Lecture 2: Convex Sets

Xiugang Wu

University of Delaware

Fall 2019

Recap: Convex Optimization Problems

$$
\begin{aligned}
& \operatorname{minimize} f_{0}(x) \\
& \text { subject to } f_{i}(x) \leq b_{i}, i=1,2, \ldots, m
\end{aligned}
$$

where objective and constraint functions are convex

- We can broadly understand and solve convex optimization problems
- In contrast, non-convex problems are mostly treated on a case-by-case basis
- Special property of convex problems: any local minimizer is a global minimizer

Outline

- Affine and Convex Sets
- Important Examples of Convex Sets
- Operations that Preserve Convexity
- Generalized Inequalities
- Separating and Supporting Hyperplanes
- Dual Cone and Generalized Inequalities

Outline

- Affine and Convex Sets
- Important Examples of Convex Sets
- Operations that Preserve Convexity
- Generalized Inequalities
- Separating and Supporting Hyperplanes
- Dual Cone and Generalized Inequalities

Linear, Affine, Convex and Conic Combination

- Linear combination: $\sum_{i=1}^{k} \theta_{i} x_{i}$, where $\theta_{i} \in \mathbf{R}$
- Affine combination: $\sum_{i=1}^{k} \theta_{i} x_{i}$, where $\theta_{i} \in \mathbf{R}, \sum_{i=1}^{k} \theta_{i}=1$
- Convex combination: $\sum_{i=1}^{k} \theta_{i} x_{i}$, where $\theta_{i} \in \mathbf{R}, \sum_{i=1}^{k} \theta_{i}=1, \theta_{i} \geq 0$
- Conic combination: $\sum_{i=1}^{k} \theta_{i} x_{i}$, where $\theta_{i} \in \mathbf{R}, \theta_{i} \geq 0$

Linear Space

- Linear space: $V \subseteq \mathbf{R}^{n}$ such that $x_{1}, x_{2} \in V \Rightarrow \theta_{1} x_{1}+\theta_{2} x_{2} \in V, \forall \theta_{1}, \theta_{2} \in \mathbf{R}$; contains linear combination of any two points in the set
- Linear span: $\operatorname{span}(C)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid k \in \mathbf{Z}_{+}, x_{i} \in C, \theta_{i} \in \mathbf{R}\right\}$;
contains all linear combinations of points in C;
smallest linear space that contains C
- Dimension: $\operatorname{dim}(V)$ is the size of a minimal spanning set for V
- Example: $V=\{x \mid A x=0\}, A \in \mathbf{R}^{m \times n}$;
[what about $\{x \mid A x=b\}$?]

Affine Set

- Line through x_{1}, x_{2} : all points $x=\theta x_{1}+(1-\theta) x_{2}, \theta \in \mathbf{R}$

$$
\theta=1.2 \underbrace{x_{\theta}}_{\theta=0.6}
$$

- Affine set: contains the line through any two points in the set
- Affine hull: $\boldsymbol{\operatorname { a f f }}(C)=\left\{\sum_{i=1}^{k} \theta_{i} x_{i} \mid k \in \mathbf{Z}_{+}, x_{i} \in C, \sum_{i=1}^{k} \theta_{i}=1\right\}$; smallest affine set that contains C
- Dimension: $V=C-x_{0}, \forall x_{0} \in C$ is a subspace; $\operatorname{dim}(C)=\operatorname{dim}(V)$
- Example: $C=\{x \mid A x=b\}, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$;

Subspace associated with C is the null space of A;
Conversely, every affine set can be expressed as solution set of linear equations

Convex Set

- Line segment between x_{1} and x_{2} : all points $x=\theta x_{1}+(1-\theta) x_{2}, \theta \in[0,1]$
- Convex set: contains line segment between any two points in the set ;

$$
x_{1}, x_{2} \in C \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in C, \forall \theta \in[0,1]
$$

- Convex hull $\operatorname{conv}(C)$: set of all convex combinations of points in C

Convex Cone

- Convex cone: contains conic combination of any two points in the set;

$$
x_{1}, x_{2} \in C \Rightarrow \theta_{1} x_{1}+\theta_{2} x_{2} \in C, \forall \theta_{1}, \theta_{2} \geq 0
$$

