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Inequality Constrained Minimization

minimize fo(x)
subject to f;(z) <0, i=1,....,m
Ax =b

- f; convex, twice continuously differentiable
- p* is finite and attained

- A € RP*"™ with rank p

- problem is strictly feasible: there exists & with
x € domfy, fi(x)<0,i=1,...,m, Arx =10

hence strong duality holds and dual optimum is attained



Examples

- LP, QP, QCQP, GP

- entropy maximization with linear inequality constraints

minimize Z x; log x;
i=1
subject to Fx < g
Axr = b

- differentiability may require reformulating the problem, e.g., piecewise-linear
minimization via LP

- SDP and SOCP are better handled as problems with generalized inequalities



Outline

* Logarithmic Barrier Function and Central Path



Logarithmic Barrier

reformulation via indicator function:

m

minimize fo(x) + Z I_(fi(x))

i=1
subject to Ax = b

where I_(u) equals 0 if © < 0, and oo otherwise

approximation via logarithmic barrier:

minimize fo(x) — % Z log(—fi(x))
i=1

subject to Ax = b

- an equality constrained problem

- for t > 0, —(1/t) log(—u) is a smooth approximation of I_

- approximation improves as t — o0




Logarithmic Barrier
logarithmic barrier function:
= — ) log(—fi(x)), dom ¢ ={x|fi(x) <0,i=1,...,m}
1=1

- convex (follows from composition rules)

- twice continuously differentiable, with derivative

Vo) =3 fl( V@)
V(o) = 3 o VA@ VAT + Y = Vi)

1
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Central Path

- for ¢t > 0 define x*(¢) as the solution of

minimize tfo(x) + ¢(x)
subject to Ax = b

(for now assume z*(t) exists and is unique for each t > 0)
- central path is {z*(¢)|t > 0}
example: central path for an LP

minimize ¢! z

subject to a;fpx <b;, 1=1,...

hyperplane ¢!’z = c¢f'x*(t) is tangent to level curve of ¢ through z*(¢)



Dual Points on Central Path

x = x*(t) if there exists a w such that

m

tVfo(z) + Z —fj(x) Vii(z)+ AT w =0

1=1

- therefore x*(¢) minimizes the Lagrangian
L(z, X (1), v* (1) = folx) + Y Af(t) fi(w) +v* (1)(Ax — )
i=1

where we define A} (t) = 1/(—tf;(z*(t))) and v*(t) = w/t
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Interpretation Via KKT Conditions

r=ax*(t),\ = X*(t),r = v*(t) satisfy

- primal constraints: f;(x) <0,i=1,...,m, Axr =b

- dual constraints: A = 0

- approximate complementary slackness: —\; f;(z) =1/t,i=1,...,m

- gradient of Lagrangian w.r.t. x vanishes:

difference with KKT condition is that condition 3 replaces \; f;(z) = 0
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Barrier Method

Outline
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Barrier Method

given strictly feasible x, t := t© > 0, o > 1, tolerance € > 0.

repeat

1.
2
3.
4. Increaset. t := ut.

Centering step. Compute z*(t) by minimizing t fo + ¢, subject to Ax = b.
Update. = := z*(t).
Stopping criterion. quit if m/t < e.

- terminates with fo(z) —p* < €; stopping criterion follows from fo(x*(t)) —p* <
m/t

- centering usually done using Newton’s method, starting at current x

- choice of u involves a trade-off: large p means fewer outer iterations, more
inner (Newton) iterations; typical value: p = 15 — 20

- several heuristics for choice of ()

(0)
- number of outer (centering) iterations: exactly Pog(”fo/;if ))-‘ plus the initial

centering step (to compute x*(t(9)))
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inequality form LP (m = 100 inequalities, n = 50 variables)

- starts with x on central path (t(o) = 1, duality gap 100)

- terminate when ¢ = 10% (gap 107°)

