ELEG/CISC 867 Advanced Machine Learning

Xiugang Wu

Dept of Electrical & Computer Engineering https://www.eecis.udel.edu/~xwu

Feb 14, 2019

Agenda

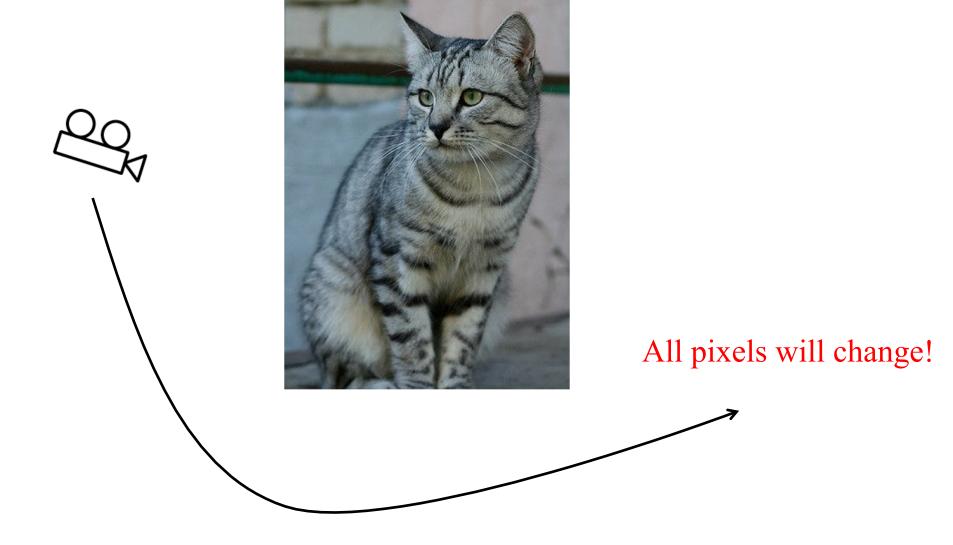
- What is machine learning?
- What can we expect to learn from this course?
- Logistics

What is machine learning?

Example from the course cs231n at Stanford.

Image Classification

Given a set of discrete labels {cat, dog, frog, ... }



cat

The Problem: Semantic Gap

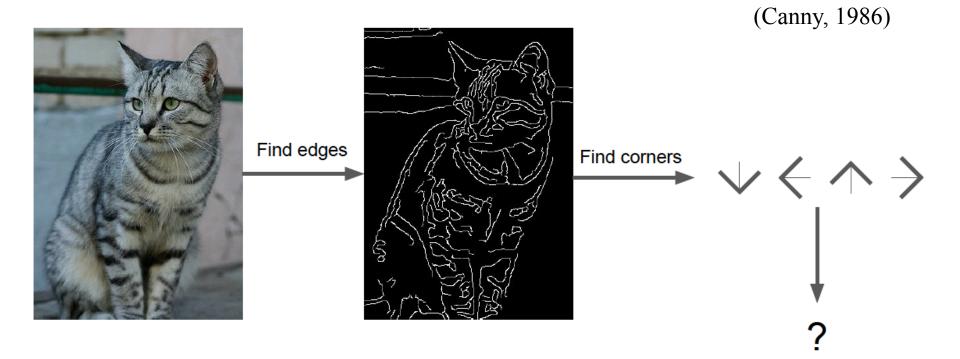
	$ \begin{bmatrix} [105 112 108 111 104 99 106 99 96 183 112 119 104 97 93 87] \\ I 91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85] \\ I 76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85] \\ I 99 81 81 93 120 131 127 100 95 98 102 99 96 93 101 94] \\ I 066 91 61 64 69 91 88 85 101 107 109 98 75 84 96 95] \\ I 14 108 85 55 55 69 64 54 64 87 112 129 98 74 84 91] \\ I 133 137 147 103 65 81 30 65 52 54 74 84 102 93 86 202] \\ I 128 137 144 140 109 95 86 70 62 65 63 63 60 73 86 101] \\ I 125 I 33 148 137 119 121 117 94 65 79 80 65 54 64 72 98] \\ I 127 125 131 147 133 127 126 131 111 910 92 74 65 72 78] \\ I 89 93 90 97 108 147 131 118 113 109 100 92 74 65 72 78] \\ I 63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87] \\ I 63 65 75 88 97 71 80 181 124 126 119 101 107 114 131 119] \\ I 63 65 75 88 771 80 181 124 126 131 125 138 135 185 81 98 110 118] \\ I 87 65 71 87 106 95 69 45 75 130 125 107 92 94 105 112] \\ I 18 97 82 86 117 123 115 66 41 51 95 93 88 95 102 107] \\ I 64 161 12 80 82 120 124 104 76 48 45 66 88 101 182 109] \\ I 127 127 157 120 93 80 114 132 113 113 114 114 77 80 180 118] \\ I 130 126 107 92 94 105 112] \\ I 126 134 161 139 100 109 111 124 156 107 92 94 105 112] \\ I 126 112 96 117 123 115 66 41 51 95 38 89 55 102 107] \\ I 64 146 112 80 82 120 124 104 76 48 45 66 88 101 182 110] \\ I 127 127 126 134 161 139 100 109 1118 121 134 114 87 65 53 69 86] \\ I 120 127 96 66 33 112 153 149 122 109 184 77 580 177 79] \\ I 22 121 102 80 82 86 97 155 78 83 93 103 119 139 102 61 69 84] \end{bmatrix}$		
Alex -	What the computer sees:		
	a big grid of numbers between [0, 255] e.g. 800 x 600 x 3 (3 channels RGB)		

