Lecture 7: Unconstrained Minimization

Xiugang Wu

University of Delaware

Fall 2019

Outline

- Introduction
- Gradient Descent Method
- Steepest Descent Method
- Newton's Method
- Self-Concordant Functions

Outline

- Introduction
- Gradient Descent Method
- Steepest Descent Method
- Newton's Method
- Self-Concordant Functions

Unconstrained Minimization

$$
\operatorname{minimize} f(x)
$$

- f convex, twice continuously differentiable (hence dom f open)
- we assume optimal value $p^{*}=\inf _{x} f(x)$ is attained (and finite)
unconstrained minimization methods:
- produce sequence of points $x^{(k)} \in \operatorname{dom} f, k=0,1, \ldots$ with

$$
f\left(x^{(k)}\right) \rightarrow p^{*}
$$

- can be interpreted as iterative methods for solving optimality condition

$$
\nabla f\left(x^{*}\right)=0
$$

Initial Point and Sublevel Set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \operatorname{dom} f$
- sublevel set $S=\left\{x \mid f(x) \leq f\left(x^{(0)}\right)\right\}$ is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

- true if $\operatorname{dom} f=\mathbf{R}^{n}$
- true if $f(x) \rightarrow \infty$ as $x \rightarrow \operatorname{bd} \operatorname{dom} f$
examples of differentiable functions with closed sublevel sets:

$$
f(x)=\log \left(\sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)\right), \quad f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

Strong Convexity and Implications

f is strongly convex on S if there exists some $m \geq 0$ such that $\nabla^{2} f(x) \succeq m I$. For any $x, y \in S$ we have

$$
f(y)=f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} \nabla^{2} f(z)(y-x)
$$

for some z on the line segment $[x, y]$. Combining this with strong convexity:

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}
$$

- When $m=0$, we recover the basic inequality characterizing convexity; when $m>0$ we obtain a better bound on $f(y)$.
- S is bounded
- $f(x)-p^{*} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2} ;\|\nabla f(x)\|_{2} \leq \sqrt{2 m \epsilon} \Rightarrow f(x)-p^{*} \leq \epsilon$
- $\left\|x^{*}-x\right\|_{2} \leq \frac{2}{m}\|\nabla f(x)\|_{2}$; the optimal point is unique

Descent Method

$$
x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)} \text { with } f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- other notations: $x^{+}=x+t \Delta x$ or $x:=x+t \Delta x$
- $\Delta x^{(k)}$ is the step, or search direction; $t^{(k)}>0$ is the step size, or step length
- from convexity, $f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$ implies $\nabla f\left(x^{(k)}\right)^{T} \Delta x^{(k)}<0$

General descent method.
given a starting point $x \in \operatorname{dom} f$. repeat

1. Determine a descent direction Δx.
2. Line search. Choose a step size $t>0$.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Line Search Types

Exact line search: $t=\arg \min _{s \geq 0} f(x+s \Delta x)$
Backtracking line search:

- Given a descent direction Δx, and $\alpha \in(0,0.5)$ and $\beta \in(0,1)$
- Start at $t=1$, repeat $t:=\beta t$ until

$$
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{T} \Delta x
$$

- such a t always exists as long as it is small enough.

Outline

- Introduction
- Gradient Descent Method
- Steepest Descent Method
- Newton's Method
- Self-Concordant Functions

Gradient Descent Method

general descent method with $\Delta x=-\nabla f(x)$
given a starting point $x \in \operatorname{dom} f$.
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

- Stopping criterion usually of the form $\|\nabla f(x)\|_{2} \leq \epsilon$
- convergence result: for strongly convex f,

$$
f\left(x^{(k)}\right)-p^{*} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{*}\right)
$$

$c \in(0,1)$ depends on $m, x^{(0)}$, line search type

- very simple, but often very slow; rarely used in practice

Example

Quadratic problem in \mathbf{R}^{2}

$$
f(x)=\left(x_{1}^{2}+\gamma x_{2}^{2}\right) / 2 \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- error reduced by a factor of $\frac{\gamma-1}{\gamma+1}$ at each iteration
- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$