- centering uses Newton’s method with backtracking

- total number of Newton iterations not very sensitive for u > 10

14



Examples

geometric program (m = 100 inequalities and n = 50 variables)

duality gap
2

10_4_

10~ 6F © = 50

0 20 40 60 80 100 120
Newton iterations
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Examples

family of standard LP’s (A € R™*?™)

minimize ¢!
subject to Ax =b,x = 0

m = 10, ...,1000; for each m solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100 : 1 ratio

350

Newton iterations

101 102 103



Generalized Inequalities
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Generalized Inequalities

minimize fo(x)
subject to fi(z) <k, 0, i=1,...,m

¥

Axr =0b

- fp convex, f; : R® — R¥ i =1,..., m, convex with respect to proper cones
K; e R¥:

- f; twice continuously differentiable
- p* is finite and attained
- A € RP*™ with rank p

- problem is strictly feasible; hence strong duality holds and dual optimum is
attained

- examples of greatest interest: SOCP, SDP
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Generalized Logarithm for Proper Cone

Y : R — R is generalized logarithm for proper cone K C RY if:
- domy = int K and V?¢(y) < 0 for y =5 0

- P(sy) = ¥(y) + flogs for y =k 0, s > 0; 0 is the degree of

Examples:
- nonnegative orthant K = R": ¢(y) = >, logy,, with degree § = n
- positive semidefinite cone K = S%:
Y(Y) =logdetY (0 =n)
- second-order cone K = {y € R"" | (y; + - +42)2 < gy }:

(y) =log(ypyr —yi — - —ya) (0=2)
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Generalized Logarithm for Proper Cone

properties (without proof): for y =g 0,

Vi(y) =k« 0, y' Vip(y) =6

- nonnegative orthant R": ¢(y) = > logy;

Vi(y) = (1/yr,-- - yn), v Vi(y) =n

- positive semidefinite cone S: (YY) = logdet Y
Vi(y) =Y, (Y Vy(Y)) =n

- second-order cone K = {y € R | (yy +--- +92)2 <y 1 1t

W(y) =log(ys i —yi— - —yp)

and

9
Vi(y) = (Y1, —Y2, s —Yns Ynt1), Y  Vib(y) =2

R -y -2
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Logarithmic Barrier and Central Path

logarithmic barrier for f;(x) <k, 0,i=1,...,m:

o(x) = —Z%(—fi(x))a dom¢ = {z[fi(z) <k, 0,1 =1,...,m}

- 1); is generalized logarithm for K;, with degree 6;
- ¢(x) is convex, twice continuously differentiable

central path: {z*(t)|t > 0}, where z*(t) solves

minimize tfo(x) + ¢(x) subject to Az =b
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Dual Points on Central Path

xr = x*(t) if there exists w € RP such that
tV fo(z) + ZDfl VIV i(—fi(x)) + ATw =0

where Df;(xz) € R¥*™ is derivative matrix of f;

- therefore x*(t) minimizes Lagrangian L(x, A*(t),v*(t)) where
* 1 * *
N (1) = TV (- A @), ) =

w
t

- from properties of 1;: A5 (t) =+ 0 and — f;(x)T X5 (t) = 0;, we have duality
gap

foll* (1) = 9OV (0" (1) = 3 D0

and therefore
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Barrier Method

given strictly feasible x, t := £ > 0, o > 1, tolerance € > 0.

repeat

1. Centering step. Compute x*(t) by minimizing t fo + ¢, subject to Ax = b.
2. Update. = := x*(t).

3. Stopping criterion. quit if (>_.60;)/t < e.

4. Increaset. t := ut.

- only difference is that duality gap m/t on central path is replaced by >, 6/t

- number of outer iterations:

{log(Z%;:;/(et(o)))w



Examples

second-order cone program (50 variables, 50 SOC constraints in R®)
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Newton iterations 0

semidefinite program (100 variables, LMI constraint in $'%°)

140
102 v
o
&%o 10° = 100¢
> —2 S
£ 10 , Z 60
© —4 i g
-g 10 'L_: E
10-6 o =150 p =50 =2 2 20

0 20 40 60 80 100 0 20 40 60 80 100 120
Newton iterations 0

24



