imposing an upper bound
on its size. We will show that if H is a finite class then ERMH will not overfit if the training sample is
sufficiently large.

Assume that H is a finite class which also satisifies the realizability assumption: there exists h∗ ∈ H such
that L(h∗, P, f) = 0. Note that the realizability assumption implies that the training error L(hZn , Zn) using
ERMH algorithm always equals to 0. But how about the true error L(hZn , P, f)?

Since the training set Zn is randomly generated, there is randomness in the choice of hZn and hence the true
risk L(hZn , P, f) is a random variable depending on the training set Zn. What we desire to show is that for
sufficiently large training sample, we can achieve

Pn(L(hZn , P, f) ≤ ε) ≥ 1− δ,

where ε is called the accuracy parameter and δ is called the confidence parameter. Why shall we have these
two parameters?

• First, it is not realistic to hope to find “exactly” correct hZn such that L(hZn , P, f) = 0. As an
example, for every ε ∈ (0, 1), let X = {x1, x2}, and P (X = x1) = 1 − ε while P (X = x2) = ε. Then
the probability of not seeing x2 at all in Zn is (1− ε)n ≤ e−nε. So if ε� 1/n we are likely not to see
x2 at all and thus cannot know its label.

• Second, even relaxing to “approximately” correct hZn such that L(hZn , P, f) ≤ ε, it is not realistic to
expect that with full certainty Zn will suffice to direct the learner toward a good classifier, as there is
always some probability that the sampled training data happens to be very non-representative of the
underlying P .

4 Lecture 2: A Simplified Learning Model

3.1 The Probability of Failure of the ERM Learner

We interpret the event L(hZn , P, f) > ε as a failure of the learner, while if L(hZn , P, f) ≤ ε we view the output
of the algorithm as an approximately correct predictor. We are interested in upper bounding the probability
of encountering such training sample Zn that leads to failure of the learner, i.e. Pn(L(hZn , P, f) > ε).

For this, let HB be the set of bad hypothesis that incurs a high generalization error, i.e.,

HB = {h ∈ H : L(h, P, f) > ε}
= {h ∈ H : P (h(X) 6= f(X)) > ε}.

In addition, letM be the set of misleading training samples, under which there is some bad hypothesis that
looks like a good hypothesis, i.e.,

M = {zn : ∃h ∈ HB s.t. L(h, zn) = 0}
=

⋃
h∈HB

{zn : L(h, zn) = 0}.

Note that the failure of the ERM learner, i.e. the event L(hZn , P, f) ≥ ε, can only happen if Zn falls into
the set M of misleading samples. Therefore, we have

Pn(L(hZn , P, f) ≥ ε) ≤ Pn(Zn ∈M)

≤
∑
h∈HB

Pn(L(h, Zn) = 0).

Since L(h, Zn) = 0 if and only if h(Xi) = f(Xi),∀i ∈ [1 : n], we have for any h ∈ HB that

Pn(L(h, Zn) = 0) = Pn(h(Xi) = f(Xi),∀i ∈ [1 : n])

=

n∏
i=1

P (h(Xi) = f(Xi))

≤ (1− ε)n,
where the second equality is due to the independence among the n training examples, and the last equality
holds because for any bad hypothesis h ∈ HB , P (h(X) 6= f(X)) > ε. Combining the above we have

Pn(L(hZn , P, f) ≥ ε) ≤ |HB |(1− ε)n ≤ |H|e−nε,
where we have used the fact that x+ 1 ≤ ex.

This immediately leads to the following corollary:

Corollary 3.1 Let H be a finite hypothesis class. Let δ ∈ (0, 1) and ε > 0 and let n be an integer that
satisfies

n ≥ log(|H|/δ)
ε

.

Then, for any labeling function f and distribution P , for which the realizability assumption holds (that is,
for some h ∈ H, L(h, P, f) = 0), with probability of at least 1− δ over the choice of an i.i.d. sample Zn, we
have that for every ERM returned predictor, hZn , it holds that

L(hZn , P, f) ≤ ε.

The preceding corollary tells us that for a sufficiently large sample size n, the ERMH rule over a finite
hypothesis class will be probably (with confidence 1− δ) approximately (up to an error of ε) correct. In the
next lecture we will formally define the model of Probably Approximately Correct (PAC) learning.

