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X
  Predictor h

Ŷ = h(X)

Statistics and Machine Learning 

Consider the problem of predicting Y 2 Y when given the information ofX 2 X .

Here X 2 X is called the feature and Y 2 Y is called the label (or target). Note

that the problem includes the special case when X = ;.

- Data generation mechanism: (X,Y ) ⇠ P , with P = PXPXY

- Performance measure: Under loss function ` : Y ⇥ Ŷ ! R+, the performance

of predictor h is measured by the risk L(h, P ) = EP [`(Y, h(X))]

- If P is known, the optimal predictor is given by the Bayes predictor

h⇤
= argmin

h
EP [`(Y, h(X))]

- What if P is unknown and instead we have access to data {(Xi, Yi)}ni=1 that

are i.i.d. generated according to P?



3	

Statistics and Machine Learning 

Two approaches to the problem, which are generally known as the generative
approach and the discriminative approach:

- Generative approach (statistical decision theory): Estimate the distribution P
based on data {(Xi, Yi)}ni=1 and then design the predictor; includes parametric
and nonparametric estimation

- Discriminative approach (statistical learning theory): learn the predictor di-
rectly from data {(Xi, Yi)}ni=1 without the intermediate step of estimating P ;
includes classification and regression
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Outline 

•  Parametric Estimation 
•  Nonparametric Estimation 
•  Linear Regression and Logistic Regression 
•  Support Vector Machine 
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Parametric Estimation 

distribution estimation problem: estimate probability density p(y) of a random
variable from observed data

parametric distribution estimation: choose from a family of densities p(y;x),
indexed by a parameter x

MLE (maximum likelihood estimation): maximizex log p(y;x)
- y is observed data
- l(x) = log p(y;x) is called log-likelihood function
- can add constraints x 2 C explicitly, or define p(y;x) = 0 for x /2 C
- a convex optimization problem if log p(y;x) is concave in x for fixed y
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Linear Measurements with IID Noise 

Linear measurement model: yi = aTi x+ vi, i = 1, 2, . . . ,m
- x 2 Rn is vector of unknown parameters
- vi is i.i.d. measurement noise, with density p(z)
- yi is measurement: y 2 Rm has density p(y;x) =

Qm
i=1 p(yi � aTi x)

ML Estimate x̂ML: any solution x of

maximize l(x) =
mX

i=1

log p(yi � aTi x)

Interpretation:
- estimate probability density p(y) from observed data y1, y2, . . . , ym
- densities parameterized by x as p(y;x); e.g., if noise is zero-mean, then prob-
lem becomes estimating the mean of y, which is of the form (aT1 x, . . . , a

T
mx)
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Examples 

- Gaussian noise N (0,�2): p(z) = (2⇡�2)�1/2e�z2/(2�2)

L(x) = �m

2
log(2⇡�2)� 1

2�2

mX

i=1

(aTi x� yi)
2

ML estimate is LS solution

- Laplacian noise: p(z) = (1/2a)e�|z|/a

L(x) = �m log(2a)� 1

a

1

2�2

mX

i=1

|aTi x� yi|

ML estimate is solution to `1-norm minimization
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MAP Estimation 
Maximum a posteriori probability (MAP) estimation is a Bayesian version of
maximum likelihood estimation, with a prior probability density on the under-
lying parameter x.

We assume that x (the vector to be estimated) and y (the observation) are ran-
dom variables with a joint probability density p(x, y) = p(x)p(y|x), where p(x)
is the prior density of x and p(y|x) is the conditional density of y given x.

Given observation y, the Maximum a posteriori probability (MAP) estimation
is to find x that maximizes the posterior density of x given y, i.e.

x̂MAP = argmax
x

p(x|y)

= argmax
x

p(x, y)

= argmax
x

p(y|x)p(x)

= argmax
x

(log p(y|x) + log p(x))

- MAP reduces to ML when x is uniformly distributed
- for any MLE problem with concave log-likelihood, we can add a prior density
p(x) that is log-concave, and the resulting MAP problem will be convex



10	

Revisiting Linear Measurements with IID Noise 

Linear measurement model: yi = aTi x+ vi, i = 1, 2, . . . ,m
- x 2 Rn has prior density p(x)
- vi is i.i.d. measurement noise, with density pz(z)
- conditional density p(y|x) =

Qm
i=1 pz(yi � aTi x)

MAP Estimate x̂MAP can be found by solving

maximize

 
mX

i=1

log pz(yi � aTi x) + log p(x)

!

- For example, if pz(z) is N (0,�2
z) and p(x) is N (x̄,⌃x), then the MAP estimate

can be found by solving the QP:

minimize

 
mX

i=1

(yi � aTi x)
2 + (x� x̄)T⌃�1

x (x� x̄)

!
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Nonparametric Estimation 
Consider a discrete random variable X that takes values in the finite set X =
{a1, . . . , an} and let pi denote the probability of X being equal to ai, i.e.
pi = px(ai). The nonparametric estimation problem is to estimate p from the
probability simplex

{p | p ⌫ 0,1T p = 1}

based on a combination of prior information and, possibly, observations.

