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Recap: Convex Optimization Problems

minimize fo(x)
subject to fi(x) <b;, i=1,2,....m

where objective and constraint functions are convex

- We can broadly understand and solve convex optimization problems
- In contrast, non-convex problems are mostly treated on a case-by-case basis
- Special property of convex problems: any local minimizer is a global minimizer
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Linear, Affine, Convex and Conic Combination

k
- Linear combination: Z 0;x;, where 6; € R
i=1

k k
- Affine combination: Z 0;x;, where 0, € R, Z 0, =1

k k
- Convex combination: Z 0;x;, where 0, € R, Z 0, =1,0;, >0

k
- Conic combination: Z 0;x;, where 6, € R,0;, >0
i=1



Linear Space

- Linear space: V C R" such that z1,20 € V = 0121 + 0325 € V,V01,05 € R;

contains linear combination of any two points in the set

k
- Linear span: span(C) = {Z 0;x;

1=1

kel x;eC, 0, eR};

contains all linear combinations of points in C;

smallest linear space that contains C

- Dimension: dim(V) is the size of a minimal spanning set for V

- Example: V = {z|Az =0}, A € R™*";
[what about {x|Az = b}7]



Affine Set

- Line through x1, x5: all points x = 0z, + (1 — 0)x2,0 € R

- Affine set: contains the line through any two points in the set

k
kel x; EC,Z@ 1},
1=1

smallest affine set that contains C

k
- Affine hull: aff(C) = {Z 0;x;
i=1

- Dimension: V = C — xg,Vzo € C is a subspace; dim(C) = dim(V)

- Example: C = {z|Ax =b},A e R™*" b e R™;
Subspace associated with C' is the null space of A;

Conversely, every affine set can be expressed as solution set of linear equations
7



Convex Set
- Line segment between x; and xo: all points z = 0z1 + (1 — 0)xo,0 € [0, 1]

- Convex set: contains line segment between any two points in the set ;
x1,29 € C = 0x1+ (1 —0)x, € C,V0 € [0, 1]

- Convex hull conv(C): set of all convex combinations of points in C

Lo (e



Convex Cone

- Convex cone: contains conic combination of any two points in the set;
r1,To € C = 0121 + 0329 € C,\Vlel,eg >0

T

T2

- Conic hull cone(C): set of all conic combinations of points in C




Summary

- Linear combination; linear space; linear span
- Affine combination; affine set; affine hull

- Convex combination; convex set; convex hull
- Conic combination; convex cone; conic hull

- span(C) D aff(C'), cone(C') 2 conv((C)

- Subspace = affine set, convex cone = convex set

10
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* Important Examples of Convex Sets

11



Some Simple Examples

- empty set (), singleton {xg}, and the whole space R™ are affine (therefore
convex); empty set () and singleton {xy} are NOT subspace though

- Any line is affine and hence convex; if it passes through zero, then it is also
subspace and hence convex cone

- Any line segment is convex, but not affine, not cone, not subspace

- A ray {xo + 0v|6 > 0} is convex, but not affine, not subspace; it becomes a
convex cone if xg =0

- Any subspace is affine and convex cone, and hence convex
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Hyperplanes and Halfspaces

- Hyperplane: {z|a’z = b}, a # 0; halfspace: {x|a’z < b},a #0
- Hyperplanes are affine and convex; halfspaces are convex
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Euclidean Balls and Ellipsoids

- (Euclidean) ball: B(x.,r) = {z|||x — z.||]2 < r} or x. +rB(0,1)

- Ellipsoid: € = 2.+ AB(0,1),A = P2 P » 0;
E = {z|(x — :EC)TP_l(x —x.) <1}
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Norm Balls and Norm Cones

- Norm: a function || - || that satisfies Notation: || - ||: general (unspecified) norm
—|lz]| > 0; ||z]| =0 iff x =0 | - |symb: particular norm
= [ltx]] = [¢]l[=]], vt € R
= [lz 4+ yll < llzll + Iyl

- Norm ball: {z|||z — z.|| < ¢}

- Norm cone: {(z,t) | [|z]] <t} € R

Fuclidean norm cone is called second-order cone

- Norm balls and norm cones are convex
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Polyhedra

- Polyhedron: solution set of a finite number of linear equalities and inequalities;

P={z|ajz<bjjel:mlcjz=djje(l:p};

P={z| Az <b,Cx =d}, A € R™*",C € RP*"

a
1 as

as

as

- Polyhedron is intersection of finite number of halfspaces and hyperplanes

- Also called polytope if bounded
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Positive Semidefinite Cone

- set of symmetric matrices, i.e. S* = {X € R"*" | XT = X}

- set of symmetric positive semidefinite matrices: 8% = {X € S" | X = 0}
- X €St 2T X2 >0,Vz
— 8" is convex cone

- set of symmetric positive definite matrices: ST, = {X € 8" | X > 0}

— S?F n is convex but not convex cone
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* Operations that Preserve Convexity
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A Calculus of Convex Sets

Practical methods for establishing convexity of set C"

- Apply definition: z1,20 € C = 0zx1 + (1 — 0)xy € C

- Show that C' is obtained from simple convex sets (hyperplanes, half spaces,
norm balls, etc) by operations that preserve convexity

— intersection

— affine functions

— perspective function

— linear-fractional functions
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Intersection

Intersection of (any number of) convex sets is convex

- polyhedron is the intersection of halfspaces and hyperplanes, and hence convex

- positive semidefinite cone 8" = N,.o{A € S™|z1 Az > 0}; the intersection of
an infinite number of halfspaces in S™