Example

nonquadratic problem in \mathbf{R}^{2}

$$
f(x)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

backtracking line search

exact line search

Example

a problem in \mathbf{R}^{100}

$$
f(x)=c^{T} x-\sum_{i=1}^{500} \log \left(b_{i}-a_{i}^{T} x\right)
$$

"linear" convergence - a straight line on a semilog plot

Outline

- Introduction
- Gradient Descent Method
- Steepest Descent Method

Newton's Method

- Self-Concordant Functions

Steepest Descent Method

The first order Taylor approximation:

$$
f(x+v) \approx f(x)+\nabla f(x)^{T} v
$$

- How to choose v to make the $\nabla f(x)^{T} v$ as negative as possible?
- To make the question sensible, we limit the size of v
normalized steepest descent direction (at x w.r.t. the norm $\|\cdot\|$):

$$
\Delta x_{\mathrm{nsd}}=\arg \min _{v}\left\{\nabla f(x)^{T} v \mid\|v\| \leq 1\right\}
$$

with $\nabla f(x)^{T} \Delta x_{\mathrm{nsd}}=-\|\nabla f(x)\|_{*}$
(unnormalized) steepest descent direction:

$$
\Delta x_{\mathrm{sd}}=\|\nabla f(x)\|_{*} \Delta x_{\mathrm{nsd}}
$$

satisfies $\nabla f(x)^{T} \Delta x_{\mathrm{sd}}=-\|\nabla f(x)\|_{*}^{2}$
steepest descent method:

- descent method with $\Delta x=\Delta x_{\text {sd }}$
- convergence properties similar to gradient descent

Examples

- Euclidean norm: $\Delta x_{\text {sd }}=-\nabla f(x)$
- Quadratic norm $\|x\|_{P}=\left(x^{T} P x\right)^{1 / 2}=\left\|P^{1 / 2} x\right\|_{2}$ where $P \succ 0$:

$$
\Delta x_{\mathrm{sd}}=-P^{-1} \nabla f(x)
$$

- ℓ_{1}-norm: $\Delta x_{\text {sd }}=-\frac{\partial f(x)}{\partial x_{i}} e_{i}$ where $\frac{\partial f(x)}{\partial x_{i}}=\|\nabla f(x)\|_{\infty}$

Choice of Norm for Steepest Descent

- steepest descent with backtracking line search for two norms P_{1} and P_{2}
- ellipses show $\left\{x \mid\left\|x-x^{(k)}\right\|_{P}=1\right\}$
- choice of P has strong effect on speed of convergence; optimist vs. pessimist

Outline

- Introduction
- Gradicnt Descent Method
- Steepest Descent Method
- Newton's Method
- Self-Concordant Functions

Newton Step

Δx_{nt} is steepest descent direction at x w.r.t. local Hessian norm:

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

- dashed lines: contour lines of f
- ellipse: $\left\{x+v \mid v^{T} \nabla^{2} f(x) v=1\right\}$
- arrow: $-\nabla f(x)$
$\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)$
affine invariant: Consider $f(x)$ and $\bar{f}(y)=f(T y)$ with nonsingular T.

$$
x+\Delta x_{\mathrm{nt}}=T\left(y+\Delta y_{\mathrm{nt}}\right)
$$

Interpretations

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation

$$
\hat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v
$$

- $x+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition

$$
0=\nabla f(x+v) \approx \nabla \hat{f}(x+v)=\nabla f(x)+\nabla^{2} f(x) v
$$

Newton Decrement

a measure of the proximity of x to x^{*} :

$$
\begin{aligned}
\lambda(x) & =\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2} \\
& =\left\|\Delta x_{\mathrm{nt}}\right\|_{\nabla^{2} f(x)}
\end{aligned}
$$

- gives an estimate of $f(x)-p^{*}$, using quadratic approximation \hat{f} :

$$
f(x)-\inf _{y} \hat{f}(y)=\lambda(x)^{2} / 2
$$

- as in general steepest descent,

$$
\nabla f(x)^{T} \Delta x_{\mathrm{nt}}=-\left\|\Delta x_{\mathrm{nt}}\right\|_{\nabla^{2} f(x)}^{2}=-\lambda(x)^{2}
$$

therefore it comes up in backtracking line search

- affine invariant (unlike $\|\nabla f(x)\|_{2}$):

$$
f(x)=\bar{f}(y) \text { for } x=T y \Rightarrow \lambda_{f}(x)=\lambda_{\bar{f}}(y) \text { for } x=T y
$$

Newton's Method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement.

$$
\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda^{2}:=\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)
$$

2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.

