Lecture 9: Interior-Point Methods

Xiugang Wu

University of Delaware

Fall 2019

Outline

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Outline

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Inequality Constrained Minimization

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{aligned}
$$

- f_{i} convex, twice continuously differentiable
- p^{*} is finite and attained
- $A \in \mathbf{R}^{p \times n}$ with rank p
- problem is strictly feasible: there exists \tilde{x} with

$$
\tilde{x} \in \operatorname{dom} f_{0}, \quad f_{i}(\tilde{x})<0, i=1, \ldots, m, \quad A \tilde{x}=b
$$

hence strong duality holds and dual optimum is attained

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { subject to } & F x \preceq g \\
& A x=b
\end{aligned}
$$

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization via LP
- SDP and SOCP are better handled as problems with generalized inequalities

Outline

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Logarithmic Barrier

reformulation via indicator function:

$$
\begin{aligned}
& \operatorname{minimize} f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right) \\
& \text { subject to } A x=b
\end{aligned}
$$

where $I_{-}(u)$ equals 0 if $u \leq 0$, and ∞ otherwise
approximation via logarithmic barrier:

$$
\begin{aligned}
& \operatorname{minimize} f_{0}(x)-\frac{1}{t} \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
& \text { subject to } A x=b
\end{aligned}
$$

- an equality constrained problem
- for $t>0,-(1 / t) \log (-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \rightarrow \infty$

Logarithmic Barrier

logarithmic barrier function:

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{i}(x)<0, i=1, \ldots, m\right\}
$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivative

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

Central Path

- for $t>0$ define $x^{*}(t)$ as the solution of

$$
\begin{aligned}
& \operatorname{minimize} t f_{0}(x)+\phi(x) \\
& \text { subject to } A x=b
\end{aligned}
$$

(for now assume $x^{*}(t)$ exists and is unique for each $t>0$)

- central path is $\left\{x^{*}(t) \mid t>0\right\}$
example: central path for an LP

$$
\begin{aligned}
& \operatorname{minimize} c^{T} x \\
& \text { subject to } a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, 6
\end{aligned}
$$

hyperplane $c^{T} x=c^{T} x^{*}(t)$ is tangent to level curve of ϕ through $x^{*}(t)$

Dual Points on Central Path

$x=x^{*}(t)$ if there exists a w such that

$$
t \nabla f_{0}(x)+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x)+A^{T} w=0
$$

- therefore $x^{*}(t)$ minimizes the Lagrangian

$$
L\left(x, \lambda^{*}(t), \nu^{*}(t)\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*}(t) f_{i}(x)+\nu^{*}(t)(A x-b)
$$

where we define $\lambda_{i}^{*}(t)=1 /\left(-t f_{i}\left(x^{*}(t)\right)\right)$ and $\nu^{*}(t)=w / t$

- this confirms that $f_{0}\left(x^{*}(t)\right) \rightarrow p^{*}$ as $t \rightarrow \infty$

$$
\begin{aligned}
p^{*} & \geq g\left(\lambda^{*}(t), \nu^{*}(t)\right) \\
& =L\left(x^{*}(t), \lambda^{*}(t), \nu^{*}(t)\right) \\
& =f_{0}\left(x^{*}(t)\right)-m / t
\end{aligned}
$$

Interpretation Via KKT Conditions

$x=x^{*}(t), \lambda=\lambda^{*}(t), \nu=\nu^{*}(t)$ satisfy

- primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, A x=b$
- dual constraints: $\lambda \succeq 0$
- approximate complementary slackness: $-\lambda_{i} f_{i}(x)=1 / t, i=1, \ldots, m$
- gradient of Lagrangian w.r.t. x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+A^{T} \nu=0
$$

difference with KKT condition is that condition 3 replaces $\lambda_{i} f_{i}(x)=0$

Outline

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Barrier Method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$.
repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $m / t<\epsilon$.
4. Increase t. $t:=\mu t$.

- terminates with $f_{0}(x)-p^{*} \leq \epsilon$; stopping criterion follows from $f_{0}\left(x^{*}(t)\right)-p^{*} \leq$ m / t
- centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical value: $\mu=15-20$
- several heuristics for choice of $t^{(0)}$
- number of outer (centering) iterations: exactly $\left\lceil\frac{\log \left(m /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil$ plus the initial centering step (to compute $x^{*}\left(t^{(0)}\right)$)

Examples

inequality form LP ($m=100$ inequalities, $n=50$ variables)

- starts with x on central path $\left(t^{(0)}=1\right.$, duality gap 100)
- terminate when $t=10^{8}$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$

Examples

geometric program ($m=100$ inequalities and $n=50$ variables)

Examples

family of standard LP's $\left(A \in \mathbf{R}^{m \times 2 m}\right)$

$$
\begin{aligned}
& \operatorname{minimize} c^{T} x \\
& \text { subject to } A x=b, x \succeq 0
\end{aligned}
$$

$m=10, \ldots, 1000$; for each m solve 100 randomly generated instances
number of iterations grows very slowly as m ranges over a 100:1 ratio

Outline

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Generalized Inequalities

$$
\begin{aligned}
& \operatorname{minimize} f_{0}(x) \\
& \text { subject to } f_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, m \\
& \\
& A x=b
\end{aligned}
$$

- f_{0} convex, $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k_{i}}, i=1, \ldots, m$, convex with respect to proper cones $K_{i} \in \mathbf{R}^{k_{i}}$
- f_{i} twice continuously differentiable
- p^{*} is finite and attained
- $A \in \mathbf{R}^{p \times n}$ with rank p
- problem is strictly feasible; hence strong duality holds and dual optimum is attained
- examples of greatest interest: SOCP, SDP