- many types of prior information about p can be expressed as linear equality or
inequality constraints of p, e.g., E[x] =

Pn
i=1 ai ·pi = 3.3, E[x2] =

Pn
i=1 a

2
i ·pi �

4, E[f(x)] =
Pn

i=1 f(ai) · pi 2 [l, u], Pr(X 2 C) =
P

a2C p(a) = 0.3

- can also include prior constraints involving nonlinear functions of p, e.g.,
var(x) = E[x2] � E[x]2 =

Pn
i=1 a

2
i · pi � (

Pn
i=1 ai · pi)2; a lower bound on

the variance of X can be expressed as a convex quadratic inequality on p

- As another example, the prior constraint Pr(X 2 A|X 2 B) 2 [l, u] can be
expressed as cT p/dT p 2 [l, u], i.e. ldT p  cT p  udT p

- In general, we can express the prior information about the distribution p as
p 2 P. We assume that P can be described by a set of linear equalities and
convex inequalities, including the basic constraints p ⌫ 0,1T p = 1
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Nonparametric Estimation 
Maximum Likelihood Estimation: Suppose we observe N independent samples
x1, . . . , xN from the distribution. Let ki denote the number of these samples
with value ai, so that k1 + · · · + kn = N . The log-likelihood function is then
l(x) =

Pn
i=1 ki log pi, which is a concave function of p. The ML estimate of p

can be found by solving the convex problem

maximize
nX

i=1

ki log pi

subject to p 2 P

Maximum Entropy Estimation: The maximum entropy distribution consistent
with the prior assumptions can be found by solving the convex problem

maximize �
nX

i=1

pi log pi

subject to p 2 P

where the objective function �
Pn

i=1 pi log pi is concave in p.
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Linear Regression 

Linear regression with squared-loss: learn linear predictor ha(x) = aTx from

training data {(xi, yi)}ni=1

- X = Rd
, Y = R, Ŷ = R

- a 2 Rd
is the parameter to be learned

- loss function `(y, ŷ) = (y � ŷ)2

- risk of ha under distribution P : L(ha, P ) = EP [(Y � aTX)
2
]

- empirical risk of ha:
1
n

Pn
i=1(yi � aTxi)

2
= L(ha, P̂ ), where P̂ denotes the

empirical distribution of (X,Y )

Empirical Risk Minimization (ERM):

minimizea

nX

i=1

(yi � aTxi)
2

which is an ordinary least-squares (OLS) problem
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Regularization 

Two types of regularization: constrained ERM and Penalized ERM, where con-
strained ERM explicitly constrains the complexity of the model, and penalized
ERM penalizes models with high complexity

constrained ERM: e.g., linear regression with constraint on `1 or `2 norm

Penalized ERM: linear regression with regularizer of `1 or `2 norm

minimize
nX

i=1

(yi � aTxi)
2

subject to kak1  r

minimize
nX

i=1

(yi � aTxi)
2

subject to kak22  r

minimize

nX

i=1

(yi � aTxi)
2
+ �kak1 (LASSO Regression)

minimize

nX

i=1

(yi � aTxi)
2
+ �kak22 (Ridge Regression)
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Multi-criterion Interpretation 

kak22

minimize (w.r.t. R2
+) (kDa� yk22, kak22)

kDa� yk22

- example for D 2 R100⇥10
with D = [xT

1 ;x
T
2 ; . . . , x

T
100]; heavy line formed by

Pareto optimal points

- to determine Pareto optimal points, take � = (1, �) with � > 0 and minimize

kDa� yk22 + �kak22

- for fixed �, an OLS problem

In general, constrained ERM and penalized ERM and equivalent if criterion

functions are all convex
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Logistic Regression 

Logistic regression: learn predictor ha(x) =
1

1+e�aT x
from training data {(xi, yi)}ni=1

- X = Rd, Y = {+1,�1}, Ŷ = [0, 1]
- ŷ is the predicted probability of the label of x being 1
- a 2 Rd is the parameter to be learned
- loss function `(y, ha(x)) = log(1 + e�yaT x)

- risk of ha under distribution P : L(ha, P ) = EP [log(1 + e�Y aTX)]

- empirical risk of ha:
1
n

Pn
i=1 log(1 + e�yia

T xi) = L(ha, P̂ )

Empirical Risk Minimization (ERM):

minimizea

nX

i=1

log(1 + e�yia
T xi)

which is a convex optimization problem. Convexity of the optimization problem
inherits from the convexity of the loss function for a given data point (x, y).
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Classification 
Binary classfication: learn halfspace predictor ha(x) = sgn(aTx)
- X = Rd, Y = Ŷ = {+1,�1}
- a 2 Rd is the parameter to be learned
- loss function `(y, ha(x)) = I(y 6= sgn(aTx))
- risk of ha under distribution P : L(ha, P ) = EP [I(Y 6= sgn(aTX))]
- empirical risk of ha:

1
n

Pn
i=1 I(yi 6= sgn(aTxi)) = L(ha, P̂ )

Empirical Risk Minimization (ERM):

minimizea

nX

i=1

I(yi 6= sgn(aTxi))

- If data is linearly separable, then there exists some a1 such that yiaT1 xi > 0, 8i.
- Let a2 = a1

mini yiaT
1 xi

. Then we have yiaT2 xi � 1, 8i.
- Therefore, ERM is equivalent to the feasible problem:

find a subject to yia
Txi � 1, 8i

- There are infinitely many ERM solutions. Which one should we pick?



21	

Support Vector Machine 

Support Vector Machine (SVM) seeks for an ERM hyperplane that separates
the training set with the largest margin
- margin � of a hyperplane with respect to a training set is the minimal Eu-
clidean distance between a point in the training set and the hyperplane
- � = mini yiaTxi/kak
- If we scale a such that mini yiaTxi = 1, then � = 1/kak

Support Vector Machine (SVM):

minimize kak2 subject to yia
Txi � 1, 8i