- conversely, every closed convex set is the intersection of halfspaces

— in particular, every closed convex set C' is the intersection of all halfspaces
that contain C
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Affine Functions

Function f: R™ — R™ is affine if f(z) = Az +b,A € R™*" be R™
If S is convex and f is affine, then f(S) and f~1(S) are affine
- scaling a.S, translation a + S, projection T' = {x1|(z1,22) € S}

- sum of sets S1+955 is convex if Sp, So are convex; follows by applying f(z1,z2) =
x1 + T2 to product set S1 x 5o

- solution set of linear matrix inequality {z|z;A; + z2A45 + -+ + 2,4, <X B}
where B, A; € S™, x € R"; it is the inverse image of the positive semidefinite
cone under the affine function f: R™ — S™ given by f(x) = B — A(x)

- polyhedron P = {z|Az < b,Cx = d} is the inverse image of R’ x {0} under
the affine mapping f(z) = (b — Az, d — Cx); ie., P = {z[f(xz) € R x {0}}

- ellipsoid & = {z|(x — z.)T P~ Y(x — z.) < 1} is convex; it is the image of

B(0,1) = {uluTu < 1} under the affine mapping f(u) = PY/2u + z.; it is also
the inverse image of B(0,1) under the affine mapping g(z) = P~Y?(z — x.)
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Perspective and Linear-Fractional Functions

- perspective function P : R**! — R"
P(x,t) =x/t, dom P = {(x,t)|t > 0}

images and inverse images of convex sets under perspective are convex

- linear-fractional function f : R — R™
Az +0b
f(ilf) T CTCC n d7

images and inverse images of convex sets under linear-fractional are convex

dom f = {z|c'z +d > 0}

- Example: Suppose u and v are random variables that take on values in [1 : m]
and |1 : n] respectively. Let P, = {Pu,0(% 7)}(i,j)e[1:m]x[1:n] and let Pyjy—; =

{Pujo(i]g) Yiepiim) for any j € [1 : n]. Note that py,(i|j) = Zﬁfj;g :7()%]), i.e.
P,jy=; is obtained by a linear-fractional mapping from P, ,. Therefore, if C is
a convex set of joint distributions for (u,v), then the set of conditional distri-

butions of u given v = j for any j is also convex.
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* Generalized Inequalities
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Generalized Inequalities

A convex cone K C R" is a proper cone if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

Examples:
- nonnegative orthant K = R = {x ¢ R"|z; > 0,1 =1,...,n}
- positive semidefinite cone K = S”

Generalized inequality defined by proper cone K:
rgyesy—rekK, r<gy<ey—xrecint K

Examples:
- componentwise inequality: x jRi y < x; <y, Vi
- matrix inequality: X =sn Y & Y — X positive semidefinite

Many properties of <x are similar to < on R

-eLL, T K YUK V=T +UKY+U
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Minimum and Minimal Elements

Generally <g is not a linear ordering: may have neither x <x y nor y < «

x € S is the minimum element of S w.r.t. <g if x <g y,Vy € S, or equivalently,
SCrx+ K

- if a set has a minimum element, then it is unique
x € S is the minimal element of S w.r.t. < if there does not exist y € S,y # «x

such that y < x, or equivalently, (x — K) NS = {x}

- a set can have many different minimal elements

L2
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* Separating and Supporting Hyperplanes
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Separating Hyperplane Theorem

If C' and D are nonempty disjoint convex sets, then there exists a % 0,b such
that alz < b for x € C and a’x > b for x € D. The hyperplane {x|alz = b} is
called a separating hyperplane for the sets C' and D.

27



Supporting Hyperplane Theorem

Any hyperplane {z|a?z = al'zg} with a # 0 such that e’z < al'zg forallz € C
is called a supporting hyperplane to set C' at boundary point x.

Supporting Hyperplane Theorem: If C is convex, then there exists a supporting
hyperplane at every boundary point of C.

28
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* Dual Cone and Generalized Inequalities
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Dual Cone

Dual cone of a cone K: K* = {ylylx > 0,Vz € K}

Examples:
- K =R}, K*"=RE}
- K =87, K*=8"
- K =A{(z,0) | [[z]lz < t}, K" ={(x,1) | ||lz][2 < ¢}
- K =A{(z,0) | ||zl <t), K ={(z,t) | [|[2]ec <t}

First three examples are self-dual cones

Dual cones of proper cones are proper, hence define generalized inequalities:

y g0 ylz>0vVre K
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Minimum and Minimal Elements via Dual Inequalities

minimum element w.r.t. <g: x is minimum element of S iff for all A =g+ 0, x
is the unique minimizer of A’ z over S

minimal elements w.r.t. <g:

- if £ minimizes ATz over S for some \ =g+ 0 then x is minimal

- if x is minimal element of a convex set S, then there exists a nonzero A > g« 0
such that & minimizes \' z over S

L1

X2
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Efficient Production Frontier

Consider manufacturing a product with n resources:

- different production methods use different amounts of resources x € R"

- production set P: resource vectors x for all possible production methods

- efficient (pareto optimal) methods correspond to resource vectors x that are
minimal w.r.t. R’}

fuel
Example (n = 2):

- T1, T2, x3 are efficient

- x4, x5 are not efficient

- 21 minimizes \! z over P for the shown \ € Ri n
- x5 is efficient but cannot be found by minimizing
Az for some )\ € R?H

- \; can be interpreted as the price of resource ¢

labor
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