Generalized Logarithm for Proper Cone

$\psi: \mathbf{R}^{q} \rightarrow \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^{q}$ if:
$-\operatorname{dom} \psi=\operatorname{int} K$ and $\nabla^{2} \psi(y) \prec 0$ for $y \succ_{K} 0$

- $\psi(s y)=\psi(y)+\theta \log s$ for $y \succ_{K} 0, s>0 ; \theta$ is the degree of ψ

Examples:

- nonnegative orthant $K=\mathbf{R}_{+}^{n}: \psi(y)=\sum_{i=1}^{n} \log y_{i}$, with degree $\theta=n$
- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$:

$$
\psi(Y)=\log \operatorname{det} Y \quad(\theta=n)
$$

- second-order cone $K=\left\{y \in \mathbf{R}^{n+1} \mid\left(y_{1}+\cdots+y_{n}^{2}\right)^{1 / 2} \leq y_{n+1}\right\}$:

$$
\psi(y)=\log \left(y_{n+1}^{2}-y_{1}^{2}-\cdots-y_{n}^{2}\right) \quad(\theta=2)
$$

Generalized Logarithm for Proper Cone

properties (without proof): for $y \succ_{K} 0$,

$$
\nabla \psi(y) \succeq_{K^{*}} 0, \quad y^{T} \nabla \psi(y)=\theta
$$

- nonnegative orthant $\mathbf{R}_{+}^{n}: \psi(y)=\sum_{i=1}^{n} \log y_{i}$

$$
\nabla \psi(y)=\left(1 / y_{1}, \ldots, 1 / y_{n}\right), \quad y^{T} \nabla \psi(y)=n
$$

- positive semidefinite cone $\mathbf{S}_{+}^{n}: \psi(Y)=\log \operatorname{det} Y$

$$
\nabla \psi(y)=Y^{-1}, \quad \operatorname{tr}(Y \nabla \psi(Y))=n
$$

- second-order cone $K=\left\{y \in \mathbf{R}^{n+1} \mid\left(y_{1}+\cdots+y_{n}^{2}\right)^{1 / 2} \leq y_{n+1}\right\}$:

$$
\psi(y)=\log \left(y_{n+1}^{2}-y_{1}^{2}-\cdots-y_{n}^{2}\right)
$$

and

$$
\nabla \psi(y)=\frac{2}{y_{n+1}^{2}-y_{1}^{2}-\cdots-y_{n}^{2}}\left(-y_{1},-y_{2}, \ldots,-y_{n}, y_{n+1}\right), \quad y^{T} \nabla \psi(y)=2
$$

Logarithmic Barrier and Central Path

logarithmic barrier for $f_{i}(x) \preceq_{K_{i}} 0, i=1, \ldots, m$:

$$
\phi(x)=-\sum_{i=1}^{m} \psi_{i}\left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{i}(x) \prec_{K_{i}} 0, i=1, \ldots, m\right\}
$$

- ψ_{i} is generalized logarithm for K_{i}, with degree θ_{i}
- $\phi(x)$ is convex, twice continuously differentiable
central path: $\left\{x^{*}(t) \mid t>0\right\}$, where $x^{*}(t)$ solves

$$
\text { minimize } t f_{0}(x)+\phi(x) \text { subject to } A x=b
$$

Dual Points on Central Path

$x=x^{*}(t)$ if there exists $w \in \mathbf{R}^{p}$ such that

$$
t \nabla f_{0}(x)+\sum_{i=1}^{m} D f_{i}(x)^{T} \nabla \psi_{i}\left(-f_{i}(x)\right)+A^{T} w=0
$$

where $D f_{i}(x) \in \mathbf{R}^{k_{i} \times n}$ is derivative matrix of f_{i}

- therefore $x^{*}(t)$ minimizes Lagrangian $L\left(x, \lambda^{*}(t), \nu^{*}(t)\right)$ where

$$
\lambda^{*}(t)=\frac{1}{t} \nabla \psi_{i}\left(-f_{i}\left(x^{*}(t)\right)\right), \quad \nu^{*}(t)=\frac{w}{t}
$$

- from properties of $\psi_{i}: \lambda_{i}^{*}(t) \succ_{K^{*}} 0$ and $-f_{i}(x)^{T} \lambda_{i}^{*}(t)=\theta_{i}$, we have duality gap

$$
f_{0}\left(x^{*}(t)\right)-g\left(\lambda^{*}(t), \nu^{*}(t)\right)=\frac{1}{t} \sum_{i=1}^{m} \theta_{i}
$$

and therefore

$$
p^{*} \geq g\left(\lambda^{*}(t), \nu^{*}(t)\right)=f_{0}\left(x^{*}(t)\right)-\frac{1}{t} \sum_{i=1}^{m} \theta_{i}
$$

Barrier Method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$. repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $\left(\sum_{i} \theta_{i}\right) / t<\epsilon$.
4. Increase t. $t:=\mu t$.

- only difference is that duality gap m / t on central path is replaced by $\sum_{i=1}^{m} \theta_{i} / t$
- number of outer iterations:

$$
\left\lceil\frac{\log \left(\sum_{i=1}^{m} \theta_{i} /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

Examples

second-order cone program (50 variables, 50 SOC constraints in \mathbf{R}^{6})

semidefinite program (100 variables, LMI constraint in \mathbf{S}^{100})