- backtracking line search: repeat $t:=\beta t$ until

$$
\begin{aligned}
f\left(x+t \Delta x_{\mathrm{nt}}\right) & \leq f(x)+\alpha t \nabla f(x)^{T} \Delta x_{\mathrm{nt}} \\
& =f(x)-\alpha t \lambda(x)^{2}
\end{aligned}
$$

- progress independent of affine change of coordinates. Newton iterates for $\bar{f}(y)=f(T y)$ with starting point $y^{(0)}=T^{-1} x^{(0)}$ are:

$$
y^{(k)}=T^{-1} x^{(k)}
$$

Convergence Analysis

Assumptions:

- f strongly convex on S with constant m
- $\nabla^{2} f$ is Lipschitz continuous on S, with constant L :

$$
\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2}
$$

I.e., L measures how well f can be approximated by a quadratic function

Result: there exists constants $\eta \in\left(0, m^{2} / L\right), \gamma>0$ such that

- if $\|\nabla f(x)\|_{2} \geq \eta$, then $f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma$
- if $\|\nabla f(x)\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

Two-Phase Convergence

Damped Newton Phase $\left(\|\nabla f(x)\|_{2} \geq \eta\right)$:

- most iterations requires backtracking steps
- at each iteration, function value decreases by at least γ
- this phase ends after at most $\left(f\left(x^{(0)}\right)-p^{*}\right) / \gamma$ iterations

Quadratically Convergent Phase $\left(\|\nabla f(x)\|_{2}<\eta\right)$:

- all iterations use step size $t=1$
- $\|\nabla f(x)\|_{2}$ converges to zero quadratically: if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$ then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(l)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2^{l-k}} \leq\left(\frac{1}{2}\right)^{2^{l-k}}, \quad l>k
$$

Conclusion: total number of iterations until $f(x)-p^{*} \leq \epsilon$ is upper bounded by

$$
\frac{f\left(x^{(0)}\right)-p^{*}}{\gamma}+\log _{2} \log _{2}\left(\frac{\epsilon_{0}}{\epsilon}\right)
$$

- γ, ϵ_{0} are constants that depend on $m, L, x^{(0)}$
- second terms small (of the order of 6); almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_{0}) are usually unknown
- provides qualitative insight in two-phase convergence

Examples

Example in \mathbf{R}^{2}

- backtracking parameters $\alpha=0.1, \beta=0.7$
- converges in only 5 steps
- quadratic local convergence

Examples

Example in \mathbf{R}^{100}

- backtracking parameters $\alpha=0.01, \beta=0.5$
- backtracking line search almost as fast as exact line search
- clearly shows two phases in algorithm

Outline

- Introduction
- Gradient Descent Method
- Steepest Descent Method
- Newton's Method
- Self-Concordant Functions

Self-Concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, \ldots)
- bound is not affinely invariant, although Newton's method is
convergence analysis via self-concordance (Nesterov and Nemirovski)
- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions (self-concordant functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-Concordant Functions

definition:

- convex $f: \mathbf{R} \rightarrow \mathbf{R}$ is self-concordant if $\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2}$ for all $x \in \operatorname{dom} f$ - convex $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is $g(t)=f(x+t v)$ is self-concordant for all $x \in \operatorname{dom} f$ and $v \in \mathbf{R}^{n}$
examples:
- linear and quadratic functions
- $f(x)=-\log x$
- $f(x)=x \log x-\log x$
affine invariance: If $f: \mathbf{R} \rightarrow \mathbf{R}$ is self-concordant, then $\bar{f}(y)=f(a y+b)$ is self-concordant:

$$
\bar{f}^{\prime \prime \prime}(y)=a^{3} f^{\prime \prime \prime}(a y+b), \quad \bar{f}^{\prime \prime}(y)=a^{2} f^{\prime \prime}(a y+b)
$$

Convergence Analysis For Self-Concordant Functions

There exist constants $\eta \in(0,1 / 4], \gamma>0$ such that

- if $\lambda(x)>\eta$, then $f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma$
- if $\lambda(x) \leq \eta$, then

$$
2 \lambda\left(x^{(x+1)}\right) \leq\left(2 \lambda\left(x^{(x+1)}\right)\right)^{2}
$$

Here η, γ only depend on backtracking parameters α, β.
Complexity bound: number of Newton iterations bounded by

$$
\frac{f\left(x^{(0)}\right)-p^{*}}{\gamma}+\log _{2} \log _{2}\left(\frac{1}{\epsilon}\right)
$$

