ELEG 667 Convex Optimization

Xiugang Wu

Dept of Electrical & Computer Engineering https://www.eecis.udel.edu/~xwu

Aug 27, 2019

Agenda

- What is (convex) optimization and why is it important?
- What can we expect to learn from this course?
- Logistics

What is convex optimization and why is it important?

Mathematical Optimization

Optimization problem:

minimize $f_0(x)$ subject to $f_i(x) \le b_i, \ i = 1, 2, \dots, m$

-
$$x = (x_1, x_2, \dots, x_n)$$
: optimization variables

-
$$f_0: \mathbf{R}^n \to \mathbf{R}$$
: objective function

-
$$f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$$
: constraint functions

(optimal) solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Optimization in Machine Learning

The common theme of ML is a prediction problem:

- Assume that $(X, Y) \sim P$, where $X \in \mathcal{X}$ is called the feature and $Y \in \mathcal{Y}$ is called the label (or target)

- Design a predictor h that takes X as input and outputs $\hat{Y} = h(X)$

$$X \longrightarrow \text{Predictor } h \xrightarrow{\hat{Y} = h(X)}$$

- Performance measure: The risk associated with predictor h under distribution P is defined as $L(h, P) = \mathbb{E}_{P}[\ell(Y, h(X))]$, where $\ell : \mathcal{Y} \times \hat{\mathcal{Y}} \to \mathbb{R}_{+}$ is referred to as the loss function

- Objective: minimize L(h, P) over all possible h

Optimization in Machine Learning

Machine Learning—a data-driven approach

Empirical Risk Minimization:

minimize
$$\frac{1}{k} \sum_{i=1}^{k} \ell(y^{(i)}, h_w(x^{(i)}))$$

subject to $w \in \mathcal{H}$

- the objective function is called the empirical risk and can be written as $L(h_w, P_k)$, where P_k denotes the empirical distribution - $w \in \mathcal{H}$ is the constraint for w; e.g., $||w|| \leq B$

Solving Optimization Problems

General optimization problem

- can be very difficult to solve

- methods involve some compromise, e.g., very long computation time, or not always finding the solution

Exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- convex optimization problems

Least-Squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k $(A \in \mathbf{R}^{k \times n})$; less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize

- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Convex Optimization Problems

minimize $f_0(x)$ subject to $f_i(x) \le b_i, \ i = 1, 2, \dots, m$

- objective and constraint functions are convex:

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

for all x, y and $\theta \in [0, 1]$

- includes least-squares problem as special case

Convex Optimization Problems

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- polynomial computation time
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

(More) Reasons to Learn Convex Optimization

- Different algorithms can perform better or worse on different problems

- Analyzing via the optimization approach can add insight into the original underlying statistical problem (e.g., recall the waterfilling algorithm for power allocation in information theory)
- Knowledge of optimization can help you formulate problems that are more interesting/useful/ easier to solve

- Knowledge of convex optimization may be extended to dealing with non-convex problems

What can we expect to learn from this course?

Course Goal

The goal of this course is to help you to develop the skills and background needed to recognize, formulate and solve convex optimization problems.

Course structure:

- Part I: Foundation
- Part II: Applications
- Part III: Algorithms

Part I: Foundation

Involve working knowledge of

• Real analysis, calculus, linear algebra

Topics include:

- Convex sets
- Convex functions
- Convex optimization problems
- Duality

Part II: Applications

Involve working knowledge of

• Problems in machine learning and statistics

Topics include:

- Approximation and fitting
- Statistical estimation

Part III: Algorithms

Involve working knowledge of

• Data structure, computational complexity, programming (R, Python, Matlab)

Topics include:

- Unconstrained minimization
- Equality constrained minimization
- Interior-point methods

Logistics

Lecture and Office Hour

• Lecture

- TR 9:30-10:45 AM
- Colburn Lab 109
- Office hour
 - TR 11:00-12:00 AM
 - Evans 314
- Course website

https://www.eecis.udel.edu/~xwu/class/ELEG667/

Prerequisite

- Undergraduate-level linear algebra, calculus, and probability theory; mathematical maturity in general
- Previous exposure to optimization is preferred but not mandatory

Textbook

Stephen Boyd and Lieven Vandenberghe

Convex Optimization

- Free pdf version online
- Lecture slides on course website

CAMBRIDGE

References

Foundations and Trends[®] in Machine Learning 8:3-4

> Convex Optimization Algorithms and Complexity

> > Sébastien Bubeck

Both free to download

new

the essence of knouledge

Grading

- Attendance: 10 points
 - Six random sign-in's (after the class is stabilized)
 - Two points for each attendance (5 out of 6 gives you max 10 pts)
- Homework: 40 points
 - Three in total, one for each part
 - Due in 1-2 weeks after being posted
- Final: 50 points + 10 bonus points

- Closed book with one letter-size aid-sheet allowed

Questions?