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Unconstrained Minimization

minimize f(z)

- f convex, twice continuously differentiable (hence dom f open)
- we assume optimal value p* = inf, f(z) is attained (and finite)

unconstrained minimization methods:
- produce sequence of points () € dom f, k= 0,1, ... with

f@™) —p*

- can be interpreted as iterative methods for solving optimality condition

Vfx*)=0



Initial Point and Sublevel Set

algorithms in this chapter require a starting point z(®) such that
- 29 ¢ dom f
- sublevel set S = {z|f(z) < f(2(®)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:
- true if dom f=R"
- true if f(x) — oo as ¢ — bd dom f

examples of differentiable functions with closed sublevel sets:

f(x) =log (Z exp(alz + bi)> , fx) = — Z log(b; — al'xz)
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Strong Convexity and Implications

f is strongly convex on S if there exists some m > 0 such that V2f(z) = mlI.
For any x,y € S we have

Fly) = F@) + Vi@ (y—2) + 50— ) V() — )

for some z on the line segment [z, y|. Combining this with strong convexity:
T m 2
fly) = flz) + V()" (y —2) + Sy — 2l

- When m = 0, we recover the basic inequality characterizing convexity; when
m > 0 we obtain a better bound on f(y).

- S is bounded
- f(z) = p* < 5= IVF(@)35; IVF(2)|l2 < V2me = f(z) —p* <e

- ||lz* — z|l2 < 2|V f(2)]|2; the optimal point is unique



Descent Method

2D = o) ) AL wigh Fa3HD) < f (@)

- other notations: 7 = x +tAx or x := = + tAx

- Az®) is the step, or search direction; t(¥) > 0 is the step size, or step length

- from convexity, f(z*t1)) < f(2(*)) implies V f(z*)TAz*) <0

General descent method.

given a starting point x € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. x := x© + tAx.

until stopping criterion is satisfied.




Line Search Types

Exact line search: ¢ = argming>o f(x + sAz)

Backtracking line search:

- Given a descent direction Az, and « € (0,0.5) and 8 € (0,1)
- Start at t = 1, repeat t := Bt until

flz+tAzx) < f(z) + atVf(z) Az

- such a t always exists as long as it is small enough.

flx+tAx)
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Gradient Descent Method

general descent method with Az = —V f(x)

given a starting point x € dom f.
repeat

1. Ax := =V f(x).

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := = + tAx.
until stopping criterion is satisfied.

- Stopping criterion usually of the form ||V f(x)]l2 <€
- convergence result: for strongly convex f,

f@®) —p* < F(f() - p*)

c € (0,1) depends on m, 2 line search type
- very simple, but often very slow; rarely used in practice
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Quadratic problem in R?

Example

f(z) = (a7 +y23)/2 (v>0)

with exact line search, starting at 2(?) = (v, 1) :

k
o= (

- error reduced by a factor of
- very slow if v > 1 or v < 1
- example for v = 10
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Example

nonquadratic problem in R?

f(x) — e%11322—-0.1 + eT1—322—0.1 + p—¥1—0.1

backtracking line search exact line search
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Example

a problem in R!%Y
500

f(x)=cla - Z log(b; — al
i=1

&

104
102 ;
X
Q,
|
~~ 0 B
g 10
G
S
102 -
backtracking I.s.
—4 \ . .
10 0 50 100 150 200
k

“linear” convergence—a straight line on a semilog plot

13



Steepest Descent Method
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Steepest Descent Method
The first order Taylor approximation:
fz+v) = f(z) + Vf(z)'v

- How to choose v to make the V f(z)T'v as negative as possible?
- To make the question sensible, we limit the size of v

normalized steepest descent direction (at x w.r.t. the norm || - ||):

Azpeq = argmin{Vf(z)"v | |v| < 1}

with Vf(z)" Aznsa = = ||V f(2)].
(unnormalized) steepest descent direction:
Azgq = [V f(2)|+Apsa

satisfies Vf(g;)TA:ch = —va(x)Hz

steepest descent method:
- descent method with Ax = Az
- convergence properties similar to gradient descent
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Examples

- Euclidean norm: Azgq = —V f(x)
- Quadratic norm ||z||p = (27 Px)Y/? = ||PY/2z||5 where P > 0:
Azgq = —P 'V f(z)

- {1-norm: Axgq = —%ﬁj)ei where %{ij") = ||Vf(2)|

—Vf(z)
—Vf(x)

Ax
nsd A Tnsd
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Choice of Norm for Steepest Descent

108

A e

0 10 20 30 40

- steepest descent with backtracking line search for two norms P; and P
- ellipses show {z | ||z — 2| p =1}

- choice of P has strong effect on speed of convergence; optimist vs. pessimist
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Newton’s Method
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Newton Step

Ax,; is steepest descent direction at x w.r.t. local Hessian norm:

lullvz sy = (" V2 f(2)u)/?

