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Convex Function 

A function f : R

n ! R is convex if dom f is a convex set and

f(✓x+ (1� ✓)y)  ✓f(x) + (1� ✓)f(y)

for all x, y 2 dom f and ✓ 2 [0, 1]

- f is strictly convex if the above holds with “” replaced by “<”

- f is concave if �f is convex

- a�ne functions are both convex and concave; conversely, if a function is both

convex and concave, then it is a�ne

- f is convex i↵ it is convex when restricted to any line that intersects its domain,

i.e. i↵ for all x 2 dom f and all v, the function g(t) = f(x+ tv) on its domain

{t|x+ tv 2 dom f} is convex
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Extended-Value Extension 

- The extended-value extension

˜

f of f is defined by

˜

f(x) =

(
f(x) x 2 dom f

1 x /2 dom f

- This simplifies notation as f is convex i↵

˜

f(✓x+ (1� ✓)y)  ✓

˜

f(x) + (1� ✓)

˜

f(y), 8x, y 2 R

n
, ✓ 2 [0, 1]

- We can recover the domain of f from the extension by taking dom f =

{x| ˜f(x) < 1}
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First Order Condition 
- f is di↵erentiable if dom f is open and the gradient

rf(x) =

✓
@f

@x1
,

@f

@x2
, . . . ,

@f

@xn

◆

exists at each x 2 dom f

- di↵erentiable f with convex domain is convex i↵

f(y) � f(x) +rf(x)

T
(y � x), 8x, y 2 dom f

- Note that the a�ne function g(y) = f(x) + rf(x)

T
(y � x) is the first-order

Taylor approximation of f near x. The above says that f is convex i↵ the

first-order Taylor approximation is always an underestimator of f .
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Second Order Condition 

- f is twice di↵erentiable if dom f is open and the Hessian r2
f(x) 2 S

n,

r2
f(x)ij =

@

2
f

@xi@xj
, i, j 2 [1 : n]

exists at each x 2 dom f

- twice di↵erentiable f with convex domain is convex i↵ the Hessian r2
f(x) is

PSD for all x 2 dom f

- twice di↵erentiable f with convex domain is strictly convex if the Hessian
r2

f(x) is PD for all x 2 dom f

- Quadratic function f(x) = 1
2x

T
Px+q

T
x+r is convex i↵ its Hessian P is PSD

[Note that r(xT
Px) = 2Px and r2(xT

Px) = 2P ]

- Least-squares objective f(x) = kAx�bk22 is convex because rf = 2AT (Ax�b)
and r2

f = 2AT
A ⌫ 0 for any A
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Examples in One Dimension 

- a�ne: ax+ b on R, for any a, b 2 R

- exponential: e

ax

on R, for any a 2 R

- powers: x

a

on R++, for a � 1 or a  0

- powers of absolute value: |x|a on R, for a � 1

- negative entropy: x log x on R++

- a�ne: ax+ b on R, for any a, b 2 R

- powers: x

a
on R++, for a 2 [0, 1]

- logarithm: log x on R++

Convex

Concave
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Examples in High Dimensions 

Examples on Rn

Examples on Rm⇥n

- a�ne function:

f(X) = tr(ATX) + b =
X

i2[1:m]

X

j2[1:n]

AijXij + b

- spectral (maximum singlar value) norm:

f(X) = kXk
2

= �
max

(X) = (�
max

(XTX))

1/2

- a�ne function: f(x) = a

T
x+ b

- norms: e.g., kxkp = (

Pn
i=1 |xi|p)1/p for p � 1; kxk1 = maxi2[1:n] |xi|

a�ne functions are convex and concave; all norms are convex
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Examples in High Dimensions 

- max function: f(x) = max

i

x

i

is convex

- Quadratic over linear function: f(x, y) = x

2
/y is convex for y > 0

r2
f(x, y) =

2

y

3


y

2 �xy

�xy x

2

�
=

2

y

3


y

�x

� ⇥
y �x

⇤
⌫ 0

- Log-sum-exponential: f(x) = log(e

x1
+ · · ·+e

xn
) is convex; also called softmax

- Geometric mean: f(x) = (

Q
i

x

i

)

1/n
is concave

- Log determinant: f(x) = log detX,dom f = S

n

++ is concave

g(t) = log det(Z + tV )

= log det(Z

1/2
(I + tZ

�1/2
V Z

�1/2
)Z

1/2
)

= log detZ + log det(I + tZ

�1/2
V Z

�1/2
)

= log detZ +

nX

i=1

log(1 + t�

i

)

where �

i

, i 2 [1 : n] are the eigenvalues of Z

�1/2
V Z

�1/2
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Sublevel Set and Epigraph 

- The ↵-sublevel set of f is {x 2 domf |f(x)  ↵}. If f is convex, then its

sublevel set is convex. Converse is not true: �e

x

is concave, but its sublevel

sets are convex.