Challenges: Viewpoint Variation

Challenges: Illumination

Challenges: Deformation

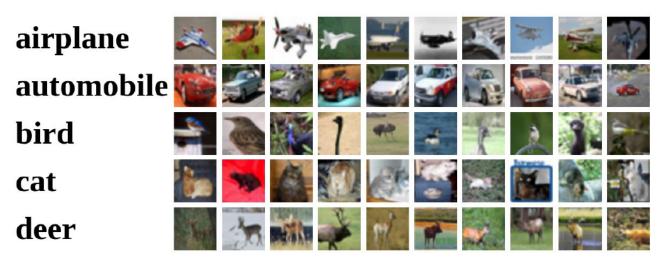
Challenges: Background Clutter



An Image Classifier

def classify_image(image):
 # Some magic here?
 return class_label

- Unlike, e.g., sorting a list of numbers
- No obvious way to code the algorithm for classification


Rule-Based Approach

Data-Driven Approach

1) Data Collection: Collect a dataset of images and labels

An example of training set

Data-Driven Approach

Data Collection: Collect a dataset of images and labels
 Training: Use Machine Learning to train a classifier

def train(images, labels):
 # Machine learning!
 return model

Data-Driven Approach

- 1) Data Collection: Collect a dataset of images and labels
- 2) Training: Use Machine Learning to train a classifier
- 3) Testing: Apply the classifier to new images

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

First Classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels
 Output the label of the most
 similar training image

How to Measure Similarity

$$l_1$$
 distance: $d(A, B) = \sum_i |A_i - B_i|$

	test i	mage	
56	32	<mark>1</mark> 0	18
90	23	128	<mark>133</mark>
24	26	178	200
2	0	255	220

training image

pixel-wise absolute value differences

=	46	12	14	1	
	82	13	39	33	add
	12	10	0	30	→ 456
	2	32	22	<mark>10</mark> 8	


Example on Dataset CIFAR10

10 classes; 50,000 training images; 10,000 testing images; size: 32 x 32

airplane	***	
automobile	📸 😂 🥌 🥃 😂 🛸 😂 🕷	
bird	🚔 🚵 👔 🕋 🚟 🎀 🔎 🕉 😤	
cat	in n in the second s)
deer		
dog	n 🕺 🕵 😹 🌮 🌍 🔊 🖍 👧	
frog	in se	
horse	in in 1997 💏 💏 🌠 🖬 🌮 🔊 👘	0
ship	🛫 💳 🙇 🛶 🛶 🛶 🚎 🚋	
truck	📤 🍋 🐚 🔐 🐝 ジ 🚈 🏠	

Example on Dataset CIFAR10

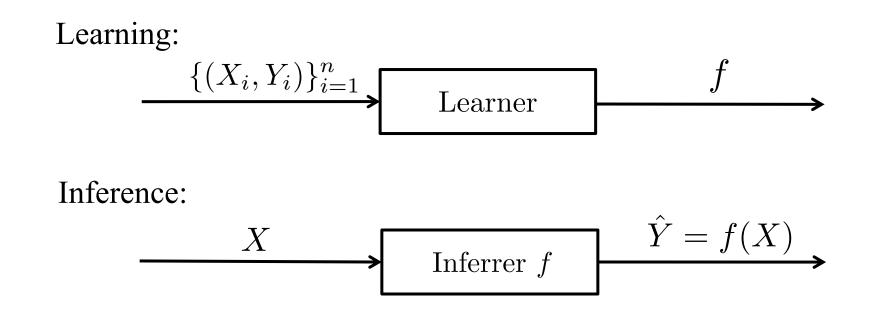
Test images and nearest neighbors

Complexity of Nearest Neighbor Classifier

Q: With *N* training examples, how fast is training and prediction ?

