
ELEG/CISC 867: Advanced Machine Learning Spring 2019

Lecture 13: Kernel Method
Lecturer: Xiugang Wu 05/14/2019

Last time we described the SVM paradigm for learning halfspaces and we mentioned that if the training set
is not linearly separable in the input space X then one can map the examples to a higher dimensional feature
space F and run SVM on F . While this approach enriches the expressive power of halfspaces by mapping the
data to a high dimensional space, it raises both sample complexity and computational complexity challenges
— learning halfspaces in the high dimensional space requires a sample complexity that grows with the
dimension, and computations over high dimensional spaces can be expensive. In the last lecture, we tackled
the sample complexity issue using the concept of margin; today we will address the computational complexity
challenge using the method of kernels.

1 Embedding into Feature Spaces

To illustrate the idea of embedding data in X into feature space F , consider the following example. Let
X = R and consider a training dataset where

x ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4}

and y = +1 if |x| ≥ 3 and y = −1 if |x| < 3. A halfspace over X = R is a threshold function and it cannot
be used to separate the training set. Instead, one can take the mapping ψ(x) = (x, x2) and learn a halfspace
over the feature space F = R2. After embedding the data in X into F , the training set can now be separated
by the halfspace

sgn(wT f + b)

where w = (0, 1) and b = −5. Equivalently, the training set in the original space X can be separated by the
interval

sgn(x2 − 5)

which is obtained by replacing f with ψ(x) in the halfspace classifer sgn(wT f + b) over F .

In general, one can take the following steps to enrich the expressive power of linear predictors:

• Given the domain set X and the learning task, choose a mapping ψ : X → F , where F is the feature
space and usually takes the form of Rd for some d.

• Learn a linear predictor h(f) over the feature space F using the training data {(ψ(xi), yi)}ni=1.

• When given a new instance x in X , make the prediction ŷ = h(ψ(x)).

The success of the above learning paradigm depends on choosing a good ψ for a given learning task: you
want to pick ψ such that the image of the data distribution is (or close to being) linearly separable in the
feature space, thus making the resulting algorithm a good learner for the given task. This requires prior
knowledge about the task; for example, if we believe that positive examples can be distinguished by some
ellipse, we can define ψ to include all the monomials up to order 2.

One can also rely on some generic ψ mappings to enrich the class of halfspaces and extend its expressive
power. One notable example is polynomial mappings. Recall that the prediction of a standard halfspace

1

2 Lecture 13: Kernel Method

classifier is based on the linear function x 7→ wTx. We can generalize it to the prediction based on polynomial
function x 7→ pk(x), where pk(x) is a multivariate polynomial of degree k. We now describe the ψ mapping
that enables such a generalization.

• First consider the one-dimensional case when X = R. In this case, the polynomial function pk(x) is
given by

pk(x) =

k∑
j=0

wjx
j ,

where w ∈ Rk+1 is the vector of coefficients of the polynomial that we need to learn. Equivalently, we
can write pk(x) as pk(x) = wTψ(x), where ψ : R→ Rk+1 is defined to be the mapping

ψ(x) = (1, x, x2, . . . , xk).

Therefore, learning a k-degree polynomial predictor over X = R can be done by learning a linear
predictor over the feature space Rk+1.

• Generally, when X = Rm the polynomial function pk(x) is given by

pk(x) =

k∑
r=0

∑
J∈[1:m]r

wJ

r∏
i=1

xJi .

As before, we can rewrite pk(x) as pk(x) = wTψ(x), where ψ : Rm → Rd is defined to be the mapping

ψ(x) =

{
r∏

i=1

xJi

}
J∈[1:m]r:r≤k

and the dimension d of the feature space is given by

d =

k∑
r=0

mr.

Note that here compared to the original space X = Rm, the feature space F = Rd could have a much
higher dimension and learning over the feature space might be too costly computationally. To address
this issue, we will introduce the kernel trick, which allows us to learn a predictor over Rd solely based
on calculations over the original space Rm.

2 The Kernel Trick

A kernel function for a mapping ψ is a function that implements inner product in the feature space, namely,

K(x,x′) = 〈ψ(x), ψ(x′)〉.

We will soon demonstrate the advantage of using kernels, that is, they allow to calculate 〈ψ(x), ψ(x′)〉 in the
feature space efficiently, without having to applying ψ and expressing points in the feature space explicitly.
But before that, let’s first ask ourselves whether it is enough to just use inner products 〈ψ(x), ψ(x′)〉 in order
to learn a predictor in the feature space. The following theorem implies that this is indeed true for a class
of learning problems which encompass SVM.

