Lecture 3: Convex Functions

Xiugang Wu

University of Delaware

Fall 2019

Outline

- Basic Properties and Examples
- Operations that Preserve Convexity
- The Conjugate Function
- Quasiconvex Functions
- Log-concave and Log-convex Functions
- Convexity with respect to Generalized Inequalities

Outline

- Basic Properties and Examples
- Operations that Preserve Convexity
- The Conjugate Function
- Quasiconvex Functions
- Log-concave and Log-convex Functions
- Convexity with respect to Generalized Inequalities

Convex Function

A function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex if $\operatorname{dom} f$ is a convex set and

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

for all $x, y \in \operatorname{dom} f$ and $\theta \in[0,1]$

- f is strictly convex if the above holds with " \leq " replaced by " $<$ "
- f is concave if $-f$ is convex
- affine functions are both convex and concave; conversely, if a function is both convex and concave, then it is affine
- f is convex iff it is convex when restricted to any line that intersects its domain, i.e. iff for all $x \in \operatorname{dom} f$ and all v, the function $g(t)=f(x+t v)$ on its domain $\{t \mid x+t v \in \operatorname{dom} f\}$ is convex

Extended-Value Extension

- The extended-value extension \tilde{f} of f is defined by

$$
\tilde{f}(x)= \begin{cases}f(x) & x \in \operatorname{dom} f \\ \infty & x \notin \operatorname{dom} f\end{cases}
$$

- This simplifies notation as f is convex iff

$$
\tilde{f}(\theta x+(1-\theta) y) \leq \theta \tilde{f}(x)+(1-\theta) \tilde{f}(y), \forall x, y \in \mathbf{R}^{n}, \theta \in[0,1]
$$

- We can recover the domain of f from the extension by taking $\operatorname{dom} f=$ $\{x \mid \tilde{f}(x)<\infty\}$

First Order Condition

- f is differentiable if dom f is open and the gradient

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

exists at each $x \in \operatorname{dom} f$

- differentiable f with convex domain is convex iff

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x), \forall x, y \in \operatorname{dom} f
$$

- Note that the affine function $g(y)=f(x)+\nabla f(x)^{T}(y-x)$ is the first-order Taylor approximation of f near x. The above says that f is convex iff the first-order Taylor approximation is always an underestimator of f.

Second Order Condition

- f is twice differentiable if $\operatorname{dom} f$ is open and the Hessian $\nabla^{2} f(x) \in \mathbf{S}^{n}$,

$$
\nabla^{2} f(x)_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, i, j \in[1: n]
$$

exists at each $x \in \operatorname{dom} f$

- twice differentiable f with convex domain is convex iff the Hessian $\nabla^{2} f(x)$ is PSD for all $x \in \operatorname{dom} f$
- twice differentiable f with convex domain is strictly convex if the Hessian $\nabla^{2} f(x)$ is PD for all $x \in \operatorname{dom} f$
- Quadratic function $f(x)=\frac{1}{2} x^{T} P x+q^{T} x+r$ is convex iff its Hessian P is PSD $\left[\right.$ Note that $\nabla\left(x^{T} P x\right)=2 P x$ and $\left.\nabla^{2}\left(x^{T} P x\right)=2 P\right]$
- Least-squares objective $f(x)=\|A x-b\|_{2}^{2}$ is convex because $\nabla f=2 A^{T}(A x-b)$ and $\nabla^{2} f=2 A^{T} A \succeq 0$ for any A

Examples in One Dimension

Convex

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- exponential: $e^{a x}$ on \mathbf{R}, for any $a \in \mathbf{R}$
- powers: x^{a} on \mathbf{R}_{++}, for $a \geq 1$ or $a \leq 0$
- powers of absolute value: $|x|^{a}$ on \mathbf{R}, for $a \geq 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

Concave

- affine: $a x+b$ on \mathbf{R}, for any $a, b \in \mathbf{R}$
- powers: x^{a} on \mathbf{R}_{++}, for $a \in[0,1]$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples in High Dimensions

affine functions are convex and concave; all norms are convex

Examples on \mathbf{R}^{n}

- affine function: $f(x)=a^{T} x+b$
- norms: e.g., $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1 ;\|x\|_{\infty}=\max _{i \in[1: n]}\left|x_{i}\right|$

