Lecture 4: Convex Optimization Problems

Xiugang Wu

University of Delaware

Fall 2019

Outline

- Standard Form Optimization Problem
- Convex Optimization Problem
- Quasiconvex Optimization
- Linear Optimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Outline

- Standard Form Optimization Problem
- Convex Optimization Problem
- Quasiconvex Optimization
- Linear Optimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Standard Form Optimization

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& h_{i}(x)=0, i=1,2, \ldots, p
\end{aligned}
$$

Optimal value:

$$
p^{*}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m ; h_{i}(x)=0, i=1, \ldots, p\right\}
$$

- $p^{*}=\infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{*}=-\infty$ if problem is unbounded below
- a feasible x is optimal if $f_{0}(x)=p^{*} ; X_{\text {opt }}$ is the set of optimal points
- x is locally optimal if there is $R>0$ such that
$f_{0}(x)=\inf \left\{f_{0}(z) \mid f_{i}(z) \leq 0, i=1, \ldots, m ; h_{i}(z)=0, i=1, \ldots, p ;\|z-x\|_{2} \leq R\right\}$

Implicit Constraints

The standard form optimization problem has an implicit constraint:

$$
x \in \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=0}^{p} \operatorname{dom} h_{i}
$$

- we call \mathcal{D} the domain of the problem
- the constraints $f_{i}(x) \leq 0, h_{i}(x)=0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints

Example:

$$
\operatorname{minimize} f_{0}(x)=-\sum_{i=1}^{k} \log \left(b_{i}-a_{i}^{T} x\right)
$$

is an unconstrained problem with implicit constraints $a_{i}^{T} x<b_{i}$

Feasibility Problem

$$
\begin{aligned}
\text { find } & x \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& h_{i}(x)=0, i=1,2, \ldots, p
\end{aligned}
$$

can be considered a special case of the general problem with $f_{0}(x)=0$:

$$
\begin{aligned}
\operatorname{minimize} & 0 \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& h_{i}(x)=0, i=1,2, \ldots, p
\end{aligned}
$$

- $p^{*}=0$ if constraints are feasible; any feasible x is optimal
- $p^{*}=\infty$ if constraints are infeasible

Outline

- Standard Form Optimization Problem
- Convex Optimization Problem
- Quasiconvex Optimization
- Linear Optimization
- Quadratic Ontimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Convex Optimization Problem

Standard form convex optimization problem

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& a_{i}^{T} x=b_{i}, i=1,2, \ldots, p
\end{aligned}
$$

- $f_{1}, f_{2}, \ldots, f_{m}$ are convex; equality constraints are affine
- problem is quasiconvex if f_{0} is quasiconvex (and $f_{1}, f_{2}, \ldots, f_{m}$ are convex)
can be more compactly written as

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& A x=b
\end{aligned}
$$

- feasible set of a convex optimization problem is convex

Example

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & f_{1}(x)=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \\
& h_{1}(x)=\left(x_{1}+x_{2}\right)^{2}=0
\end{aligned}
$$

- f_{0} is convex; feasible set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem: f_{1} is not convex, h_{1} is not affine
- equivalent (not identical) to the convex problem

$$
\begin{aligned}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1} \leq 0 \\
& x_{1}+x_{2}=0
\end{aligned}
$$

Local and Global Optima

any locally optimal point of a convex problem is globally optimal

Proof: Since x is locally optimal, there exists an $R>0$ such that $f_{0}(z) \geq f_{0}(x)$ for any z feasible and $\|z-x\|_{2} \leq R$. Consider an arbitrary feasible y that is not necessarily in $B(x, R)$. There must exist some $\alpha>0$ s.t. $(1-\alpha) x+\alpha y \in B(x, R)$ and therefore

$$
f(x) \leq f((1-\alpha) x+\alpha y) \leq(1-\alpha) f(x)+\alpha f(y) .
$$

This immediately implies that $f(x) \leq f(y)$ for any feasible y.

Optimality Criterion For Differentiable Objective

x is optimal iff it is feasible and

$$
\nabla f_{0}(x)^{T}(y-x) \geq 0, \text { for all feasible } y
$$

if nonzero, $\nabla f_{0}(x)$ defines a supporting hyperplane to feasible set X at x

Examples

- unconstrained problem: x is optimal iff

$$
x \in \operatorname{dom} f_{0}, \nabla f_{0}(x)=0
$$

- equality constrained problem

$$
\operatorname{minimize} f_{0}(x) \text { subject to } A x=b
$$

x is optimal iff there exists a ν such that

$$
x \in \operatorname{dom} f_{0}, A x=b, \nabla f_{0}(x)+A^{T} \nu=0
$$

- minimization over nonnegative orthant

$$
\text { minimize } f_{0}(x) \text { subject to } x \succeq 0
$$

x is optimal iff

$$
x \in \operatorname{dom} f_{0}, x \succeq 0, \nabla f_{0}(x)_{i} \geq 0 \text { for } x_{i}=0, \nabla f_{0}(x)_{i}=0 \text { for } x_{i}>0
$$

Equivalent Convex Problems

Informally, two problems are equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa

Common transformations that preserve convexity:
eliminating equality constraints:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& A x=b
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(F z+x_{0}\right) \\
\text { subject to } & f_{i}\left(F z+x_{0}\right) \leq 0, i=1,2, \ldots, m
\end{aligned}
$$

where F and x_{0} are such that

$$
A x=b \Leftrightarrow x=F z+x_{0}
$$

i.e. $\mathcal{R}(F)=\mathcal{N}(A)$.

Equivalent Convex Problems

introducing equality constraints:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(A_{0} x+b\right) \\
\text { subject to } & f_{i}\left(A_{i} x+b_{i}\right) \leq 0, i=1,2, \ldots, m
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(y_{0}\right) \\
\text { subject to } & f_{i}\left(y_{i}\right) \leq 0, i=1,2, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, i=0,1,2, \ldots, m
\end{aligned}
$$

introducing slack variables for linear inequalities:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, i=1,2, \ldots, m
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x+s_{i}=b_{i}, i=1,2, \ldots, m \\
& s_{i} \geq 0, i=1,2, \ldots, m
\end{aligned}
$$

Equivalent Convex Problems

epigraph form: standard form convex problem is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& A x=b
\end{aligned}
$$

minimizing over some variables:

$$
\begin{aligned}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, i=1,2, \ldots, m
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
\operatorname{minimize} & \tilde{f}_{0}\left(x_{1}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, i=1,2, \ldots, m
\end{aligned}
$$

where $\tilde{f}_{0}\left(x_{1}\right)=\inf _{x_{2}} f_{0}\left(x_{1}, x_{2}\right)$

Outline

- Standard Form Optimization Problem
- Convex Optimization Droblem
- Quasiconvex Optimization
- Linear Optimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Scmidefinitc Programming
- Vector Optimization

Quasiconvex Optimization

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& A x=b
\end{aligned}
$$

- quasiconvex f_{0} and convex $f_{i}, i \in[1: m]$
- can have locally optimal points that are not globally optimal

Quasiconvex Optimization

convex representation of sublevel sets of f_{0} :
if f_{0} is quasiconvex, there exists a family of functions ϕ_{t} such that

- ϕ_{t} is convex in x for fixed t
- t-sublevel set of f_{0} is 0 -sublevel set of ϕ_{t}, i.e., $f_{0}(x) \leq t \Leftrightarrow \phi_{t}(x) \leq 0$
example: $f_{0}(x)=\frac{p(x)}{q(x)}, p$ convex, q concave, $p(x) \geq 0, q(x)>0$ on $\operatorname{dom} f_{0}$
can take $\phi_{t}(x)=p(x)-t q(x)$:
- for $t \geq 0, \phi_{t}$ is convex in x
- $p(x) / q(x) \leq t$ iff $\phi_{t}(x) \leq 0$

Quasiconvex Optimization

quasiconvex optimization via convex feasibility problems:

$$
\begin{equation*}
\phi_{t}(x) \leq 0, f_{i}(x) \leq 0, i=1, \ldots, m, A x=b \tag{1}
\end{equation*}
$$

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^{*}$; otherwise, $t \leq p^{*}$

Bisection method for quasiconvex optimization

```
given l \leq p *},u\geq\mp@subsup{p}{}{\star}\mathrm{ , tolerance }\epsilon>0
```

repeat

1. $t:=(l+u) / 2$.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, $u:=t ; \quad$ else $l:=t$. until $u-l \leq \epsilon$.
requires exactly $\left\lceil\log _{2}((u-l) / \epsilon)\right\rceil$ iterations

Outline

- Standard Form Optimization Problem
- Convex Optimization Drob1em
- Quasiconvex Optimization
- Linear Optimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Linear Program

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{aligned}
$$

- the objective and constraint functions are all affine
- feasible set is a polyhedron

Examples

diet problem: choose quantities $x_{1}, x_{2}, \ldots, x_{n}$ of n foods

- one unit of food j costs c_{j}, contains amount $a_{i j}$ of nutrient i
- healthy diet requires nutrient i in quantity at least b_{i}
- to find cheapest healthy diet, solve the following LP

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \succeq b, x \succeq 0
\end{aligned}
$$

piecewise-linear minimization:

$$
\operatorname{minimize} \max _{i \in[1: m]}\left(a_{i}^{T} x+b_{i}\right)
$$

equivalent to an LP

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t, i=1, \ldots, m
\end{aligned}
$$

Examples

find Chebyshev center of a polyhedron $\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}$:

- Chebyshev center is the center of largest inscribed ball

$$
B\left(x_{c}, r\right)=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}
$$

- $B\left(x_{c}, r\right) \subseteq \mathcal{P}$ iff

$$
\underbrace{\sup \left\{a_{i}^{T}\left(x_{c}+u\right) \mid\|u\|_{2} \leq r\right\}}_{=a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2}} \leq b_{i}, \forall i \in[1: m]
$$

- hence x_{c}, r can be determined by solving the following LP

$$
\begin{aligned}
\operatorname{maximize} & r \\
\text { subject to } & a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, i=1, \ldots, m
\end{aligned}
$$

Linear-Fractional Program

Linear fractional programming is to minimize a ratio of affine functions over a polyhedron:

$$
\begin{aligned}
\operatorname{minimize} & \frac{c^{T} x+d}{e^{T} x+f} \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{aligned}
$$

where the objective function is quasiconvex with its domain as $\left\{x \mid e^{T} x+f>0\right\}$.

- a quasiconvex optimization problem; can be solved by bisection
- transformable to LP: Think of $y=x / e^{T} x+f$ and $z=1 / e^{T} x+f$. The above problem is equivalent to the following LP (variables y, z)

$$
\begin{aligned}
\operatorname{minimize} & c^{T} y+d z \\
\text { subject to } & G y \preceq h z \\
& A y=b z \\
& e^{T} y+f z=1 \\
& z \geq 0
\end{aligned}
$$

Outline

- Standard Form Optimization Problem
- Convex Ontimization Problem
- Quasiconvex Optimization
- Linear Optimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Quadratic Program

In a QP, we minimize a convex quadratic function over a polyhedron

$$
\begin{aligned}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \leq h \\
& A x=b
\end{aligned}
$$

where $P \succeq 0$. QP includes LP as special case by taking $P=0$.

Examples

least-squares:

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}=x^{T} A^{T} A x-2 b^{T} A x+b^{T} b
$$

- can have linear constraints, e.g, $l \preceq x \preceq u$
linear program with random cost:

$$
\begin{aligned}
\operatorname{minimize} & \bar{c}^{T} x+\gamma x^{T} \Sigma x=\mathbf{E}\left(c^{T} x\right)+\gamma \operatorname{var}\left(c^{T} x\right) \\
\text { subject to } & G x \preceq h, A x=b
\end{aligned}
$$

- c is random vector with mean \bar{c} and covariance matrix Σ
- $c^{T} x$ is random variable with mean $\bar{c}^{T} x$ and variance $x^{T} \Sigma x$
- parameter γ controls the trade-off between expected cost and variance (risk)

Quadratically Constrained Quadratic Program

In QCQP, we have

$$
\begin{aligned}
\operatorname{minimize} & (1 / 2) x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & (1 / 2) x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, i=1, \ldots, m \\
& A x=b
\end{aligned}
$$

- $P_{i} \succeq 0$; objective and constraints are convex quadratic
- if $P_{1}, \ldots, P_{m} \succ 0$, feasible set is intersection of m ellipsoids and an affine set
- QCQP includes QP (and LP) as special case, by taking $P_{i}=0, i \in[1: m]$

Second-Order Cone Program

In SOCP, we have

$$
\begin{aligned}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, i=1, \ldots, m \\
& F x=g
\end{aligned}
$$

where we call $\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}$ a second-order cone constraint, since it is the same as requiring $\left(A_{i} x+b_{i}, c_{i}^{T} x+d_{i}\right)$ to lie in the second-order cone. SOCP reduces to QCQP if $c_{i}=0$, and reduces to LP if $A_{i}=0$.

Outline

- Standard Form Optimization Problem
- Convex Optimization Drob1em
- Quasiconvex Optimization
- Linear Ontimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Geometric Programming

- monomial function

$$
f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}},
$$

where $\operatorname{dom} f=\mathbf{R}_{++}^{n}, c>0$, and exponents a_{i} can be any real number

- posynomial function: sum of monomials

$$
f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}, \operatorname{dom} f=\mathbf{R}_{++}^{n}
$$

- geometric program (GP)

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, i=1,2, \ldots, m \\
& h_{i}(x)=1, i=1,2, \ldots, p
\end{aligned}
$$

with f_{i} posynomial, h_{i} monomial. The domain of the problem is $\mathcal{D}=\mathbf{R}_{++}^{n}$; the constraint $x \succ 0$ is implicit.