- Conic hull cone (C) : set of all conic combinations of points in C

Summary

- Linear combination; linear space; linear span
- Affine combination; affine set; affine hull
- Convex combination; convex set; convex hull
- Conic combination; convex cone; conic hull
$-\operatorname{span}(C) \supseteq \operatorname{aff}(C), \operatorname{cone}(C) \supseteq \operatorname{conv}(C)$
- Subspace \Rightarrow affine set, convex cone \Rightarrow convex set

Outline

- Affine and Convex Sets
- Important Examples of Convex Sets
- Operations that Preserve Convexity
- Generalized Inequalities
- Senarating and Sunnorting Hyperplanes
- Dual Cone and Generalized Inequalities

Some Simple Examples

- empty set \emptyset, singleton $\left\{x_{0}\right\}$, and the whole space \mathbf{R}^{n} are affine (therefore convex); empty set \emptyset and singleton $\left\{x_{0}\right\}$ are NOT subspace though
- Any line is affine and hence convex; if it passes through zero, then it is also subspace and hence convex cone
- Any line segment is convex, but not affine, not cone, not subspace
- A ray $\left\{x_{0}+\theta v \mid \theta \geq 0\right\}$ is convex, but not affine, not subspace; it becomes a convex cone if $x_{0}=0$
- Any subspace is affine and convex cone, and hence convex

Hyperplanes and Halfspaces

- Hyperplane: $\left\{x \mid a^{T} x=b\right\}, a \neq 0$; halfspace: $\left\{x \mid a^{T} x \leq b\right\}, a \neq 0$
- Hyperplanes are affine and convex; halfspaces are convex

Euclidean Balls and Ellipsoids

- (Euclidean) ball: $B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}$ or $x_{c}+r B(0,1)$
- Ellipsoid: $\mathcal{E}=x_{c}+A B(0,1), A=P^{1 / 2}, P \succ 0$;

$$
\mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

Norm Balls and Norm Cones

- Norm: a function $\|\cdot\|$ that satisfies

$$
\begin{aligned}
& -\|x\| \geq 0 ;\|x\|=0 \text { iff } x=0 \\
& -\|t x\|=|t|\|x\|, \forall t \in \mathbf{R} \\
& -\|x+y\| \leq\|x\|+\|y\|
\end{aligned}
$$

- Norm ball: $\left\{x \mid\left\|x-x_{c}\right\| \leq c\right\}$
- Norm cone: $\{(x, t) \mid\|x\| \leq t\} \subseteq \mathbf{R}^{n+1}$

Euclidean norm cone is called second-order cone

- Norm balls and norm cones are convex

Notation: \| $\cdot \|$: general (unspecified) norm $\|\cdot\|_{\text {symb }}$: particular norm

Polyhedra

- Polyhedron: solution set of a finite number of linear equalities and inequalities;

$$
\begin{aligned}
& \mathcal{P}=\left\{x \mid a_{j}^{T} x \leq b_{j}, j \in[1: m], c_{j}^{T} x=d_{j}, j \in[1: p]\right\} ; \\
& \mathcal{P}=\{x \mid A x \preceq b, C x=d\}, A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}
\end{aligned}
$$

- Polyhedron is intersection of finite number of halfspaces and hyperplanes
- Also called polytope if bounded

Positive Semidefinite Cone

- set of symmetric matrices, i.e. $\mathbf{S}^{n}=\left\{X \in \mathbf{R}^{n \times n} \mid X^{T}=X\right\}$
- set of symmetric positive semidefinite matrices: $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$
$-X \in \mathbf{S}_{+}^{n} \Leftrightarrow z^{T} X z \geq 0, \forall z$
$-\mathbf{S}_{+}^{n}$ is convex cone
- set of symmetric positive definite matrices: $\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succ 0\right\}$
$-\mathbf{S}_{++}^{n}$ is convex but not convex cone

Outline

- Affine and Convex Sets
- Important Examples of Convex Sets
- Operations that Preserve Convexity
- Generalized Inequalities
- Separating and Supporting Hyperplanes
- Dual Cone and Generalized Inequalities

A Calculus of Convex Sets

Practical methods for establishing convexity of set C :

- Apply definition: $x_{1}, x_{2} \in C \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in C$
- Show that C is obtained from simple convex sets (hyperplanes, half spaces, norm balls, etc) by operations that preserve convexity
- intersection
- affine functions
- perspective function
- linear-fractional functions