A: Training O(1); Prediction O(N)

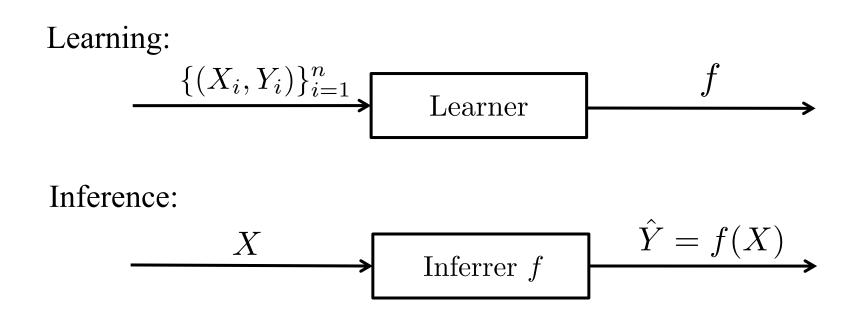
This is bad:


- We want classifiers that are fast at prediction
- Slow for training is OK

Alternatives: Support Vector Machine, Neural Network...

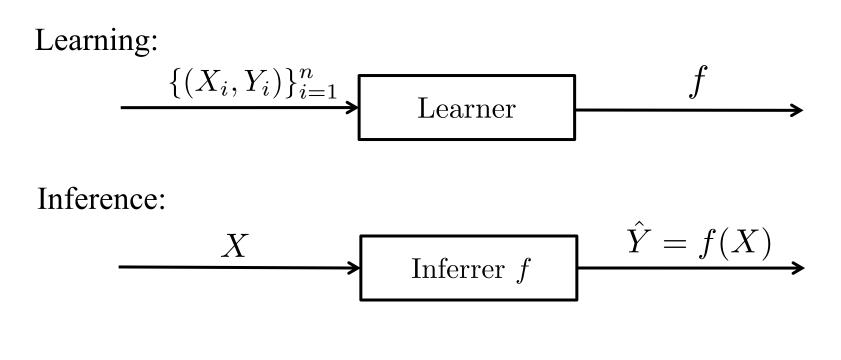
Summary

- Machine Learning Approach to Image Classification
 - Start with a training set of (image, label) pairs
 - Predict labels on test set
- Nearest Neighbor Classifier
 - Training: memorize all (image, label) pairs
 - Prediction: output the label of the nearest neighbor


ML Framework

The common theme of ML is a prediction problem:

- Learn a predictor f from the training data $\{(X_i, Y_i)\}_{i=1}^n$
- Apply f at the inference stage to predict Y based on X


ML Framework

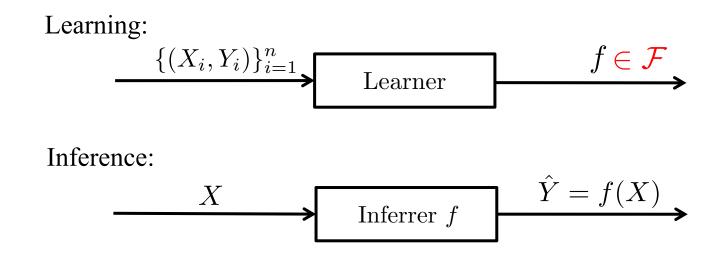
In image classification:

- $\{(X_i, Y_i)\}_{i=1}^n = (\text{image, label})$ pairs
- f = classifier
- X = new image
- Y = true label of new image
- \hat{Y} = predicted label

ML Framework

In regression:

- X, Y are real vectors
- f is a predictor
- \hat{Y} is predicted output


What can we learn from this course?

Top-Down Approach

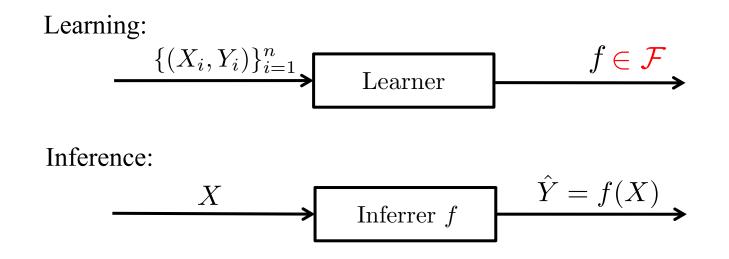
Theory \Rightarrow Algorithm \Rightarrow Implementation

- Part I: Foundation
- Part II: From Theory to Algorithms
- Part III: Advanced Topics

Part I: Foundation

We have to restrict f to \mathcal{F} to avoid overfitting. Why?