Examples on $\mathbf{R}^{m \times n}$

- affine function:

$$
f(X)=\operatorname{tr}\left(A^{T} X\right)+b=\sum_{i \in[1: m]} \sum_{j \in[1: n]} A_{i j} X_{i j}+b
$$

- spectral (maximum singlar value) norm:

$$
f(X)=\|X\|_{2}=\sigma_{\max }(X)=\left(\lambda_{\max }\left(X^{T} X\right)\right)^{1 / 2}
$$

Examples in High Dimensions

- max function: $f(x)=\max _{i} x_{i}$ is convex
- Quadratic over linear function: $f(x, y)=x^{2} / y$ is convex for $y>0$

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}}\left[\begin{array}{cc}
y^{2} & -x y \\
-x y & x^{2}
\end{array}\right]=\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{cc}
y & -x
\end{array}\right] \succeq 0
$$

- Log-sum-exponential: $f(x)=\log \left(e^{x_{1}}+\cdots+e^{x_{n}}\right)$ is convex; also called softmax
- Geometric mean: $f(x)=\left(\prod_{i} x_{i}\right)^{1 / n}$ is concave
- Log determinant: $f(x)=\log \operatorname{det} X, \operatorname{dom} f=\mathbf{S}_{++}^{n}$ is concave

$$
\begin{aligned}
g(t) & =\log \operatorname{det}(Z+t V) \\
& =\log \operatorname{det}\left(Z^{1 / 2}\left(I+t Z^{-1 / 2} V Z^{-1 / 2}\right) Z^{1 / 2}\right) \\
& =\log \operatorname{det} Z+\log \operatorname{det}\left(I+t Z^{-1 / 2} V Z^{-1 / 2}\right) \\
& =\log \operatorname{det} Z+\sum_{i=1}^{n} \log \left(1+t \lambda_{i}\right)
\end{aligned}
$$

where $\lambda_{i}, i \in[1: n]$ are the eigenvalues of $Z^{-1 / 2} V Z^{-1 / 2}$

Sublevel Set and Epigraph

- The α-sublevel set of f is $\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}$. If f is convex, then its sublevel set is convex. Converse is not true: $-e^{x}$ is concave, but its sublevel sets are convex.
- The graph of function f is defined as $\{(x, f(x) \mid x \in \operatorname{dom} f)\}$, which is a subset in \mathbf{R}^{n+1}. The epigraph is defined as epif $=\{(x, t) \mid x \in \operatorname{dom} f, t \geq f(x)\}$. Function f is convex iff its epigraph is a convex set.

Jensen's Inequality

- If f is convex, then $f(\mathbf{E} x) \leq \mathbf{E} f(x)$ for any random variable x with $x \in \operatorname{dom} f$ w.p. 1. If f is non-convex, then there is a random variable x with $x \in \operatorname{dom} f$ w.p. 1, such that $f(\mathbf{E} x)>\mathbf{E} f(x)$.
- An intepretation: Consider convex function f. For any $x \in \operatorname{dom} f$ and random variable z with $\mathbf{E} z=0$, we have

$$
\mathbf{E} f(x+z) \geq f(\mathbf{E}[x+z])=f(x)
$$

which means that randomization or dithering (adding a zero mean random vector to the argument) only increases the value of convex function on average.

Outline

- Basic Properties and Examples
- Operations that Preserve Convexity
- The Conjugate Function
- Quasiconvex Functions
- Log-concave and Log-convex Functions
- Convexity with respect to Generalized Inequalities

A Calculus of Convex Functions

Practical methods for establishing convexity of a function:

- verify definition (often simplified by restricting to a line)
- for twice differentiable function, show its Hessian is PSD
- show that f is obtained from simple convex functions by operations that preserve convexity
- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Positive Weighted Sum and Composition with Affine

Nonnegative weighted sum: If f_{1}, \ldots, f_{m} are convex then $f=w_{1} f_{1}+\cdots+w_{m} f_{m}$ is also convex, where w_{1}, \ldots, w_{m} are nonnegative