Lecture 13: Kernel Method 3

Theorem 2.1 (Representer Theorem) Consider any learning rule of the following form:

w∗ = argmin
w

f({〈w, ψ(xi)〉}ni=1) +R(‖w‖), (1)

where f : Rn → R is an arbitrary function and R : R+ → R is a monotonically nondecreasing function.
There exists some vector α ∈ Rn such that w∗ =

∑n
i=1 αiψ(xi).

Note that the learning problem (1) includes SVM as special case. In particular, consider SVM for homogenous
halfspaces. Soft-SVM can be derived from (1) by setting R(a) = λa2 and f(an) = 1

n

∑n
i=1 max{0, 1− yiai};

Hard-SVM can be derived from (1) by letting R(a) = a2 and letting f(an) be zero if there yiai ≥ 1 for all i
and be infinity otherwise.

2.1 Learning using Kernels

An immediate implication of the representer theorem is that we can now optimize (1) with respect to α ∈ Rn

instead of w ∈ Rdim(F). In order to do this, all we need to know is the Gram matrix G, which is an n × n
matrix with

Gij = K(xi,xj).

Using the Gram matrix, the learning problem (1) can be rewritten as

min
α
f(Gα) +R(

√
αTGα).

This is because

〈w, ψ(xi)〉 =

〈
n∑

j=1

αjψ(xj), ψ(xi)

〉

=

n∑
j=1

αj 〈ψ(xj), ψ(xi)〉

= (Gα)i

and

‖w‖2 =

〈
n∑

i=1

αiψ(xi),

n∑
j=1

αjψ(xj)

〉
=
∑
i,j

αiαj 〈ψ(xi), ψ(xj)〉

= αTGα.

Once we have learned α, we can make the prediction on a new instance x based on the linear function over
the feature space, i.e. the inner product between w and ψ(x). This inner product can be again calculated
using the kernel function:

〈w, ψ(x)〉 =

〈
n∑

j=1

αjψ(xj), ψ(x)

〉

=

n∑
j=1

αj 〈ψ(xj), ψ(x)〉

=

n∑
j=1

αjK(xj ,x).

4 Lecture 13: Kernel Method

Therefore, we conclude that one can do both training and prediction solely using kernels.

2.2 Examples of Kernels

As already mentioned, the advantage of working with kernels rather than directly optimizing w in the feature
space is that in some situations the dimension of the feature space is extremely large while implementing
the kernel function is very simple. We illustrate this using two examples: polynomial kernels and Gaussian
kernels.

Polynomial Kernel. The k-degree polynomial kernel is defined to be

K(x,x′) = (1 + 〈x,x′〉)k.

To see that this is indeed a kernel function, i.e. there exists mapping ψ for which K(x,x′) = 〈ψ(x), ψ(x′)〉,
denote x0 = x′0 = 1 and expand K(x,x′) as

K(x,x′) = (1 + 〈x,x′〉)k

=

 m∑
j=0

xjx
′
j

 ·
 m∑

j=0

xjx
′
j

 · · · · ·
 m∑

j=0

xjx
′
j


=

∑
J∈[0:m]k

k∏
i=1

xJi
x′Ji

=
∑

J∈[0:m]k

k∏
i=1

xJi
·

k∏
i=1

x′Ji
.

This is precisely the inner product 〈ψ(x), ψ(x′)〉 in the feature space if we define ψ to be

ψ(x) =

{
k∏

i=1

xJi

}
J∈[0:m]k

.

Note that here the complexity of implementing K is O(m) while the dimension of the feature space is
(m+ 1)k.

Gaussian Kernel. Let the original space X = R and consider the mapping ψ given by

ψ(x) =

{
1√
m!
e−

x2

2 xm

}∞
m=0

.

Then we have

〈ψ(x), ψ(x′)〉 =

∞∑
m=0

(
1√
m!
e−

x2

2 xm

)(
1√
m!
e−

(x′)2
2 (x′)m

)

= e−
x2+(x′)2

2

∞∑
m=0

(
(xx′)m

m!

)
= e−

(x−x′)2
2 .

Define the Gaussian kernel K(x, x′) = e−
(x−x′)2

2 . Obviously, evaluating the Gaussian kernel is very simple
while in sharp contrast the feature space is of infinite dimension. Note that since ψ(x) includes all the
monomial terms, using the Gaussian kernel we can learn polynomial predictor of any degree over the original
space.

