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Unconstrained Minimization 

minimize f(x)

- f convex, twice continuously di↵erentiable (hence dom f open)
- we assume optimal value p⇤ = infx f(x) is attained (and finite)

unconstrained minimization methods:
- produce sequence of points x(k) 2 dom f , k = 0, 1, . . . with

f(x(k)) ! p⇤

- can be interpreted as iterative methods for solving optimality condition

rf(x⇤) = 0
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Initial Point and Sublevel Set 

algorithms in this chapter require a starting point x(0) such that
- x(0) 2 dom f
- sublevel set S = {x|f(x)  f(x(0))} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:
- true if dom f = Rn

- true if f(x) ! 1 as x ! bd dom f

examples of di↵erentiable functions with closed sublevel sets:

f(x) = log

 
mX

i=1

exp(aTi x+ bi)

!
, f(x) = �

mX

i=1

log(bi � aTi x)
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Strong Convexity and Implications 

f is strongly convex on S if there exists some m � 0 such that r2f(x) ⌫ mI.
For any x, y 2 S we have

f(y) = f(x) +rf(x)T (y � x) +
1

2
(y � x)Tr2f(z)(y � x)

for some z on the line segment [x, y]. Combining this with strong convexity:

f(y) � f(x) +rf(x)T (y � x) +
m

2
ky � xk22

- When m = 0, we recover the basic inequality characterizing convexity; when
m > 0 we obtain a better bound on f(y).

- S is bounded

- f(x)� p⇤  1
2mkrf(x)k22; krf(x)k2 

p
2m✏ ) f(x)� p⇤  ✏

- kx⇤ � xk2  2
mkrf(x)k2; the optimal point is unique
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Descent Method 

x(k+1) = x(k) + t(k)�x(k) with f(x(k+1)) < f(x(k))

- other notations: x+ = x+ t�x or x := x+ t�x

- �x(k) is the step, or search direction; t(k) > 0 is the step size, or step length

- from convexity, f(x(k+1)) < f(x(k)) implies rf(x(k))T�x(k) < 0
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Line Search Types 

Exact line search: t = argmins�0 f(x+ s�x)

Backtracking line search:
- Given a descent direction �x, and ↵ 2 (0, 0.5) and � 2 (0, 1)
- Start at t = 1, repeat t := �t until

f(x+ t�x) < f(x) + ↵trf(x)T�x

- such a t always exists as long as it is small enough.
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Gradient Descent Method 

- Stopping criterion usually of the form krf(x)k2  ✏
- convergence result: for strongly convex f ,

f(x(k))� p⇤  ck(f(x(0))� p⇤)

c 2 (0, 1) depends on m,x(0), line search type
- very simple, but often very slow; rarely used in practice

general descent method with �x = �rf(x)
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Example 
Quadratic problem in R2

f(x) = (x2
1 + �x2

2)/2 (� > 0)

with exact line search, starting at x(0) = (�, 1) :

x(k)
1 = �

✓
� � 1

� + 1

◆k

, x(k)
2 =

✓
�� � 1

� + 1

◆k

- error reduced by a factor of ��1
�+1 at each iteration

- very slow if � � 1 or � ⌧ 1
- example for � = 10
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Example 

nonquadratic problem in R2

f(x) = ex1+3x2�0.1 + ex1�3x2�0.1 + e�x1�0.1

backtracking line search exact line search
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Example 

a problem in R100

f(x) = cTx�
500X

i=1

log(bi � aTi x)

“linear” convergence—a straight line on a semilog plot
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Steepest Descent Method 
The first order Taylor approximation:

f(x+ v) ⇡ f(x) +rf(x)T v

- How to choose v to make the rf(x)T v as negative as possible?

- To make the question sensible, we limit the size of v

normalized steepest descent direction (at x w.r.t. the norm k · k):

�xnsd = argmin
v

{rf(x)T v | kvk  1}

with rf(x)T�xnsd = �krf(x)k⇤

(unnormalized) steepest descent direction:

�xsd = krf(x)k⇤�xnsd

satisfies rf(x)T�xsd = �krf(x)k2⇤

steepest descent method:

- descent method with �x = �xsd

- convergence properties similar to gradient descent
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Examples 

- Euclidean norm: �xsd = �rf(x)

- Quadratic norm kxkP = (xTPx)1/2 = kP 1/2xk2 where P � 0:

�xsd = �P�1rf(x)

- `1-norm: �xsd = �@f(x)
@xi

ei where
@f(x)
@xi

= krf(x)k1
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Choice of Norm for Steepest Descent 

- steepest descent with backtracking line search for two norms P1 and P2

- ellipses show {x | kx� x(k)kP = 1}

- choice of P has strong e↵ect on speed of convergence; optimist vs. pessimist
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Newton Step 

�xnt is steepest descent direction at x w.r.t. local Hessian norm:

kukr2f(x) = (uTr2f(x)u)1/2

- dashed lines: contour lines of f
- ellipse: {x+ v | vTr2f(x)v = 1}
- arrow: �rf(x)

