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Recap: Convex Optimization Problems 

minimize f0(x)

subject to fi(x)  bi, i = 1, 2, . . . ,m

where objective and constraint functions are convex

- We can broadly understand and solve convex optimization problems

- In contrast, non-convex problems are mostly treated on a case-by-case basis

- Special property of convex problems: any local minimizer is a global minimizer
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Linear, Affine, Convex and Conic Combination 

- Linear combination:

kX

i=1

✓ixi, where ✓i 2 R

- A�ne combination:

kX

i=1

✓ixi, where ✓i 2 R,

kX

i=1

✓i = 1

- Convex combination:

kX

i=1

✓ixi, where ✓i 2 R,

kX

i=1

✓i = 1, ✓i � 0

- Conic combination:

kX

i=1

✓ixi, where ✓i 2 R, ✓i � 0
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Linear Space 

- Dimension: dim(V ) is the size of a minimal spanning set for V

- Linear space: V ✓ Rn
such that x1, x2 2 V ) ✓1x1 + ✓2x2 2 V, 8✓1, ✓2 2 R;

contains linear combination of any two points in the set

- Linear span: span(C) =

(
kX

i=1

✓ixi

�����k 2 Z+, xi 2 C, ✓i 2 R

)
;

contains all linear combinations of points in C;

smallest linear space that contains C

- Example: V = {x|Ax = 0}, A 2 Rm⇥n
;

[what about {x|Ax = b}?]
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Affine Set 
- Line through x1, x2: all points x = ✓x1 + (1� ✓)x2, ✓ 2 R

- A�ne set: contains the line through any two points in the set

- A�ne hull: a↵(C) =

(
kX

i=1

✓ixi

�����k 2 Z+, xi 2 C,

kX

i=1

✓i = 1

)
;

smallest a�ne set that contains C

- Dimension: V = C � x0, 8x0 2 C is a subspace; dim(C) = dim(V )

- Example: C = {x|Ax = b}, A 2 Rm⇥n
, b 2 Rm

;

Subspace associated with C is the null space of A;

Conversely, every a�ne set can be expressed as solution set of linear equations
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Convex Set 

- Line segment between x1 and x2: all points x = ✓x1 + (1� ✓)x2, ✓ 2 [0, 1]

- Convex set: contains line segment between any two points in the set ;

x1, x2 2 C ) ✓x1 + (1� ✓)x2 2 C, 8✓ 2 [0, 1]

- Convex hull conv(C): set of all convex combinations of points in C
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Convex Cone 
- Convex cone: contains conic combination of any two points in the set;

x1, x2 2 C ) ✓1x1 + ✓2x2 2 C, 8✓1, ✓2 � 0

- Conic hull cone(C): set of all conic combinations of points in C
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Summary 

- Linear combination; linear space; linear span

- A�ne combination; a�ne set; a�ne hull

- Convex combination; convex set; convex hull

- Conic combination; convex cone; conic hull

- span(C) ◆ a↵(C), cone(C) ◆ conv(C)

- Subspace ) a�ne set, convex cone ) convex set
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Some Simple Examples 

- empty set ;, singleton {x0}, and the whole space Rn are a�ne (therefore
convex); empty set ; and singleton {x0} are NOT subspace though
- Any line is a�ne and hence convex; if it passes through zero, then it is also
subspace and hence convex cone
- Any line segment is convex, but not a�ne, not cone, not subspace
- A ray {x0 + ✓v|✓ � 0} is convex, but not a�ne, not subspace; it becomes a
convex cone if x0 = 0
- Any subspace is a�ne and convex cone, and hence convex
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Hyperplanes and Halfspaces 

- Hyperplane: {x|aTx = b}, a 6= 0; halfspace: {x|aTx  b}, a 6= 0
- Hyperplanes are a�ne and convex; halfspaces are convex

a

T
x = 0

a

T
x = b

b

kak
2
a

a

T
x � b

a

T
x  b

a
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Euclidean Balls and Ellipsoids 

- (Euclidean) ball: B(xc, r) = {x|kx� xck2  r} or xc + rB(0, 1)

- Ellipsoid: E = xc +AB(0, 1), A = P

1/2
, P � 0;

