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* Basic Properties and Examples



Convex Function

A function f: R"™ — R is convex if dom f is a convex set and

f0z+ (1—0)y) <Of(z)+ (1—06)f(y)

for all ,y € dom f and 0 € [0, 1]

(y, f(y))
(z, f(x))

- f is strictly convex if the above holds with “<” replaced by “<”
- f is concave if —f is convex

- affine functions are both convex and concave; conversely, if a function is both
convex and concave, then it is affine

- f is convex iff it is convex when restricted to any line that intersects its domain,
i.e. iff for all z € dom f and all v, the function g(¢) = f(z + tv) on its domain
{t|lx + tv € dom f} is convex



Extended-Value Extension

- The extended-value extension f of f is defined by

Flr) — f(x) x€dom f
/@) {oo x ¢ dom f

- This simplifies notation as f is convex iff

- We can recover the domain of f from the extension by taking dom f =

{z]f(z) < o0}



First Order Condition

- f is differentiable if dom f is open and the gradient

_(9f Of of
Vf(x)= (8—x1’8—x2"”’(‘9xn)

exists at each € dom f

- differentiable f with convex domain is convex iff

f(y) = f(z) + Vf(z)" (y — ), Yo,y € dom f

- Note that the affine function g(y) = f(z) + Vf(z)? (y — z) is the first-order
Taylor approximation of f near x. The above says that f is convex iff the
first-order Taylor approximation is always an underestimator of f.

f(y)
f(x) + V() (y — )



Second Order Condition

- f is twice differentiable if dom f is open and the Hessian V2 f(x) € S™,

_ O
N 8:@8@7

V2f(x)i ,i,§ €[1:n]
exists at each x € dom f

- twice differentiable f with convex domain is convex iff the Hessian V2 f(x) is
PSD for all x € dom f

- twice differentiable f with convex domain is strictly convex if the Hessian
V2f(z) is PD for all x € dom f

- Quadratic function f(z) = 227 Px+ ¢z + 1 is convex iff its Hessian P is PSD
[Note that V(2! Pz) = 2Px and V?(2? Pz) = 2P|

- Least-squares objective f(x) = || Az —bl|3 is convex because Vf = 24T (Az —b)
and V2f =2ATA > 0 for any A



Examples in One Dimension

Convex

- affine: ax +b on R, for any a,b € R
- exponential: e** on R, for any a € R
- powers: z* on Ry, fora>1ora <0
- powers of absolute value: |z|* on R, for a > 1
- negative entropy: xlogx on R, ¢
Concave
- affine: ax + b on R, for any a,b € R
- powers: z% on Ry, for a € [0, 1]

- logarithm: logxz on R4 ¢



Examples in High Dimensions
affine functions are convex and concave; all norms are convex

Examples on R"

- affine function: f(z) =alz +b

- morms: e.g., [y = (S0, [#il?)/7 for p > 1: [la]lae = maxiequ |2l

Examples on R™*"

- affine function:

1€[1:m] j€[1:n]
- spectral (maximum singlar value) norm:

F(X) = 1X]l2 = omax(X) = Amax(XTX))"/?



Examples in High Dimensions

- max function: f(z)= max;x; is convex

- Quadratic over linear function: f(z,y) = x?/y is convex for y > 0

2 2 2
v?f(x,w:ﬂ_yxy ;;ylzﬂy][y —2] = 0

- Log-sum-exponential: f(z) = log(e®* 4----4€"") is convex; also called softmax
- Geometric mean: f(z) = (][], z;)!/™ is concave

- Log determinant: f(x) = logdetX,dom f = S%  is concave

g(t) =logdet(Z +tV)
= logdet(ZY*(I +tZ~Y*vz=12)71/2)
= logdetZ + logdet(I +tZ~1/2v Z=1/2)
= logdetZ + Z log(1 4 t\;)

=1

where \;,4 € [1 : n] are the eigenvalues of Z~1/2V Z~1/2
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Sublevel Set and Epigraph

- The a-sublevel set of f is {x € domf|f(z) < a}. If f is convex, then its
sublevel set is convex. Converse is not true: —e® is concave, but its sublevel
sets are convex.