Intersection

Intersection of (any number of) convex sets is convex

- polyhedron is the intersection of halfspaces and hyperplanes, and hence convex
- positive semidefinite cone $\mathbf{S}_{+}^{n}=\cap_{z \neq 0}\left\{A \in \mathbf{S}^{n} \mid z^{T} A z \geq 0\right\}$; the intersection of an infinite number of halfspaces in \mathbf{S}^{n}
- conversely, every closed convex set is the intersection of halfspaces
- in particular, every closed convex set C is the intersection of all halfspaces that contain C

Affine Functions

Function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine if $f(x)=A x+b, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$
If S is convex and f is affine, then $f(S)$ and $f^{-1}(S)$ are affine

- scaling αS, translation $a+S$, projection $T=\left\{x_{1} \mid\left(x_{1}, x_{2}\right) \in S\right\}$
- sum of sets $S_{1}+S_{2}$ is convex if S_{1}, S_{2} are convex; follows by applying $f\left(x_{1}, x_{2}\right)=$ $x_{1}+x_{2}$ to product set $S_{1} \times S_{2}$
- solution set of linear matrix inequality $\left\{x \mid x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n} \preceq B\right\}$ where $B, A_{i} \in \mathbf{S}^{m}, x \in \mathbf{R}^{n}$; it is the inverse image of the positive semidefinite cone under the affine function $f: \mathbf{R}^{n} \rightarrow \mathbf{S}^{m}$ given by $f(x)=B-A(x)$
- polyhedron $\mathcal{P}=\{x \mid A x \preceq b, C x=d\}$ is the inverse image of $\mathbf{R}_{+}^{m} \times\{0\}$ under the affine mapping $f(x)=(b-A x, d-C x)$; i.e., $\mathcal{P}=\left\{x \mid f(x) \in \mathbf{R}_{+}^{m} \times\{0\}\right\}$
- ellipsoid $\mathcal{E}=\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}$ is convex; it is the image of $B(0,1)=\left\{u \mid u^{T} u \leq 1\right\}$ under the affine mapping $f(u)=P^{1 / 2} u+x_{c}$; it is also the inverse image of $B(0,1)$ under the affine mapping $g(x)=P^{-1 / 2}\left(x-x_{c}\right)$

Perspective and Linear-Fractional Functions

- perspective function $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$

$$
P(x, t)=x / t, \operatorname{dom} P=\{(x, t) \mid t>0\}
$$

images and inverse images of convex sets under perspective are convex

- linear-fractional function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$

$$
f(x)=\frac{A x+b}{c^{T} x+d}, \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

images and inverse images of convex sets under linear-fractional are convex

- Example: Suppose u and v are random variables that take on values in $[1: m]$ and [1:n] respectively. Let $P_{u, v}=\left\{p_{u, v}(i, j)\right\}_{(i, j) \in[1: m] \times[1: n]}$ and let $P_{u \mid v=j}=$ $\left\{p_{u \mid v}(i \mid j)\right\}_{i \in[1: m]}$ for any $j \in[1: n]$. Note that $p_{u \mid v}(i \mid j)=\frac{p_{u, v}(i, j)}{\sum_{i=1}^{m} p_{u, v}(i, j)}$, i.e. $P_{u \mid v=j}$ is obtained by a linear-fractional mapping from $P_{u, v}$. Therefore, if C is a convex set of joint distributions for (u, v), then the set of conditional distributions of u given $v=j$ for any j is also convex.

Outline

- Affine and Convex Sets
- Important Examples of Convex Sets
- Operations that Preserve Convexity
- Generalized Inequalities
- Separating and Supporting Hyperplanes
- Dual Cone and Generalized Inequalities

Generalized Inequalities

A convex cone $K \subseteq \mathbf{R}^{n}$ is a proper cone if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

Examples:

- nonnegative orthant $K=\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$

Generalized inequality defined by proper cone K :

$$
x \preceq_{K} y \Leftrightarrow y-x \in K, \quad x \prec_{K} y \Leftrightarrow y-x \in \operatorname{int} K
$$

Examples:

- componentwise inequality: $x \preceq_{\mathbf{R}_{+}^{n}} y \Leftrightarrow x_{i} \leq y_{i}, \forall i$
- matrix inequality: $X \preceq_{\mathbf{s}_{+}^{n}} Y \Leftrightarrow Y-X$ positive semidefinite

