Lecture 9: Interior-Point Methods

Xiugang Wu

University of Delaware

Fall 2019

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

• Inequality Constrained Minimization

- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Inequality Constrained Minimization

minimize $f_0(x)$ subject to $f_i(x) \le 0$, i = 1, ..., mAx = b

- f_i convex, twice continuously differentiable
- p^* is finite and attained
- $A \in \mathbf{R}^{p \times n}$ with rank p
- problem is strictly feasible: there exists \tilde{x} with

 $\tilde{x} \in \operatorname{dom} f_0, \quad f_i(\tilde{x}) < 0, i = 1, \dots, m, \quad A\tilde{x} = b$

hence strong duality holds and dual optimum is attained

- LP, QP, QCQP, GP

- entropy maximization with linear inequality constraints

minimize
$$\sum_{i=1}^{n} x_i \log x_i$$

subject to $Fx \leq g$
 $Ax = b$

- differentiability may require reformulating the problem, e.g., piecewise-linear minimization via LP

- SDP and SOCP are better handled as problems with generalized inequalities

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Logarithmic Barrier

reformulation via indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where $I_{-}(u)$ equals 0 if $u \leq 0$, and ∞ otherwise

approximation via logarithmic barrier:

minimize
$$f_0(x) - \frac{1}{t} \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- an equality constrained problem

- for t > 0, $-(1/t) \log(-u)$ is a smooth approximation of I_{-}

- approximation improves as $t \to \infty$

Logarithmic Barrier

logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \text{ dom } \phi = \{x | f_i(x) < 0, i = 1, \dots, m\}$$

- convex (follows from composition rules)

- twice continuously differentiable, with derivative

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$
$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central Path

- for t > 0 define $x^*(t)$ as the solution of

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

(for now assume $x^*(t)$ exists and is unique for each t > 0)

- central path is $\{x^*(t)|t>0\}$

example: central path for an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i, \quad i = 1, \dots, 6$

hyperplane $c^T x = c^T x^*(t)$ is tangent to level curve of ϕ through $x^*(t)$

• $x^{\star}(10)$

x

Dual Points on Central Path

 $x = x^*(t)$ if there exists a w such that

$$t\nabla f_0(x) + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0$$

- therefore $x^*(t)$ minimizes the Lagrangian

$$L(x,\lambda^*(t),\nu^*(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^*(t)f_i(x) + \nu^*(t)(Ax - b)$$

where we define $\lambda_i^*(t) = 1/(-tf_i(x^*(t)))$ and $\nu^*(t) = w/t$

- this confirms that $f_0(x^*(t)) \to p^*$ as $t \to \infty$

$$p^* \ge g(\lambda^*(t), \nu^*(t)) = L(x^*(t), \lambda^*(t), \nu^*(t)) = f_0(x^*(t)) - m/t$$

Interpretation Via KKT Conditions

$$x=x^*(t), \lambda=\lambda^*(t), \nu=\nu^*(t)$$
 satisfy

- primal constraints: $f_i(x) \leq 0, i = 1, \dots, m, Ax = b$
- dual constraints: $\lambda \succeq 0$
- approximate complementary slackness: $-\lambda_i f_i(x) = 1/t, i = 1, \dots, m$
- gradient of Lagrangian w.r.t. x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT condition is that condition 3 replaces $\lambda_i f_i(x) = 0$

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Barrier Method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$. repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^{*}(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase t. $t := \mu t$.

- terminates with $f_0(x) - p^* \le \epsilon$; stopping criterion follows from $f_0(x^*(t)) - p^* \le m/t$

- centering usually done using Newton's method, starting at current x

- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical value: $\mu=15-20$

- several heuristics for choice of $t^{(0)}$

- number of outer (centering) iterations: exactly $\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$ plus the initial centering step (to compute $x^*(t^{(0)})$)

inequality form LP (m = 100 inequalities, n = 50 variables)

- starts with x on central path $(t^{(0)} = 1, \text{ duality gap } 100)$
- terminate when $t = 10^8 \text{ (gap } 10^{-6}\text{)}$
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$

geometric program (m = 100 inequalities and n = 50 variables)

family of standard LP's $(A \in \mathbf{R}^{m \times 2m})$

minimize $c^T x$ subject to $Ax = b, x \succeq 0$

 $m = 10, \ldots, 1000$; for each m solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