E = {x|(x� xc)
T
P

�1
(x� xc)  1}
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Norm Balls and Norm Cones 

- Norm: a function k · k that satisfies

� kxk � 0; kxk = 0 i↵ x = 0

� ktxk = |t|kxk, 8t 2 R

� kx+ yk  kxk+ kyk

Notation: k · k: general (unspecified) norm
k · ksymb: particular norm

- Norm ball: {x|kx� xck  c}

- Norm cone: {(x, t) | kxk  t} ✓ Rn+1

Euclidean norm cone is called second-order cone

- Norm balls and norm cones are convex
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Polyhedra 

- Polyhedron: solution set of a finite number of linear equalities and inequalities;

P = {x | aTj x  bj , j 2 [1 : m], c

T
j x = dj , j 2 [1 : p]};

P = {x | Ax � b, Cx = d}, A 2 Rm⇥n
, C 2 Rp⇥n

- Polyhedron is intersection of finite number of halfspaces and hyperplanes

- Also called polytope if bounded
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Positive Semidefinite Cone 

- set of symmetric matrices, i.e. Sn
= {X 2 Rn⇥n | XT

= X}

– X 2 Sn
+ , zTXz � 0, 8z

– Sn
+ is convex cone

- set of symmetric positive semidefinite matrices: Sn
+ = {X 2 Sn | X ⌫ 0}

- set of symmetric positive definite matrices: Sn
++ = {X 2 Sn | X � 0}

– Sn
++ is convex but not convex cone
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A Calculus of Convex Sets 

- Apply definition: x1, x2 2 C ) ✓x1 + (1� ✓)x2 2 C

- Show that C is obtained from simple convex sets (hyperplanes, half spaces,

norm balls, etc) by operations that preserve convexity

– intersection

– a�ne functions

– perspective function

– linear-fractional functions

Practical methods for establishing convexity of set C:
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Intersection 

- positive semidefinite cone Sn
+ = \z 6=0{A 2 Sn|zTAz � 0}; the intersection of

an infinite number of halfspaces in Sn

Intersection of (any number of) convex sets is convex

- polyhedron is the intersection of halfspaces and hyperplanes, and hence convex

- conversely, every closed convex set is the intersection of halfspaces

– in particular, every closed convex set C is the intersection of all halfspaces

that contain C
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Affine Functions 

If S is convex and f is a�ne, then f(S) and f�1
(S) are a�ne

- scaling ↵S, translation a+ S, projection T = {x1|(x1, x2) 2 S}

- solution set of linear matrix inequality {x|x1A1 + x2A2 + · · · + xnAn � B}
where B,Ai 2 Sm

, x 2 Rn
; it is the inverse image of the positive semidefinite

cone under the a�ne function f : Rn ! Sm
given by f(x) = B �A(x)

- sum of sets S1+S2 is convex if S1, S2 are convex; follows by applying f(x1, x2) =

x1 + x2 to product set S1 ⇥ S2

- ellipsoid E = {x|(x � xc)
T
P

�1
(x � xc)  1} is convex; it is the image of

B(0, 1) = {u|uT
u  1} under the a�ne mapping f(u) = P

1/2
u + xc; it is also

the inverse image of B(0, 1) under the a�ne mapping g(x) = P

�1/2
(x� xc)

- polyhedron P = {x|Ax � b, Cx = d} is the inverse image of Rm
+ ⇥ {0} under

the a�ne mapping f(x) = (b�Ax, d� Cx); i.e., P = {x|f(x) 2 Rm
+ ⇥ {0}}

Function f : Rn ! Rm
is a�ne if f(x) = Ax+ b, A 2 Rm⇥n

, b 2 Rm
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Perspective and Linear-Fractional Functions 

images and inverse images of convex sets under perspective are convex

f(x) =
Ax+ b

c

T
x+ d

, dom f = {x|cTx+ d > 0}

images and inverse images of convex sets under linear-fractional are convex

- perspective function P : Rn+1 ! Rn

- linear-fractional function f : Rn ! Rm

- Example: Suppose u and v are random variables that take on values in [1 : m]

and [1 : n] respectively. Let Pu,v = {pu,v(i, j)}(i,j)2[1:m]⇥[1:n] and let Pu|v=j =

{pu|v(i|j)}i2[1:m] for any j 2 [1 : n]. Note that pu|v(i|j) =

pu,v(i,j)Pm
i=1 pu,v(i,j)

, i.e.