Many properties of \preceq_{K} are similar to \leq on \mathbf{R}

- e.g., $x \preceq_{K} y, u \preceq_{K} v \Rightarrow x+u \preceq_{K} y+v$

Minimum and Minimal Elements

Generally \preceq_{K} is not a linear ordering: may have neither $x \preceq_{K} y$ nor $y \preceq_{K} x$
$x \in S$ is the minimum element of S w.r.t. \preceq_{K} if $x \preceq_{K} y, \forall y \in S$, or equivalently, $S \subseteq x+K$

- if a set has a minimum element, then it is unique
$x \in S$ is the minimal element of S w.r.t. \preceq_{K} if there does not exist $y \in S, y \neq x$ such that $y \preceq_{K} x$, or equivalently, $(x-K) \cap S=\{x\}$
- a set can have many different minimal elements

Outline

- Affine and Convex Sets
- Important Examples of Convex Sets
- Operations that Preserve Convexity
- Generalized Inequalities
- Separating and Supporting Hyperplanes
- Dual Cone and Generalized Inequalities

Separating Hyperplane Theorem

If C and D are nonempty disjoint convex sets, then there exists $a \neq 0, b$ such that $a^{T} x \leq b$ for $x \in C$ and $a^{T} x \geq b$ for $x \in D$. The hyperplane $\left\{x \mid a^{T} x=b\right\}$ is called a separating hyperplane for the sets C and D.

Supporting Hyperplane Theorem

Any hyperplane $\left\{x \mid a^{T} x=a^{T} x_{0}\right\}$ with $a \neq 0$ such that $a^{T} x \leq a^{T} x_{0}$ for all $x \in C$ is called a supporting hyperplane to set C at boundary point x_{0}.

Supporting Hyperplane Theorem: If C is convex, then there exists a supporting hyperplane at every boundary point of C.

Outline

- Affine and Convex Sets
- Important Examples of Convex Sets
- Operations that Preserve Convexity
- Generalized Inequalities
- Separating and Supporting Hyperplanes
- Dual Cone and Generalized Inequalities

Dual Cone

Dual cone of a cone $K: K^{*}=\left\{y \mid y^{T} x \geq 0, \forall x \in K\right\}$

Examples:

- $K=\mathbf{R}_{+}^{n}, K^{*}=\mathbf{R}_{+}^{n}$
$-K=\mathbf{S}_{+}^{n}, K^{*}=\mathbf{S}_{+}^{n}$
- $K=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}, K^{*}=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}$
- $K=\left\{(x, t) \mid\|x\|_{1} \leq t\right\}, K^{*}=\left\{(x, t) \mid\|x\|_{\infty} \leq t\right\}$

First three examples are self-dual cones
Dual cones of proper cones are proper, hence define generalized inequalities:

$$
y \succeq_{K^{*}} 0 \Leftrightarrow y^{T} x \geq 0 \forall x \in K
$$

Minimum and Minimal Elements via Dual Inequalities

minimum element w.r.t. $\preceq_{K}: x$ is minimum element of S iff for all $\lambda \succ_{K^{*}} 0, x$ is the unique minimizer of $\lambda^{T} z$ over S
minimal elements w.r.t. \preceq_{K} :

- if x minimizes $\lambda^{T} z$ over S for some $\lambda \succ_{K^{*}} 0$ then x is minimal
- if x is minimal element of a convex set S, then there exists a nonzero $\lambda \succeq_{K^{*}} 0$ such that x minimizes $\lambda^{T} z$ over S

Efficient Production Frontier

Consider manufacturing a product with n resources:

- different production methods use different amounts of resources $x \in \mathbf{R}^{n}$
- production set P : resource vectors x for all possible production methods
- efficient (pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}_{+}^{n}

Example ($n=2$):

- x_{1}, x_{2}, x_{3} are efficient
- x_{4}, x_{5} are not efficient
- x_{1} minimizes $\lambda^{T} z$ over P for the shown $\lambda \in \mathbf{R}_{++}^{2}$
- x_{2} is efficient but cannot be found by minimizing $\lambda^{T} z$ for some $\lambda \in \mathbf{R}_{++}^{2}$
- λ_{i} can be interpreted as the price of resource i