- Inequality Constrained Minimization
- Logarithmic Barrier Function and Central Path
- Barrier Method
- Generalized Inequalities

Generalized Inequalities

minimize $f_0(x)$ subject to $f_i(x) \preceq_{K_i} 0, \quad i = 1, \dots, m$ Ax = b

- f_0 convex, $f_i : \mathbf{R}^n \to \mathbf{R}^{k_i}, i = 1, \dots, m$, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$

- f_i twice continuously differentiable
- p^* is finite and attained
- $A \in \mathbf{R}^{p \times n}$ with rank p

- problem is strictly feasible; hence strong duality holds and dual optimum is attained

- examples of greatest interest: SOCP, SDP

Generalized Logarithm for Proper Cone

 $\psi: \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^q$ if:

- dom ψ = intK and $\nabla^2 \psi(y) \prec 0$ for $y \succ_K 0$
- $\psi(sy) = \psi(y) + \theta \log s$ for $y \succ_K 0, s > 0; \theta$ is the degree of ψ

Examples:

- nonnegative orthant $K = \mathbf{R}_{+}^{n}$: $\psi(y) = \sum_{i=1}^{n} \log y_i$, with degree $\theta = n$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$:

$$\psi(Y) = \log \det Y \ (\theta = n)$$

- second-order cone $K = \{ y \in \mathbb{R}^{n+1} \mid (y_1 + \dots + y_n^2)^{1/2} \le y_{n+1} \}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2) \ (\theta = 2)$$

Generalized Logarithm for Proper Cone

properties (without proof): for $y \succ_K 0$,

$$\nabla \psi(y) \succeq_{K^*} 0, \quad y^T \nabla \psi(y) = \theta$$

- nonnegative orthant \mathbf{R}^n_+ : $\psi(y) = \sum_{i=1}^n \log y_i$

$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \quad y^T \nabla \psi(y) = n$$

- positive semidefinite cone $\mathbf{S}^n_+ \colon \psi(Y) = \log \det Y$

$$\nabla \psi(y) = Y^{-1}, \quad \operatorname{tr}(Y \nabla \psi(Y)) = n$$

- second-order cone $K = \{ y \in \mathbf{R}^{n+1} \mid (y_1 + \dots + y_n^2)^{1/2} \le y_{n+1} \}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2)$$

and

$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} (-y_1, -y_2, \dots, -y_n, y_{n+1}), \quad y^T \nabla \psi(y) = 2$$

Logarithmic Barrier and Central Path

logarithmic barrier for $f_i(x) \leq_{K_i} 0, i = 1, \ldots, m$:

m

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom}\phi = \{x | f_i(x) \prec_{K_i} 0, i = 1, \dots, m\}$$

- ψ_i is generalized logarithm for K_i , with degree θ_i

- $\phi(x)$ is convex, twice continuously differentiable

central path: $\{x^*(t)|t>0\}$, where $x^*(t)$ solves

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

Dual Points on Central Path

 $x = x^*(t)$ if there exists $w \in \mathbf{R}^p$ such that

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

where $Df_i(x) \in \mathbf{R}^{k_i \times n}$ is derivative matrix of f_i

- therefore $x^*(t)$ minimizes Lagrangian $L(x, \lambda^*(t), \nu^*(t))$ where

$$\lambda^*(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^*(t))), \quad \nu^*(t) = \frac{u}{t}$$

- from properties of ψ_i : $\lambda_i^*(t) \succ_{K^*} 0$ and $-f_i(x)^T \lambda_i^*(t) = \theta_i$, we have duality gap

$$f_0(x^*(t)) - g(\lambda^*(t), \nu^*(t)) = \frac{1}{t} \sum_{i=1}^m \theta_i$$

and therefore

$$p^* \ge g(\lambda^*(t), \nu^*(t)) = f_0(x^*(t)) - \frac{1}{t} \sum_{i=1}^m \theta_i$$

Barrier Method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$. repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^{*}(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase t. $t := \mu t$.

- only difference is that duality gap m/t on central path is replaced by $\sum_{i=1}^{m} \theta_i/t$
- number of outer iterations:

$$\left\lceil \frac{\log(\sum_{i=1}^{m} \theta_i / (\epsilon t^{(0)}))}{\log \mu} \right\rceil$$

second-order cone program (50 variables, 50 SOC constraints in \mathbf{R}^6)

semidefinite program (100 variables, LMI constraint in S^{100})