- dashed lines: contour lines of f
- ellipse: {x +v | vIV2f(x)v =1}
- arrow: —V f(x)

Azy = —V2f(2) 'V f(x)

affine invariant: Consider f(x) and f(y) = f(Ty) with nonsingular T

x + Aﬂjnt E— T(y + Aynt)
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Interpretations

Az = —V2f(2) 'V f(x)
- x + Az, minimizes second order approximation

A

flx+v) = flx)+Vfx)v+ %UTVQf(w)v

- x + Ax,; solves linearized optimality condition

0=Vf(z+v)~Vfx+v)=Vflz)+V2if(z)

> - -F/
/ (.CC -+ A:cnt, f/(CU -+ ACUnt))
7 (z, f'(x))

)

(z, f(x))

('CC _I_ ACCnt, f(SC + A.CCnt)\)._’ f
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Newton Decrement

a measure of the proximity of x to z*:

Az) = (V@) V2 ()t V f(z))?
= ||A$nt||v2f(x)

- gives an estimate of f(x) — p*, using quadratic approximation f:

f(x) — inf f(y) = Mz)?/2
- as in general steepest descent,
V(@) Az = =[[Azne |32y = —A(2)?
therefore it comes up in backtracking line search
- affine invariant (unlike |V f(x)l2):

f(x) = f(y) for & =Ty = Ap(x) = Aj(y) for x = Ty
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Newton’s Method

given a starting point x € dom f, tolerance ¢ > 0.
repeat
1. Compute the Newton step and decrement.
Azy = —V2f(2) 'V f(z); N :=Vfi2)IVif(z) 'Vf(a).
2. Stopping criterion. quit if >\2/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := = + tAxyt.

- backtracking line search: repeat t := [t until

flx+tAzy) < f(x) + atVf(2)! Axy
= f(z) — atA(z)’

- progress independent of affine change of coordinates. Newton iterates for
f(y) = f(Ty) with starting point y(®) = 7712 are:
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Convergence Analysis

Assumptions:
- f strongly convex on S with constant m

- V2f is Lipschitz continuous on S, with constant L:

IV2f(z) = V2 f()ll2 < Lllz — yl2

I.e., L measures how well f can be approximated by a quadratic function

Result: there exists constants n € (0,m?/L), v > 0 such that
- if |V f(2)[|2 > n, then f(z*+1)) — f(a®)) < —y

- if [[Vf(2)l[2 <, then

L (k+1) L ONRY
w”vf(x )2 < ﬁHVf(az )2

23



Two-Phase Convergence

Damped Newton Phase (||Vf(z)|2 > n):

- most iterations requires backtracking steps

- at each iteration, function value decreases by at least ~y
- this phase ends after at most (f(z(?)) — p*)/v iterations

Quadratically Convergent Phase (||V f(z)]|2 < n):
- all iterations use step size t = 1
- IV f(2)||2 converges to zero quadratically: if ||V f(xz*))|z < n then

l—k —k
L L ? 1\’
sV < (VS a®) < (5) 1>k

Conclusion: total number of iterations until f(x) — p* < € is upper bounded by

f(@9) —p*
Y

€
+ log, log, (;0)
- v, ¢y are constants that depend on m, L, z(%)
- second terms small (of the order of 6); almost constant for practical purposes
- in practice, constants m, L (hence 7, ¢g) are usually unknown
- provides qualitative insight in two-phase convergence
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Examples

Example in R?

- backtracking parameters a = 0.1, 8 = 0.7
- converges in only 5 steps

- quadratic local convergence
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Example in R0
- backtracking parameters a = 0.01, 8 = 0.5
- backtracking line search almost as fast as exact line search
- clearly shows two phases in algorithm

Examples

10°
, 10
Q,
/L L0=5 backtracking
=1 |
- exact line search
e 10—10

—15 !
1070 2 A 6 8 10

step size (k)
p—t
- &

S
Ut

exact line search

%tracking

T -
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Self-Concordant Functions
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Self-Concordance

shortcomings of classical convergence analysis
- depends on unknown constants (m, L, . ..)
- bound is not affinely invariant, although Newton’s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants

- gives affine-invariant bound

- applies to special class of convex functions (self-concordant functions)

- developed to analyze polynomial-time interior-point methods for convex opti-
mization
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Selt-Concordant Functions

definition:

- convex f : R — R is self-concordant if |f"(x)| < 2f"(x)3/? for all € dom f
- convex f : R™ — R is g(t) = f(x + tv) is self-concordant for all z € dom f
and v € R"

examples:
- linear and quadratic functions
- (@) = —loga

- f(x) =xlogz —logx

affine invariance: If f : R — R is self-concordant, then f(y) = f(ay + b) is
self-concordant:

f//l(y) — a?’f’"(ay+b), ]F//(y) — a2f”(ay+b)
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Convergence Analysis For Self-Concordant Functions

There exist constants n € (0,1/4], v > 0 such that
- if A(z) >, then f(z*TD) — f(a®)) < —y
- if A(z) <, then
2
2A(z@+D) < (2A(a;<w+1>))
Here n,~ only depend on backtracking parameters «, [3.

Complexity bound: number of Newton iterations bounded by

0)y — p* 1
flz 7) P +log210g2( )

€
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