Composition with affine function: $f(A x+b)$ is convex if f is convex

- log barrier for linear inequalities:

$$
f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right), \text { dom } f=\left\{x \mid a_{i}^{T} x<b_{i}, i \in[1: m]\right\}
$$

- any norm of affine function: $f(x)=\|A x+b\|$

Pointwise Maximum

If f_{1}, \ldots, f_{m} are convex then $f(x)=\max \left\{f_{1}(x), \ldots, f_{m}(x)\right\}$ is also convex

- piecewise-linear function: $f(x)=\max _{i \in[1: m]}\left(a_{i}^{T} x+b\right)$ is convex
- sum of r largest components of $x \in \mathbf{R}^{n}$:

$$
f(x)=x_{[1]}+x_{[2]}+\ldots+x_{[r]}
$$

is convex, where $x_{[i]}$ is the i th largest component of x; this is because

$$
f(x)=\max _{I \subseteq[1: n],| |=r} \sum_{i \in I} x_{i}
$$

Pointwise Supremum

If $f(x, y)$ is convex in x for each $y \in A$ then

$$
g(x)=\sup _{y \in A} f(x, y)
$$

is also convex

- support function of a set $C: S_{C}(x)=\sup _{y \in C} y^{T} x$ is convex
- distance to farthest point in a set C :

$$
f(x)=\sup _{y \in C}\|x-y\|
$$

- maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^{n}$,

$$
\lambda_{\max }(X)=\sup _{\|y\|_{2}=1} y^{T} X y
$$

Composition with Scalar Functions

Composition of $h: \mathbf{R} \rightarrow \mathbf{R}$ with scalar function $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$:

$$
f(x)=h(g(x))
$$

f is convex if:

- g convex, h convex, \tilde{h} nondecreasing
- g concave, h convex, \tilde{h} nonincreasing

Remark:

- proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)
$$

- monotonicity must hold for extended-value extension \tilde{h}

Examples:

- $\exp g(x)$ is convex if g is convex
$-1 / g(x)$ is convex if g is concave and positive

Composition with Vector Functions

Composition of $h: \mathbf{R}^{k} \rightarrow \mathbf{R}$ with scalar function $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$:

$$
f(x)=h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)
$$

f is convex if:

- g_{i} convex, h convex, \tilde{h} nondecreasing in each argument
- g_{i} concave, h convex, \tilde{h} nonincreasing in each argument
proof (for $n=1$, differentiable g, h)

$$
f^{\prime \prime}(x)=g^{\prime}(x)^{T} \nabla^{2} h(g(x)) g^{\prime}(x)+\nabla h(g(x))^{T} g^{\prime \prime}(x)
$$

Examples:

- $\sum_{i=1}^{m} \log g_{i}(x)$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(x)$ is convex if g are convex

Minimization

If f is convex in (x, y) and C is a convex nonempty set, then the function $g(x)=\inf _{y \in C} f(x, y)$ is also convex
E.g., distance to a set: $d(x, S)=\inf _{y \in S}\|x-y\|$ is convex if S is convex [function $\|x-y\|$ is convex in (x, y) so if S is convex then $d(x, S)$ is convex in $x]$

Perspective

The perspective of $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the function $g: \mathbf{R}^{n+1} \rightarrow \mathbf{R}$ given by

$$
g(x, t)=t f(x / t)
$$

with $\operatorname{dom} g=\{(x, t) \mid x / t \in \operatorname{dom} f, t>0\} . g$ is convex if f is convex.
E.g.: Euclidean norm squared. The perspective of the convex function $f(x)=$ $x^{T} x$ is $g(x, t)=t(x / t)^{T}(x / t)=x^{T} x / t$, which is convex in (x, t) for $t>0$
E.g.: Consider the convex function $f(x)=-\log x$. Its perspective is $g(x, t)=$ $-t \log x / t=t \log t / x=t \log t-t \log x$ which is convex in (x, t). The function g is called the relative entropy of t and x. Therefore, the relative entropy of two vectors u, v defined as

$$
\sum_{i} u_{i} \log \left(u_{i} / v_{i}\right)
$$

is convex in (u, v) since it is a sum of relative entropies of u_{i}, v_{i}.