Pu|v=j is obtained by a linear-fractional mapping from Pu,v. Therefore, if C is

a convex set of joint distributions for (u, v), then the set of conditional distri-

butions of u given v = j for any j is also convex.

P (x, t) = x/t, dom P = {(x, t)|t > 0}
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Generalized Inequalities 

A convex cone K ✓ Rn
is a proper cone if

- K is closed (contains its boundary)

- K is solid (has nonempty interior)

- K is pointed (contains no line)

- nonnegative orthant K = Rn
+ = {x 2 Rn|xi � 0, i = 1, . . . , n}

- positive semidefinite cone K = Sn
+

Examples:

Generalized inequality defined by proper cone K:

x �K y , y � x 2 K, x �K y , y � x 2 int K

Examples:

- componentwise inequality: x �Rn
+
y , xi  yi, 8i

- matrix inequality: X �Sn
+
Y , Y �X positive semidefinite

Many properties of �K are similar to  on R

- e.g., x �K y, u �K v ) x+ u �K y + v
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Minimum and Minimal Elements 

Generally �K is not a linear ordering: may have neither x �K y nor y �K x

- if a set has a minimum element, then it is unique

x 2 S is the minimum element of S w.r.t. �K if x �K y, 8y 2 S, or equivalently,

S ✓ x+K

x 2 S is the minimal element of S w.r.t. �K if there does not exist y 2 S, y 6= x

such that y �K x, or equivalently, (x�K) \ S = {x}

- a set can have many di↵erent minimal elements
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Separating Hyperplane Theorem 

If C and D are nonempty disjoint convex sets, then there exists a 6= 0, b such

that a

T
x  b for x 2 C and a

T
x � b for x 2 D. The hyperplane {x|aTx = b} is

called a separating hyperplane for the sets C and D.
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Supporting Hyperplane Theorem 

Any hyperplane {x|aTx = a

T
x0} with a 6= 0 such that a

T
x  a

T
x0 for all x 2 C

is called a supporting hyperplane to set C at boundary point x0.

Supporting Hyperplane Theorem: If C is convex, then there exists a supporting
hyperplane at every boundary point of C.
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Dual Cone 

Dual cone of a cone K: K

⇤
= {y|yTx � 0, 8x 2 K}

First three examples are self-dual cones

Dual cones of proper cones are proper, hence define generalized inequalities:

y ⌫K⇤ 0 , y

T
x � 0 8x 2 K

Examples:

- K = Rn
+,K

⇤ = Rn
+

- K = Sn
+,K

⇤ = Sn
+

- K = {(x, t) | kxk2  t},K⇤ = {(x, t) | kxk2  t}
- K = {(x, t) | kxk1  t},K⇤ = {(x, t) | kxk1  t}
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Minimum and Minimal Elements via Dual Inequalities 

minimum element w.r.t. �K : x is minimum element of S i↵ for all � �K⇤
0, x

is the unique minimizer of �

T
z over S

minimal elements w.r.t. �K :

- if x minimizes �

T
z over S for some � �K⇤

0 then x is minimal

- if x is minimal element of a convex set S, then there exists a nonzero � ⌫K⇤
0

such that x minimizes �

T
z over S
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Efficient Production Frontier 

- di↵erent production methods use di↵erent amounts of resources x 2 Rn

- production set P : resource vectors x for all possible production methods

- e�cient (pareto optimal) methods correspond to resource vectors x that are

minimal w.r.t. Rn
+

Example (n = 2):

- x1, x2, x3 are e�cient

- x4, x5 are not e�cient

- x1 minimizes �

T
z over P for the shown � 2 R2

++

- x2 is e�cient but cannot be found by minimizing

�

T
z for some � 2 R2

++

- �i can be interpreted as the price of resource i

Consider manufacturing a product with n resources:


