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Standard Form Optimization 

minimize f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

Optimal value:

p

⇤ = inf{f
0

(x)|fi(x)  0, i = 1, . . . ,m;hi(x) = 0, i = 1, . . . , p}

- p⇤ = 1 if problem is infeasible (no x satisfies the constraints)
- p⇤ = �1 if problem is unbounded below
- a feasible x is optimal if f

0

(x) = p

⇤; X
opt

is the set of optimal points
- x is locally optimal if there is R > 0 such that

f

0

(x) = inf{f
0

(z)|fi(z)  0, i = 1, . . . ,m;hi(z) = 0, i = 1, . . . , p; kz � xk
2

 R}
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Implicit Constraints 

The standard form optimization problem has an implicit constraint:

x 2 D =

m\

i=0

dom fi \
p\

i=0

dom hi

- we call D the domain of the problem

- the constraints fi(x)  0, hi(x) = 0 are the explicit constraints

- a problem is unconstrained if it has no explicit constraints

Example:

minimize f0(x) = �
kX

i=1

log(bi � a

T
i x)

is an unconstrained problem with implicit constraints a

T
i x < bi
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Feasibility Problem 

find x

subject to fi(x)  0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

minimize 0

subject to fi(x)  0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

- p

⇤
= 0 if constraints are feasible; any feasible x is optimal

- p

⇤
= 1 if constraints are infeasible
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Convex Optimization Problem 

minimize f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

a

T
i x = bi, i = 1, 2, . . . , p

- f1, f2, . . . , fm are convex; equality constraints are a�ne

- problem is quasiconvex if f0 is quasiconvex (and f1, f2, . . . , fm are convex)

can be more compactly written as

minimize f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

Ax = b

- feasible set of a convex optimization problem is convex

Standard form convex optimization problem
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Example 

minimize f0(x) = x

2
1 + x

2
2

subject to f1(x) = x1/(1 + x

2
2)  0

h1(x) = (x1 + x2)
2
= 0

- f0 is convex; feasible set {(x1, x2)|x1 = �x2  0} is convex

- not a convex problem: f1 is not convex, h1 is not a�ne

- equivalent (not identical) to the convex problem

minimize x

2
1 + x

2
2

subject to x1  0

x1 + x2 = 0



10	

Local and Global Optima 

any locally optimal point of a convex problem is globally optimal

Proof: Since x is locally optimal, there exists an R > 0 such that f0(z) � f0(x)

for any z feasible and kz�xk2  R. Consider an arbitrary feasible y that is not

necessarily in B(x,R). There must exist some ↵ > 0 s.t. (1�↵)x+↵y 2 B(x,R)

and therefore

f(x)  f((1� ↵)x+ ↵y)  (1� ↵)f(x) + ↵f(y).

This immediately implies that f(x)  f(y) for any feasible y.
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Optimality Criterion For Differentiable Objective 

x is optimal i↵ it is feasible and

rf0(x)
T
(y � x) � 0, for all feasible y

if nonzero, rf0(x) defines a supporting hyperplane to feasible set X at x
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Examples 
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Equivalent Convex Problems 

Informally, two problems are equivalent if the solution of one is readily obtained

from the solution of the other, and vice-versa

Common transformations that preserve convexity:

eliminating equality constraints:

minimize f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

Ax = b

is equivalent to

minimize f0(Fz + x0)

subject to fi(Fz + x0)  0, i = 1, 2, . . . ,m

where F and x0 are such that

Ax = b , x = Fz + x0,

i.e. R(F ) = N (A).
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Equivalent Convex Problems 

introducing equality constraints:

minimize f0(A0x+ b)

subject to fi(Aix+ bi)  0, i = 1, 2, . . . ,m

is equivalent to

minimize f0(y0)

subject to fi(yi)  0, i = 1, 2, . . . ,m

yi = Aix+ bi, i = 0, 1, 2, . . . ,m

introducing slack variables for linear inequalities:

minimize f0(x)

subject to a

T
i x  bi, i = 1, 2, . . . ,m

is equivalent to

minimize f0(x)

subject to a

T
i x+ si = bi, i = 1, 2, . . . ,m

si � 0, i = 1, 2, . . . ,m
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Equivalent Convex Problems 

epigraph form: standard form convex problem is equivalent to

minimize t

subject to f0(x)� t  0

f

i

(x)  0, i = 1, 2, . . . ,m

Ax = b

minimizing over some variables:

minimize f0(x1, x2)

subject to f

i

(x1)  0, i = 1, 2, . . . ,m

is equivalent to

minimize

˜

f0(x1)

subject to f

i

(x1)  0, i = 1, 2, . . . ,m

where

˜

f0(x1) = inf

x2 f0(x1, x2)
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Quasiconvex Optimization 

minimize f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

Ax = b

- quasiconvex f0 and convex fi, i 2 [1 : m]

- can have locally optimal points that are not globally optimal
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Quasiconvex Optimization 

convex representation of sublevel sets of f0:

if f0 is quasiconvex, there exists a family of functions �

t

such that

- �

t

is convex in x for fixed t

- t-sublevel set of f0 is 0-sublevel set of �

t

, i.e., f0(x)  t , �

t

(x)  0

example: f0(x) =
p(x)
q(x) , p convex, q concave, p(x) � 0, q(x) > 0 on domf0

can take �

t

(x) = p(x)� tq(x):

- for t � 0, �

t

is convex in x

- p(x)/q(x)  t i↵ �

t

(x)  0
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Quasiconvex Optimization 

quasiconvex optimization via convex feasibility problems:

�t(x)  0, fi(x)  0, i = 1, . . . ,m, Ax = b (1)

- for fixed t, a convex feasibility problem in x

- if feasible, we can conclude that t � p

⇤
; otherwise, t  p

⇤

requires exactly dlog2((u� l)/✏)e iterations
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Linear Program 

minimize c

T
x+ d

subject to Gx � h

Ax = b

- the objective and constraint functions are all a�ne

- feasible set is a polyhedron
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Examples 

diet problem: choose quantities x1, x2, . . . , xn of n foods

- one unit of food j costs cj , contains amount aij of nutrient i

- healthy diet requires nutrient i in quantity at least bi

- to find cheapest healthy diet, solve the following LP

minimize c

T
x

subject to Ax ⌫ b, x ⌫ 0

piecewise-linear minimization:

minimize max

i2[1:m]
(a

T
i x+ bi)

equivalent to an LP

minimize t

subject to a

T
i x+ bi  t, i = 1, . . . ,m
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Examples 

find Chebyshev center of a polyhedron P = {x|aT
i

x  b

i

, i = 1, . . . ,m}:

- Chebyshev center is the center of largest inscribed ball

B(x

c

, r) = {x
c

+ u | kuk2  r}

- B(x

c

, r) ✓ P i↵

sup{aT
i

(x

c

+ u) | kuk2  r}| {z }
= a

T
i xc+rkaik2

 b

i

, 8i 2 [1 : m]

- hence x

c

, r can be determined by solving the following LP

maximize r

subject to a

T

i

x

c

+ rka
i

k2  b

i

, i = 1, . . . ,m
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Linear-Fractional Program 

Linear fractional programming is to minimize a ratio of a�ne functions over a

polyhedron:

minimize

c

T
x+ d

e

T
x+ f

subject to Gx � h

Ax = b

where the objective function is quasiconvex with its domain as {x|eTx+f > 0}.

- a quasiconvex optimization problem; can be solved by bisection

- transformable to LP: Think of y = x/e

T
x+ f and z = 1/e

T
x+ f . The above

problem is equivalent to the following LP (variables y, z)

minimize c

T
y + dz

subject to Gy � hz

Ay = bz

e

T
y + fz = 1

z � 0
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Quadratic Program 

In a QP, we minimize a convex quadratic function over a polyhedron

minimize (1/2)x

T
Px+ q

T
x+ r

subject to Gx  h

Ax = b

where P ⌫ 0. QP includes LP as special case by taking P = 0.
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Examples 

least-squares:

minimize kAx� bk22 = x

T
A

T
Ax� 2b

T
Ax+ b

T
b

- can have linear constraints, e.g, l � x � u

linear program with random cost:

minimize c̄

T
x+ �x

T
⌃x = E(c

T
x) + �var(cTx)

subject to Gx � h, Ax = b

- c is random vector with mean c̄ and covariance matrix ⌃

- c

T
x is random variable with mean c̄

T
x and variance x

T
⌃x

- parameter � controls the trade-o↵ between expected cost and variance (risk)
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Quadratically Constrained Quadratic Program 

In QCQP, we have

minimize (1/2)x

T
P0x+ q

T
0 x+ r0

subject to (1/2)x

T
Pix+ q

T
i x+ ri  0, i = 1, . . . ,m

Ax = b

- Pi ⌫ 0; objective and constraints are convex quadratic

- if P1, . . . , Pm � 0, feasible set is intersection of m ellipsoids and an a�ne set

- QCQP includes QP (and LP) as special case, by taking Pi = 0, i 2 [1 : m]
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Second-Order Cone Program 

In SOCP, we have

minimize f

T
x

subject to kAix+ bik2  c

T
i x+ di, i = 1, . . . ,m

Fx = g

where we call kAix+ bik2  c

T
i x+ di a second-order cone constraint, since it is

the same as requiring (Aix+ bi, c
T
i x+di) to lie in the second-order cone. SOCP

reduces to QCQP if ci = 0, and reduces to LP if Ai = 0.
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Geometric Programming 
- monomial function

f(x) = cx

a1
1 x

a2
2 · · ·xan

n ,

where domf = R

n
++, c > 0, and exponents ai can be any real number

- posynomial function: sum of monomials

f(x) =

KX

k=1

ckx
a1k
1 x

a2k
2 · · ·xank

n , domf = R

n
++

- geometric program (GP)

minimize f0(x)

subject to fi(x)  1, i = 1, 2, . . . ,m

hi(x) = 1, i = 1, 2, . . . , p

with fi posynomial, hi monomial. The domain of the problem is D = R

n
++; the

constraint x � 0 is implicit.

- GP’s are not convex in their natural form, but can be transformed to convex

problems.
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Geometric Program in Convex Form 
Change variables: yi = log xi; take log of objective and constraint functions

- monomial f(x) = cx

a1
1 x

a2
2 · · ·xan

n transforms to

log f(x) = a

T
y + b (b = log c)

- posynomial f(x) =

PK
k=1 ckx

a1k
1 x

a2k
2 · · ·xank

n transforms to

log f(x) = log

 
KX

k=1

e

aT
k y+bk

!
(bk = log ck)

- posynomial form geometric program transforms to convex form:

minimize

˜

f0(y) = log

 
K0X

k=1

e

aT
0ky+b0k

!

subject to

˜

fi(y) = log

 
KiX

k=1

e

aT
iky+bik

!
 0, i = 1, 2, . . . ,m

˜

hi(y) = g

T
i y + hi = 0, i = 1, 2, . . . , p

- if the posynomial objective and constraint functions all have only one term,

i.e. are monomials, then the convex form GP reduces to LP
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Generalized Inequality Constraints 
convex problem with generalized inequality constraints

minimize f0(x)

subject to fi(x) Ki 0, i = 1, 2, . . . ,m

Ax = b

with f0 : Rn ! R convex, Ki ✓ Rki
proper cones, fi : Rn ! Rki

being Ki-

convex w.r.t. proper cone Ki.

- Many properties of standard convex problems also hold for convex problems

with generalized inequality constraints, e.g., convex feasible set, local optimum

is global optimum, etc. We will also see that convex problems with generalized

inequality constraints can often be solved as easily as standard convex problems.

- conic form problem (cone program): a�ne objective and constraints

minimize c

T
x

subject to Fx+ g K 0,

Ax = b

extends linear programming (K = Rm
+ ) to nonpolyhedral cones
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Semidefinite Program (SDP) 

- SDP is a special case of conic form problem when K = Sk
+:

minimize c

T
x

subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0, (LMI constraints)

Ax = b

with Fi, G 2 Sk
.

- includes problems with multiple LMI constraints: for example,

x1
ˆ

F1 + x2
ˆ

F2 + · · ·+ xn
ˆ

Fn +

ˆ

G � 0 & x1
˜

F1 + x2
˜

F2 + · · ·+ xn
˜

Fn +

˜

G � 0

is equivalent to single LMI

x1


ˆ

F1 0

0

˜

F1

�
+ x2


ˆ

F2 0

0

˜

F2

�
+ · · ·+ xn


ˆ

Fn 0

0

˜

Fn

�
+


ˆ

G 0

0

˜

G

�
� 0
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LP and SOCP as SDP 

- LP and equivalent SDP

LP: minimize c

T
x subject to Ax � b

SDP: minimize c

T
x subject to diag(Ax� b) � 0

(note di↵erence interpretation of generalized inequality �)

- SOCP and equivalent SDP

SOCP: minimize f

T
x

subject to kAix+ bik2  c

T
i x+ di, i = 1, 2, . . . ,m

SDP: minimize f

T
x

subject to


(cTi x+ di)I Aix+ bi

(Aix+ bi)
T

c

T
i x+ di

�
⌫ 0, i = 1, 2, . . . ,m
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Eigenvalue Minimization 

minimize �

max

(A(x))

where A(x) is the linear matrix function

A(x) = A

0

+ x

1

A

1

+ x

2

A

2

+ · · ·+ xnAn, Ai 2 Sk

equivalent SDP

minimize t

subject to A(x) � tI

- optimization variable (x, t)

- follows from

�

max

(A)  t , A � tI
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Matrix Norm Minimization 

minimize kA(x)k
2

= (�

max

(A(x)

T
A(x)))

1/2

where A(x) is the linear matrix function

A(x) = A

0

+ x

1

A

1

+ x

2

A

2

+ · · ·+ xnAn, Ai 2 Rp⇥q

equivalent SDP

minimize t

subject to


tI A(x)

A(x)

T
tI

�
⌫ 0

- optimization variable (x, t)

- follows from

A

T
A � t

2

I, t � 0 ,

tI A

A

T
tI

�
⌫ 0
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Vector Optimization 

general vector optimization problem

minimize (w.r.t. K) f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

vector objective f0 : Rn ! Rq
, minimized w.r.t. proper cone K ✓ Rq

.

convex vector optimization problem

minimize (w.r.t. K) f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

Ax = b

with f0 being K-convex, f1, f2, . . . , fm convex
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Optimal and Pareto Optimal Points 
set of achievable objective (vector) values

O = {f0(x)|x feasible}

- x is optimal if f0(x) is the minimum value of O
- x is Pareto optimal if f0(x) is a minimal value of O

multicriterion optimization: K = Rq
+

f0(x) = (F1(x), . . . , Fq(x))

- q di↵erent objectives Fi; roughly speaking we want all Fi to be small

- if there exists an optimal point, the objectives are noncompeting; if there are

multiple Pareto optimal values, there is a tradeo↵ between the objectives
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Scalarization 

to find Pareto optimal points, choose � �K⇤
0 and solve scalar problem

minimize �

T
f0(x)

subject to fi(x)  0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

- if x is optimal for scalar problem then it is Pareto optimal for vector problem

- for convex vector problem, can find (almost) all Pareto optimal points by vary-

ing � �K⇤
0

scalarization for multicriterion problems: minimize over feasible set

�

T
f0(x) = �1F1(x) + · · ·+ �nFn(x)

for � � 0
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Regularized Least-Squares 

minimize (w.r.t. R2
+) (kAx� bk22, kxk22)

- example for A 2 R100⇥10
; heavy line formed by Pareto optimal points

- to determine Pareto optimal points, take � = (1, �) with � > 0 and minimize

kAx� bk22 + �kxk22

- for fixed �, a LS problem