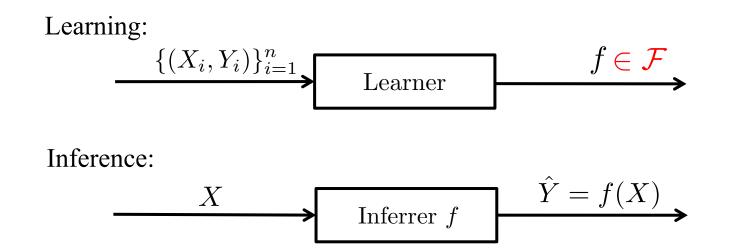
- No free lunch theorem.


What kind of \mathcal{F} is good, i.e. learnable? What is not learnable?

- PAC (Probably Approximately Correct) learning framework.

How much data do we need to learn?

- VC theory.


Part II: From Theory to Algorithms

Various \mathcal{F} lead to various learning models.

- Linear predictor and boosting
- Support vector machine
- Decision trees

Part III: Advanced Topics

Can we learn even if f is not restricted?

- Yes, minimax learning.

Can we learn in real time when training data is progressively given?

- Yes, online learning.

Why is deep neural network working?

- An information theoretic perspective.

Other forms of learning?

- Unsupervised learning, reinforcement learning...

Logistics

Lecture and Office Hour

• Lecture

- TR 9:30-10:45 AM
- Gore 308
- Office hour
 - TR 11:00-12:00 AM
 - Evans 314
- Course website

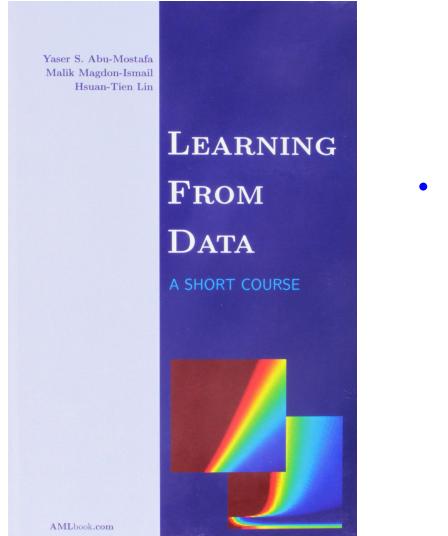
https://www.eecis.udel.edu/~xwu/class/ELEG867/

Prerequisite

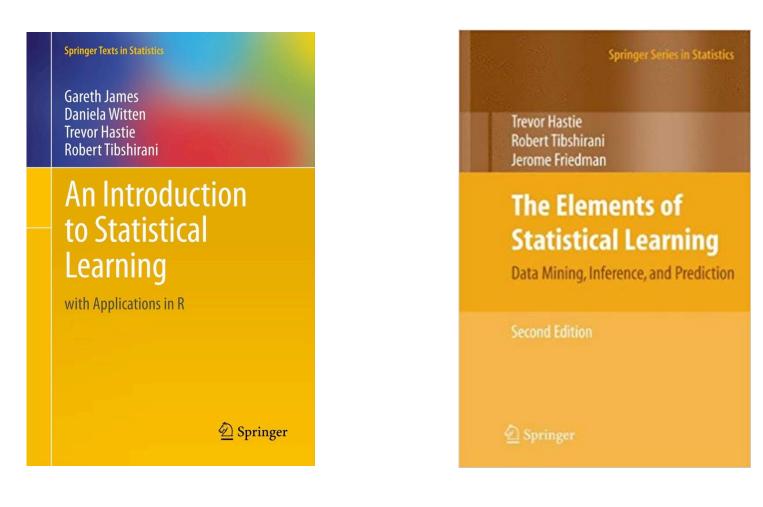
- Undergraduate-level probability theory and linear algebra; mathematical maturity in general
- Previous exposure to machine learning is preferred but not mandatory

Textbook

Shai Shalev-Shwartz and Shai Ben-David


UNDERSTANDING MACHINE LEARNING

FROM THEORY TO ALGORITHMS


- Free pdf version online
- Lecture notes on course website

Other Recommended Books

• Text for "Statistical learning", by Prof. Gonzalo Arce

Other Recommended Books

- Classical "ISL" and "ESL"
- Both free to download

Grading

- Attendance: 10 points
 - Six random samples (after the class is stabilized)
 - Two points for each attendance (5 out of 6 gives you max 10 pts)
- Project (Presentation and Report): 40 points
 - Can be either theoretical or experimental
 - Topics will be posted towards midterm
- Final: 50 points + 10 bonus points
 - Closed book with one letter-size aid-sheet allowed
 - Homeworks (three in total, one for each part) are not graded but crucial for after-exam happiness

Questions?