- GP's are not convex in their natural form, but can be transformed to convex problems.

Geometric Program in Convex Form

Change variables: $y_{i}=\log x_{i}$; take log of objective and constraint functions

- monomial $f(x)=c x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}$ transforms to

$$
\log f(x)=a^{T} y+b \quad(b=\log c)
$$

- posynomial $f(x)=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}}$ transforms to

$$
\log f(x)=\log \left(\sum_{k=1}^{K} e^{a_{k}^{T} y+b_{k}}\right) \quad\left(b_{k}=\log c_{k}\right)
$$

- posynomial form geometric program transforms to convex form:

$$
\begin{aligned}
\operatorname{minimize} & \tilde{f}_{0}(y)=\log \left(\sum_{k=1}^{K_{0}} e^{a_{0 k}^{T} y+b_{0 k}}\right) \\
\text { subject to } & \tilde{f}_{i}(y)=\log \left(\sum_{k=1}^{K_{i}} e^{a_{i k}^{T} y+b_{i k}}\right) \leq 0, i=1,2, \ldots, m \\
& \tilde{h}_{i}(y)=g_{i}^{T} y+h_{i}=0, i=1,2, \ldots, p
\end{aligned}
$$

- if the posynomial objective and constraint functions all have only one term, i.e. are monomials, then the convex form GP reduces to LP

Outline

- Standard Form Optimization Problem
- Convex Optimization Drob1em
- Quasiconvex Optimization
- I inear Ontimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Generalized Inequality Constraints

convex problem with generalized inequality constraints

$$
\begin{aligned}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq_{K_{i}} 0, i=1,2, \ldots, m \\
& A x=b
\end{aligned}
$$

with $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ convex, $K_{i} \subseteq \mathbf{R}^{k_{i}}$ proper cones, $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k_{i}}$ being $K_{i^{-}}$ convex w.r.t. proper cone K_{i}.

- Many properties of standard convex problems also hold for convex problems with generalized inequality constraints, e.g., convex feasible set, local optimum is global optimum, etc. We will also see that convex problems with generalized inequality constraints can often be solved as easily as standard convex problems.
- conic form problem (cone program): affine objective and constraints

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & F x+g \leq_{K} 0, \\
& A x=b
\end{aligned}
$$

extends linear programming ($K=\mathbf{R}_{+}^{m}$) to nonpolyhedral cones

Outline

- Standard Form Optimization Problem
- Convex Optimization Drob1em
- Quasiconvex Optimization
- Linear Ontimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Semidefinite Program (SDP)

- SDP is a special case of conic form problem when $K=\mathbf{S}_{+}^{k}$:

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+x_{2} F_{2}+\cdots+x_{n} F_{n}+G \preceq 0, \quad \text { (LMI constraints) } \\
& A x=b
\end{aligned}
$$

with $F_{i}, G \in \mathbf{S}^{k}$.

- includes problems with multiple LMI constraints: for example,

$$
x_{1} \hat{F}_{1}+x_{2} \hat{F}_{2}+\cdots+x_{n} \hat{F}_{n}+\hat{G} \preceq 0 \quad \& \quad x_{1} \tilde{F}_{1}+x_{2} \tilde{F}_{2}+\cdots+x_{n} \tilde{F}_{n}+\tilde{G} \preceq 0
$$

is equivalent to single LMI

$$
x_{1}\left[\begin{array}{cc}
\hat{F}_{1} & 0 \\
0 & \tilde{F}_{1}
\end{array}\right]+x_{2}\left[\begin{array}{cc}
\hat{F}_{2} & 0 \\
0 & \tilde{F}_{2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{cc}
\hat{F}_{n} & 0 \\
0 & \tilde{F}_{n}
\end{array}\right]+\left[\begin{array}{cc}
\hat{G} & 0 \\
0 & \tilde{G}
\end{array}\right] \preceq 0
$$

LP and SOCP as SDP

- LP and equivalent SDP

$$
\begin{array}{rll}
\mathrm{LP}: & \text { minimize } c^{T} x & \text { subject to } A x \preceq b \\
\mathrm{SDP:} & \text { minimize } c^{T} x & \text { subject to } \operatorname{diag}(A x-b) \preceq 0
\end{array}
$$

(note difference interpretation of generalized inequality \preceq)

- SOCP and equivalent SDP

SOCP: minimize $f^{T} x$

$$
\text { subject to } \quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1,2, \ldots, m
$$

SDP: minimize $f^{T} x$

$$
\text { subject to }\left[\begin{array}{ll}
\left(c_{i}^{T} x+d_{i}\right) I & A_{i} x+b_{i} \\
\left(A_{i} x+b_{i}\right)^{T} & c_{i}^{T} x+d_{i}
\end{array}\right] \succeq 0, \quad i=1,2, \ldots, m
$$

Eigenvalue Minimization

$$
\operatorname{minimize} \lambda_{\max }(A(x))
$$

where $A(x)$ is the linear matrix function

$$
A(x)=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n}, \quad A_{i} \in \mathbf{S}^{k}
$$

equivalent SDP

$$
\begin{aligned}
\text { minimize } & t \\
\text { subject to } & A(x) \preceq t I
\end{aligned}
$$

- optimization variable (x, t)
- follows from

$$
\lambda_{\max }(A) \leq t \Leftrightarrow A \preceq t I
$$

Matrix Norm Minimization

$$
\operatorname{minimize}\|A(x)\|_{2}=\left(\lambda_{\max }\left(A(x)^{T} A(x)\right)\right)^{1 / 2}
$$

where $A(x)$ is the linear matrix function

$$
A(x)=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n}, \quad A_{i} \in \mathbf{R}^{p \times q}
$$

equivalent SDP

$$
\begin{aligned}
\operatorname{minimize} & t \\
\text { subject to } & {\left[\begin{array}{cc}
t I & A(x) \\
A(x)^{T} & t I
\end{array}\right] \succeq 0 }
\end{aligned}
$$

- optimization variable (x, t)
- follows from

$$
A^{T} A \preceq t^{2} I, t \geq 0 \Leftrightarrow\left[\begin{array}{cc}
t I & A \\
A^{T} & t I
\end{array}\right] \succeq 0
$$

Outline

- Standard Form Optimization Problem
- Convex Optimization Droblem
- Quasiconvex Optimization
- Linear Ontimization
- Quadratic Optimization
- Geometric Optimization
- Generalized Inequality Constraints
- Semidefinite Programming
- Vector Optimization

Vector Optimization

general vector optimization problem

$$
\begin{array}{cl}
\operatorname{minimize}(\text { w.r.t. } K) & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& h_{i}(x)=0, i=1,2, \ldots, p
\end{array}
$$

vector objective $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{q}$, minimized w.r.t. proper cone $K \subseteq \mathbf{R}^{q}$.
convex vector optimization problem

$$
\begin{array}{cl}
\operatorname{minimize}(\text { w.r.t. } K) & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& A x=b
\end{array}
$$

with f_{0} being K-convex, $f_{1}, f_{2}, \ldots, f_{m}$ convex

Optimal and Pareto Optimal Points

set of achievable objective (vector) values

$$
\mathcal{O}=\left\{f_{0}(x) \mid x \text { feasible }\right\}
$$

- x is optimal if $f_{0}(x)$ is the minimum value of \mathcal{O}
- x is Pareto optimal if $f_{0}(x)$ is a minimal value of \mathcal{O}
multicriterion optimization: $K=\mathbf{R}_{+}^{q}$

$$
f_{0}(x)=\left(F_{1}(x), \ldots, F_{q}(x)\right)
$$

- q different objectives F_{i}; roughly speaking we want all F_{i} to be small
- if there exists an optimal point, the objectives are noncompeting; if there are multiple Pareto optimal values, there is a tradeoff between the objectives

Scalarization

to find Pareto optimal points, choose $\lambda \succ_{K^{*}} 0$ and solve scalar problem

$$
\begin{aligned}
\operatorname{minimize} & \lambda^{T} f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1,2, \ldots, m \\
& h_{i}(x)=0, i=1,2, \ldots, p
\end{aligned}
$$

- if x is optimal for scalar problem then it is Pareto optimal for vector problem - for convex vector problem, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^{*}} 0$
scalarization for multicriterion problems: minimize over feasible set

$$
\lambda^{T} f_{0}(x)=\lambda_{1} F_{1}(x)+\cdots+\lambda_{n} F_{n}(x)
$$

for $\lambda \succ 0$

Regularized Least-Squares

$$
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{R}_{+}^{2}\right) \quad\left(\|A x-b\|_{2}^{2},\|x\|_{2}^{2}\right)
$$

- example for $A \in \mathbf{R}^{100 \times 10}$; heavy line formed by Pareto optimal points
- to determine Pareto optimal points, take $\lambda=(1, \gamma)$ with $\gamma>0$ and minimize

$$
\|A x-b\|_{2}^{2}+\gamma\|x\|_{2}^{2}
$$

- for fixed γ, a LS problem