Outline

- Basic Properties and Examples
- Onerations that Preserve Convexity
- The Conjugate Function
- Quasiconvex Functions
- Log-concave and Log-convex Functions
- Convexity with respect to Generalized Inequalities

Conjugate Function

For a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$, its conjugate function $f^{*}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is defined as

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{T} x-f(x)\right) .
$$

- The domain of f^{*} consists of $y \in \mathbf{R}^{n}$ for which the supremum if finite
- f^{*} is convex (even if f is not)

Examples

- Affine functions: $f(x)=a x+b$. As a function of $x, y x-a x-b$ is bounded iff $y=a$, in which case it is constant. Therefore, the domain of the conjugate function f^{*} is the singleton $\{a\}$, and $f^{*}(a)=-b$
- Negative logarithm. $f(x)=-\log x$. The function $x y+\log x$ is unbounded for $y \geq 0$ and for $y<0$, reaches its maximum $f^{*}(y)=-\log (-y)-1$ at $x=-1 / y$
- Strictly convex quadratic function. $f(x)=\frac{1}{2} x^{T} Q x$, with $Q \in \mathbf{S}_{++}^{n}$. The function $y^{T} x-\frac{1}{2} x^{T} Q x$ is bounded above as a function of x for all y, and attains the maximum at $x=Q^{-1} y$, so $f^{*}(y)=\frac{1}{2} y^{T} Q^{-1} y$

Outline

- Basic Properties and Examples
- Onerations that Preserve Convexity
- The Conjugate Function
- Quasiconvex Functions
- Log-concave and Log-convex Functions
- Convexity with respect to Generalized Inequalities

Quasiconvex Functions

- A function f is quasiconvex if its domain and all its sublevel sets are convex
- f is quasiconcave if $-f$ is quasiconvex, i.e. all its superlevel sets are convex
- f is quasilinear if it is both quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbf{R}
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on \mathbf{R}_{++}^{2}
- linear-fractional function

$$
f(x)=\frac{a^{T} x+b}{c^{T} x+d}, \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

is quasilinear

Properties

- Modified Jensen's inequality for quasiconvex function f : for any x, y in the domain and $\theta \in[0,1]$,

$$
f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\}
$$

i.e. the value of the function on a segment doesn't exceed the maximum of the values at the endpoints.

- First-order condition: differentiable f with convex domain is quasiconvex iff

$$
f(y) \leq f(x) \Rightarrow \nabla f(x)^{T}(y-x) \leq 0
$$

- sums of quasiconvex functions are not necessarily quasiconvex

Outline

- Basic Properties and Examples
- Onerations that Preserve Convexity
- The Conjugate Function
- Quasiconvex Functions
- Log-concave and Log-convex Functions
- Convexity with respect to Generalized Inequalities

Log-concave and Log-convex Functions

a positive function f is \log-concave if $\log f$ is concave:

$$
f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta}, \forall \theta \in[0,1]
$$

f is log-convex if $\log f$ is convex

- powers: x^{a} on \mathbf{R}_{++}is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., Gaussian:

$$
f(x)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})\right)
$$

- cdf of Gaussian:

$$
\Phi(x)=\frac{1}{2 \pi} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

- determinant det X

Properties

- twice differentiable f with convex domain is log-concave iff

$$
f(x) \nabla^{2} f(x) \preceq \nabla f(x) \nabla f(x)^{T}, \forall x \in \operatorname{dom} f
$$

f is \log-convex if $\log f$ is convex

- product of log-concave functions is log-concave
- sum of log-concave functions is not necessarily log-concave
- integration: if $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ is log-concave, then

$$
g(x)=\int f(x, y) d y
$$

is log-concave

Outline

- Basic Properties and Examples
- Operations that Drescrve Convexity
- The Conjugate Function
- Quasiconvex Functions
- Log-concave and Log-convex Functions
- Convexity with respect to Generalized Inequalities

Convexity with respect to Generalized Inequalities

$f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is K-convex if $\operatorname{dom} f$ is convex and for any $x, y \in \operatorname{dom} f$ and $\theta \in[0,1]$,

$$
f(\theta x+(1-\theta) y) \preceq_{K} \theta f(x)+(1-\theta) f(y)
$$