- The graph of function f is defined as {(x, f(x)|x 2 dom f)}, which is a subset

in R

n+1
. The epigraph is defined as epif = {(x, t)|x 2 dom f, t � f(x)}.

Function f is convex i↵ its epigraph is a convex set.
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Jensen’s Inequality 

- If f is convex, then f(Ex)  Ef(x) for any random variable x with x 2 dom f

w.p. 1. If f is non-convex, then there is a random variable x with x 2 domf

w.p. 1, such that f(Ex) > Ef(x).

- An intepretation: Consider convex function f . For any x 2 dom f and random

variable z with Ez = 0, we have

Ef(x+ z) � f(E[x+ z]) = f(x),

which means that randomization or dithering (adding a zero mean random vec-

tor to the argument) only increases the value of convex function on average.
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A Calculus of Convex Functions 

Practical methods for establishing convexity of a function:

- verify definition (often simplified by restricting to a line)

- for twice di↵erentiable function, show its Hessian is PSD

- show that f is obtained from simple convex functions by operations that
preserve convexity

– nonnegative weighted sum

– composition with a�ne function

– pointwise maximum and supremum

– composition

– minimization

– perspective
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Positive Weighted Sum and Composition with Affine 

Nonnegative weighted sum: If f1, . . . , fm are convex then f = w1f1+· · ·+wmfm

is also convex, where w1, . . . , wm are nonnegative

Composition with a�ne function: f(Ax+ b) is convex if f is convex

- log barrier for linear inequalities:

f(x) = �
mX

i=1

log(bi � a

T
i x),dom f = {x|aTi x < bi, i 2 [1 : m]}

- any norm of a�ne function: f(x) = kAx+ bk
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Pointwise Maximum 

If f1, . . . , fm are convex then f(x) = max{f1(x), . . . , fm(x)} is also convex

- piecewise-linear function: f(x) = maxi2[1:m](a
T
i x+ b) is convex

- sum of r largest components of x 2 Rn
:

f(x) = x[1] + x[2] + . . .+ x[r]

is convex, where x[i] is the ith largest component of x; this is because

f(x) = max

I✓[1:n],|I|=r

X

i2I

xi
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Pointwise Supremum 

If f(x, y) is convex in x for each y 2 A then

g(x) = sup

y2A
f(x, y)

is also convex

- support function of a set C: SC(x) = supy2C y

T
x is convex

- distance to farthest point in a set C:

f(x) = sup

y2C
kx� yk

- maximum eigenvalue of symmetric matrix: for X 2 Sn
,

�

max

(X) = sup

kyk2=1

y

T
Xy
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Composition with Scalar Functions 

Remark:

- proof (for n = 1, di↵erentiable g, h)

f

00
(x) = h

00
(g(x))g

0
(x)

2
+ h

0
(g(x))g

00
(x)

- monotonicity must hold for extended-value extension

˜

h

Examples:

- exp g(x) is convex if g is convex

- 1/g(x) is convex if g is concave and positive

Composition of h : R ! R with scalar function g : Rn ! R:

f(x) = h(g(x))

f is convex if:

- g convex, h convex,

˜

h nondecreasing

- g concave, h convex,

˜

h nonincreasing
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Composition with Vector Functions 

proof (for n = 1, di↵erentiable g, h)

f

00
(x) = g

0
(x)

Tr2
h(g(x))g

0
(x) +rh(g(x))

T
g

00
(x)

Examples:

-

Pm
i=1 log gi(x) is concave if gi are concave and positive

- log

Pm
i=1 exp gi(x) is convex if g are convex

Composition of h : Rk ! R with scalar function g : Rn ! Rk
:

f(x) = h(g1(x), g2(x), . . . , gk(x))

f is convex if:

- gi convex, h convex,

˜

h nondecreasing in each argument

- gi concave, h convex,

˜

h nonincreasing in each argument
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Minimization 

If f is convex in (x, y) and C is a convex nonempty set, then the function

g(x) = infy2C f(x, y) is also convex

E.g., distance to a set: d(x, S) = infy2S kx�yk is convex if S is convex [function

kx� yk is convex in (x, y) so if S is convex then d(x, S) is convex in x]
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Perspective 

The perspective of f : R

n ! R is the function g : R

n+1 ! R given by

g(x, t) = tf(x/t)

with domg = {(x, t) | x/t 2 domf, t > 0}. g is convex if f is convex.