�xnt = �r2f(x)�1rf(x)

a�ne invariant: Consider f(x) and f̄(y) = f(Ty) with nonsingular T .

x+�xnt = T (y +�ynt)
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Interpretations 

�xnt = �r2f(x)�1rf(x)

- x+�xnt minimizes second order approximation

f̂(x+ v) = f(x) +rf(x)T v +
1

2
vTr2f(x)v

- x+�xnt solves linearized optimality condition

0 = rf(x+ v) ⇡ rf̂(x+ v) = rf(x) +r2f(x)v
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Newton Decrement 

a measure of the proximity of x to x⇤:

�(x) = (rf(x)Tr2f(x)�1rf(x))1/2

= k�xntkr2f(x)

- gives an estimate of f(x)� p⇤, using quadratic approximation f̂ :

f(x)� inf
y
f̂(y) = �(x)2/2

- as in general steepest descent,

rf(x)T�xnt = �k�xntk2r2f(x) = ��(x)2

therefore it comes up in backtracking line search

- a�ne invariant (unlike krf(x)k2):

f(x) = f̄(y) for x = Ty ) �f (x) = �f̄ (y) for x = Ty
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Newton’s Method   

- backtracking line search: repeat t := �t until

f(x+ t�xnt)  f(x) + ↵trf(x)T�xnt

= f(x)� ↵t�(x)2

- progress independent of a�ne change of coordinates. Newton iterates for
f̄(y) = f(Ty) with starting point y(0) = T�1x(0) are:

y(k) = T�1x(k)
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Convergence Analysis 
Assumptions:

- f strongly convex on S with constant m

- r2f is Lipschitz continuous on S, with constant L:

kr2f(x)�r2f(y)k2  Lkx� yk2

I.e., L measures how well f can be approximated by a quadratic function

Result: there exists constants ⌘ 2 (0,m2/L), � > 0 such that

- if krf(x)k2 � ⌘, then f(x(k+1))� f(x(k))  ��

- if krf(x)k2 < ⌘, then

L

2m2
krf(x(k+1))k2 

✓
L

2m2
krf(x(k))k2

◆2
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Two-Phase Convergence 
Damped Newton Phase (krf(x)k2 � ⌘):
- most iterations requires backtracking steps
- at each iteration, function value decreases by at least �
- this phase ends after at most (f(x(0))� p⇤)/� iterations

Quadratically Convergent Phase (krf(x)k2 < ⌘):
- all iterations use step size t = 1
- krf(x)k2 converges to zero quadratically: if krf(x(k))k2 < ⌘ then

L

2m2
krf(x(l))k2 

✓
L

2m2
krf(x(k))k2

◆2l�k


✓
1

2

◆2l�k

, l > k

Conclusion: total number of iterations until f(x)� p⇤  ✏ is upper bounded by

f(x(0))� p⇤

�
+ log2 log2

⇣✏0
✏

⌘

- �, ✏0 are constants that depend on m,L, x(0)

- second terms small (of the order of 6); almost constant for practical purposes
- in practice, constants m,L (hence �, ✏0) are usually unknown
- provides qualitative insight in two-phase convergence
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Examples 

Example in R2

- backtracking parameters ↵ = 0.1, � = 0.7
- converges in only 5 steps
- quadratic local convergence
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Examples 

Example in R100

- backtracking parameters ↵ = 0.01, � = 0.5
- backtracking line search almost as fast as exact line search
- clearly shows two phases in algorithm
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Self-Concordance 

shortcomings of classical convergence analysis
- depends on unknown constants (m,L, . . . )
- bound is not a�nely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)
- does not depend on any unknown constants
- gives a�ne-invariant bound
- applies to special class of convex functions (self-concordant functions)
- developed to analyze polynomial-time interior-point methods for convex opti-
mization
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Self-Concordant Functions 

definition:
- convex f : R ! R is self-concordant if |f 000(x)|  2f 00(x)3/2 for all x 2 dom f
- convex f : Rn ! R is g(t) = f(x + tv) is self-concordant for all x 2 dom f
and v 2 Rn

examples:
- linear and quadratic functions
- f(x) = � log x
- f(x) = x log x� log x

a�ne invariance: If f : R ! R is self-concordant, then f̄(y) = f(ay + b) is
self-concordant:

f̄ 000(y) = a3f 000(ay + b), f̄ 00(y) = a2f 00(ay + b)
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Convergence Analysis For Self-Concordant Functions 

There exist constants ⌘ 2 (0, 1/4], � > 0 such that

- if �(x) > ⌘, then f(x(k+1)
)� f(x(k)

)  ��

- if �(x)  ⌘, then

2�(x(x+1)
) 

⇣
2�(x(x+1)

)

⌘2

Here ⌘, � only depend on backtracking parameters ↵,�.

Complexity bound: number of Newton iterations bounded by

f(x(0)
)� p⇤

�
+ log2 log2

✓
1

✏

◆


