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What 1s convex optimization and why is 1t important?



Mathematical Optimization

Optimization problem:

minimize fy(x)
subject to fi(z) <b;, 1 =1,2,...,m

-x = (x1,x2,...,T,): optimization variables
- fo : R — R: objective function

- fi R > R,72=1,...,m: constraint functions

(optimal) solution z* has smallest value of fy among all vectors
that satisfy the constraints



Optimization in Machine Learning

The common theme of ML is a prediction problem:

- Assume that (X,Y) ~ P, where X € X is called the feature and Y € ) is
called the label (or target)

A

- Design a predictor h that takes X as input and outputs Y = h(X)

X Y = h(X)
> Predictor h >

- Performance measure: The risk associated with predictor h under distribution
P is defined as L(h, P) = Ep[¢(Y,h(X))], where £ : Y x Y — R, is referred to
as the loss function

- Objective: minimize L(h, P) over all possible h



Optimization in Machine Learning

Machine Learning—a data-driven approach

Learning:
) 7 k
{(X( WY ))}i:1> Learner fow € 71 >
Prediction: )
X > Predictor h, Y = hw (X) >

Empirical Risk Minimization: .
1 | .
imize — (4) (4)
minimize - ; (Y hoy ()
subject to w € H

- the objective function is called the empirical risk and can be written as
L(hy, Py), where Py denotes the empirical distribution

- w € H is the constraint for w; e.g., |w|| < B



Solving Optimization Problems

General optimization problem
- can be very difficult to solve

- methods involve some compromise, e.g., very long computation time, or not
always finding the solution

Exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems

- convex optimization problems



Least-Squares

minimize || Az — b3

solving least-squares problems

analytical solution: x* = (AT A)~1 AT

reliable and efficient algorithms and software

computation time proportional to n?k (A € R¥*™); less if structured

a mature technology

using least-squares

- least-squares problems are easy to recognize

- a few standard techniques increase flexibility (e.g., including weights, adding
regularization terms)



Convex Optimization Problems

minimize fo(x)
subject to fi(x) <b;, i=1,2,....m

- objective and constraint functions are convex:
fi(0z + (1 = 0)y) < 0fi(x) + (1 —0)fi(y)

for all z,y and 0 € [0, 1]

- includes least-squares problem as special case



Convex Optimization Problems

solving convex optimization problems

no analytical solution

reliable and efficient algorithms
polynomial computation time
almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization
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(More) Reasons to Learn Convex Optimization

- Different algorithms can perform better or worse on different problems

- Analyzing via the optimization approach can add insight into the original underlying statistical
problem (e.g., recall the waterfilling algorithm for power allocation in information theory)

- Knowledge of optimization can help you formulate problems that are more interesting/useful/
easier to solve

- Knowledge of convex optimization may be extended to dealing with non-convex problems
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What can we expect to learn from this course?
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Course Goal

The goal of this course is to help you to develop the skills and
background needed to recognize, formulate and solve convex
optimization problems.

Course structure:

« Part I: Foundation

* Part II: Applications
* Part III: Algorithms
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Part I: Foundation

Involve working knowledge of

* Real analysis, calculus, linear algebra

Topics include:

* (Convex sets

* Convex functions

* Convex optimization problems

* Duality



Part II: Applications

Involve working knowledge of

e Problems in machine learning and statistics

Topics include:
* Approximation and fitting
* Statistical estimation



Part I1I: Algorithms

Involve working knowledge of

* Data structure, computational complexity, programming (R,
Python, Matlab)

Topics include:
* Unconstrained minimization
* Equality constrained minimization

* Interior-point methods



Logistics
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Lecture and Office Hour

Lecture

- TR 9:30-10:45 AM
- Colburn Lab 109

Office hour
-TR 11:00-12:00 AM

- Evans 314

Course website

https://www.eecis.udel.edu/~xwu/class/ELEG667/
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Prerequisite

* Undergraduate-level linear algebra, calculus, and probability theory;
mathematical maturity in general

* Previous exposure to optimization is preferred but not mandatory



Stephen Boyd and
Lieven Vandenberghe

~ convex
Optimization

Textbook

* Free pdf version online

 Lecture slides on course website
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Numerical
Optimization

References

Foundations ond Trends® in
Machine Leaming
834

Both free to download
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Grading

e Attendance: 10 points

- Six random sign-in’s (after the class 1s stabilized)

- Two points for each attendance (5 out of 6 gives you max 10 pts)

 Homework: 40 points
- Three in total, one for each part

- Due in 1-2 weeks after being posted

* Final: 50 points + 10 bonus points

- Closed book with one letter-size aid-sheet allowed
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Questions?
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