- The graph of function f is defined as {(z, f(z)|z € dom f)}, which is a subset
in R""!. The epigraph is defined as epif = {(z,t)|lz € dom f,t > f(x)}.
Function f is convex iff its epigraph is a convex set.

epi f
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Jensen’s Inequality

- If f is convex, then f(Ex) < Ef(z) for any random variable z with z € dom f

w.p. 1. If f is non-convex, then there is a random variable x with x € dom f
w.p. 1, such that f(Ex) > Ef(x).

- An intepretation: Consider convex function f. For any x € dom f and random
variable z with Ez = 0, we have

Ef(z+z2) > f(Blz +2]) = f(z),

which means that randomization or dithering (adding a zero mean random vec-
tor to the argument) only increases the value of convex function on average.
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* Operations that Preserve Convexity
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A Calculus of Convex Functions

Practical methods for establishing convexity of a function:
- verify definition (often simplified by restricting to a line)
- for twice differentiable function, show its Hessian is PSD

- show that f is obtained from simple convex functions by operations that
preserve convexity

— nonnegative weighted sum

— composition with affine function

— pointwise maximum and supremum
— composition

— minimization

— perspective
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Positive Weighted Sum and Composition with Affine

Nonnegative weighted sum: If fq,..., f,, are convex then f = wq fi+- - -+wm fm
is also convex, where wq,...,w,, are nonnegative

Composition with affine function: f(Ax + b) is convex if f is convex

- log barrier for linear inequalities:

flx)=— Zlog(bi —al'z),dom f = {z|alx < b;,i € [1:m]}

1=1

- any norm of affine function: f(z) = | Ax + b||
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Pointwise Maximum

If fi,..., fm are convex then f(x) = max{fi(x),..., fim(x)} is also convex

- piecewise-linear function: f(x) = max;c(i.m (al'z + b) is convex
- sum of r largest components of x € R":
f(x) =T T T2] T .- T Ty

is convex, where x;) is the ith largest component of z; this is because

f(r) =  max Z x;

IC[1:n], |I|—7“
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Pointwise Supremum

If f(x,y) is convex in x for each y € A then

g(x) = sup f(z,y)
yeA

is also convex

- support function of a set C: S¢(z) = SUp,ec yT'z is convex
- distance to farthest point in a set C"

f(z) = sup ||z — y||
yel

- maximum eigenvalue of symmetric matrix: for X € S,

Amax(X): sup yTXy
lyll2=1
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Composition with Scalar Functions

Composition of A : R — R with scalar function g : R” — R

f is convex if:
- g convex, h convex, h nondecreasing
- g concave, h convex, h nonincreasing

Remark:
- proof (for n = 1, differentiable g, h)

() = h"(g(x))g' (x)* + I (g(x))g" (x)
- monotonicity must hold for extended-value extension h
Examples:

- exp g(x) is convex if g is convex
- 1/g(x) is convex if g is concave and positive



Composition with Vector Functions

Composition of h : R¥ — R with scalar function g : R* — RF:

f(x) = h(g1(x), g2(),...,gr(x))

f is convex if:
- g; convex, h convex, h nondecreasing in each argument
- g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f(@) = g'(x)" V?h(g(x))g' (z) + Vh(g(x))" g" (z)

Examples:
- > log gi(x) is concave if g; are concave and positive
- log Y"1 exp gi(x) is convex if g are convex



Minimization

If f is convex in (z,y) and C is a convex nonempty set, then the function
g(x) =inf co f(x,y) is also convex

E.g., distance to a set: d(z,S) = inf,cgs || —y|| is convex if S is convex [function
| — y|| is convex in (x,y) so if S is convex then d(x,.S) is convex in ]
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Perspective

The perspective of f: R™ — R is the function g : R**! — R given by

g(x,t) = tf(x/t)

with domg = {(z,t) | 2/t € domf,t > 0}. g is convex if [ is convex.