E.g.: Euclidean norm squared. The perspective of the convex function f(x) =

x

T
x is g(x, t) = t(x/t)

T
(x/t) = x

T
x/t, which is convex in (x, t) for t > 0

E.g.: Consider the convex function f(x) = � log x. Its perspective is g(x, t) =

�t log x/t = t log t/x = t log t� t log x which is convex in (x, t). The function g

is called the relative entropy of t and x. Therefore, the relative entropy of two

vectors u, v defined as X

i

ui log(ui/vi)

is convex in (u, v) since it is a sum of relative entropies of ui, vi.
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Conjugate Function 

For a function f : Rn ! R, its conjugate function f

⇤
: Rn ! R is defined as

f

⇤
(y) = sup

x2domf

(y

T

x� f(x)).

- The domain of f

⇤
consists of y 2 Rn

for which the supremum if finite

- f

⇤
is convex (even if f is not)
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Examples 

- A�ne functions: f(x) = ax + b. As a function of x, yx � ax � b is bounded

i↵ y = a, in which case it is constant. Therefore, the domain of the conjugate

function f

⇤
is the singleton {a}, and f

⇤
(a) = �b

- Negative logarithm. f(x) = � log x. The function xy + log x is unbounded

for y � 0 and for y < 0, reaches its maximum f

⇤
(y) = � log(�y)�1 at x = �1/y

- Strictly convex quadratic function. f(x) =

1
2x

T
Qx, with Q 2 Sn

++. The

function y

T
x� 1

2x
T
Qx is bounded above as a function of x for all y, and attains

the maximum at x = Q

�1
y, so f

⇤
(y) =

1
2y

T
Q

�1
y
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Quasiconvex Functions 

- A function f is quasiconvex if its domain and all its sublevel sets are convex

- f is quasiconcave if �f is quasiconvex, i.e. all its superlevel sets are convex

- f is quasilinear if it is both quasiconvex and quasiconcave
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Examples 

-

p
|x| is quasiconvex on R

- log x is quasilinear on R++

- f(x1, x2) = x1x2 is quasiconcave on R

2
++

- linear-fractional function

f(x) =

a

T
x+ b

c

T
x+ d

, dom f = {x|cTx+ d > 0}

is quasilinear
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Properties 

- Modified Jensen’s inequality for quasiconvex function f : for any x, y in the

domain and ✓ 2 [0, 1],

f(✓x+ (1� ✓)y)  max{f(x), f(y)},

i.e. the value of the function on a segment doesn’t exceed the maximum of the

values at the endpoints.

- First-order condition: di↵erentiable f with convex domain is quasiconvex i↵

f(y)  f(x) ) rf(x)

T
(y � x)  0

- sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and Log-convex Functions 

a positive function f is log-concave if log f is concave:

f(✓x+ (1� ✓)y) � f(x)

✓

f(y)

1�✓

, 8✓ 2 [0, 1]

f is log-convex if log f is convex

- powers: x

a

on R++ is log-convex for a  0, log-concave for a � 0

- many common probability densities are log-concave, e.g., Gaussian:

f(x) =

1p
(2⇡)

n

det⌃

exp

✓
�1

2

(x� x̄)

T

⌃

�1
(x� x̄)

◆

- cdf of Gaussian:

�(x) =

1

2⇡

Z
x

�1
e

�u

2
/2
du

- determinant det X
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Properties 

- twice di↵erentiable f with convex domain is log-concave i↵

f(x)r2
f(x) � rf(x)rf(x)

T
, 8x 2 domf

f is log-convex if log f is convex

- product of log-concave functions is log-concave

- sum of log-concave functions is not necessarily log-concave

- integration: if f : R

n ⇥R

m ! R is log-concave, then

g(x) =

Z
f(x, y)dy

is log-concave
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Convexity with respect to Generalized Inequalities 

f : R

n ! R

m
is K-convex if dom f is convex and for any x, y 2 dom f and

✓ 2 [0, 1],

f(✓x+ (1� ✓)y) �K ✓f(x) + (1� ✓)f(y)