E.g.: Euclidean norm squared. The perspective of the convex function f(x) =
vTxis g(x,t) = t(x/t)T (x/t) = 272 /t, which is convex in (x,t) for ¢ > 0

E.g.: Consider the convex function f(z) = —logx. Its perspective is g(z,t) =
—tlogx/t = tlogt/x = tlogt — tlogx which is convex in (x,t). The function g
is called the relative entropy of t and x. Therefore, the relative entropy of two
vectors u, v defined as

Z u; log(u; /v;)

is convex in (u,v) since it is a sum of relative entropies of u;, v;.
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Conjugate Function

For a function f : R™ — R, its conjugate function f* : R™ — R is defined as

ffly)= sup (y'z— f(x)).

redom f

- The domain of f* consists of y € R™ for which the supremum if finite
- f* is convex (even if f is not)
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Examples

- Affine functions: f(z) = ax +b. As a function of x, yr — ax — b is bounded
iff y = a, in which case it is constant. Therefore, the domain of the conjugate
function f* is the singleton {a}, and f*(a) = —b

- Negative logarithm. f(x) = —logz. The function xy + logx is unbounded
for y > 0 and for y < 0, reaches its maximum f*(y) = —log(—y)—latz = —1/y

- Strictly convex quadratic function. f(z) = %QZTQCU, with ¢ € S%_. The

function y’ x — %xTQx is bounded above as a function of x for all y, and attains

the maximum at x = Q 1y, so f*(y) = %yTQ_ly
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Quasiconvex Functions

- A function f is quasiconvex if its domain and all its sublevel sets are convex
- f is quasiconcave if — f is quasiconvex, i.e. all its superlevel sets are convex

- f is quasilinear if it is both quasiconvex and quasiconcave
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Examples

- +/|x| is quasiconvex on R
- log z is quasilinear on R,
_ - ~ R2
- f(1,72) = x172 is quasiconcave on R%

- linear-fractional function

alz+b

Ty’ dom f = {z|c'z+d >0}

fz) =

is quasilinear
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Properties

- Modified Jensen’s inequality for quasiconvex function f: for any x,y in the
domain and 0 € [0, 1],

S0z + (1= 0)y) < max{f(z), f(y)},

i.e. the value of the function on a segment doesn’t exceed the maximum of the
values at the endpoints.

- First-order condition: differentiable f with convex domain is quasiconvex iff

fy) < flx)= Vi) Ty—2z)<0

- sums of quasiconvex functions are not necessarily quasiconvex

Vi(z)
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* Log-concave and Log-convex Functions
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Log-concave and Log-convex Functions

a positive function f is log-concave if log f is concave:

fOz + (1= 0)y) > ()" f(y)' =", V0 € [0,1]

f is log-convex if log f is convex
- powers: % on R, is log-convex for a < 0, log-concave for a > 0

- many common probability densities are log-concave, e.g., Gaussian:

1 1 T _
1) = e (o 15 - )

- cdf of Gaussian:

1 [* 2
O(z) = —/ e " 2 du

2T ) _ oo

- determinant det X

30



Properties

- twice differentiable f with convex domain is log-concave iff
f@)V2f(z) 2 Vf(@)Vf(z)", Vo € domf

f is log-convex if log f is convex

- product of log-concave functions is log-concave

- sum of log-concave functions is not necessarily log-concave

- integration: if f: R™ x R™ — R is log-concave, then

g(x) = / F(z,y)dy

is log-concave
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Convexity with respect to Generalized Inequalities

f:R" - R™ is K-convex if dom f is convex and for any z,y € dom f and
6 € [0,1],
f(0z+ (1 —0)y) =k 0f(x) + (1 —0)f(y)
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