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A Simplified Learning Model

Learning: 

Prediction: 

   

X
  

{(Xi, Yi)}ni=1
Learner

h

h
Ŷ = h(X)

Learner’s Input. The learner has access to the following:

• Domain set: An arbitrary set, denoted by X , which contains all the pos-
sible inputs. Usually, a domain point (or an instance) x is represented by
a vector of features.

• Label set: The set of possible outputs, denoted by Y. For our current
discussion, we restrict the label set to be Y = {0, 1}.

• Training data: The training data {(Xi, Yi)}ni=1 is a finite sequence of (do-
main point, label) pairs in the product set X ⇥ Y. For notational con-
venience, we also write X ⇥ Y as Z, and denote the training data by
Zn = {(Xi, Yi)}ni=1.
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A Simplified Learning Model

Learning: 

Prediction: 

   

X
  

{(Xi, Yi)}ni=1
Learner

h

h
Ŷ = h(X)

Learner’s Output. The learner outputs a prediction rule h : X ! Y. This
function h is also called a predictor, a hypothesis, or a classifier.
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A Simplified Learning Model

Learning: 

Prediction: 

   

X
  

{(Xi, Yi)}ni=1
Learner

h

h
Ŷ = h(X)

Note that both P and f are unknown to the learner — in fact, f is exactly
what the learner is trying to figure out and for this reason we will also call f
the target function.

Data-Generation Mechanism.

• Training data: First, instances {Xi}ni=1 are i.i.d. generated according to
some probability distribution P over X . Then, each instance Xi is labeled
according to some labelling function f so that Yi = f(Xi).

• Test data: The test data point X is generated independently of the train-
ing data Zn, according to the same distribution P .
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A Simplified Learning Model

Learning: 

Prediction: 

   

X
  

{(Xi, Yi)}ni=1
Learner

h

h
Ŷ = h(X)

Performance Measure of a Classifier. The probability of error associated
with classifier h is given by

L(h, P, f) , PX⇠P (h(X) 6= f(X)) = P ({x : h(x) 6= f(x)}).

We will call L(h, P, f) the true error (the true risk, or the test error, interchange-
ably throughout this course) associated with a classifier h under the distribution
P and target labelling function f .
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Empirical Risk Minimization

The goal of the learner is to find hZn that achieves small error L(hZn , P, f).

The learner cannot directly calculate the true error L(h, P, f), but can evaluate
the training error L(h, Zn) defined as

L(h, Zn) =
|{i 2 [1 : n] : h(Xi) 6= Yi}|

n
.

Note that this training error is in fact the error L(h, Pn, fn) where

Pn(X = x) , |{i 2 [1 : n] : Xi = x}|
n

fn(x) ,
(
Yi if 9i 2 [1 : n] s.t. Xi = x

0 otherwise
.

The learning paradigm of coming up with a predictor h that minimizes the
empirical risk L(h, Zn), is called Empirical Risk Minimization or simply ERM.
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Problem with ERM

Although the ERM approach seems very natural, without being careful, it may
fail miserably.

• For example, think of the predictor fn. Clearly, no matter what the

training sample is, fn results in a training error L(fn, Pn, fn) = 0 and

therefore fn may be chosen by an ERM algorithm

• However, such fn may perform very poorly on test data! (Can you think

of an example here?)

That said, ERM may lead to a predictor whose performance on the training set
is excellent, yet its performance in the true world is very poor. This phenomenon
is called overfitting.
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ERM with Inductive Bias

A solution to the above overfitting problem is to apply ERM learning rule over
a restricted search space. In particular, the learner should choose in advance
(before seeing the data) a set of predictors. This set is called a hypothesis class
and is denoted by H.

ERMH(Zn) 2 argmin
h2H

L(h, Zn).

• By restricting the learner to choosing a predictor from H, we bias it to-
ward a particular set of predictors. Such restrictions are often called an
inductive bias.

• Since the choice of such a restriction is determined before the learner sees
the training data, it should ideally be based on some prior knowledge
about the problem to be learned.

• Try to appreciate the formula: “Data + Prior Knowledge = Generaliza-
tion”, if you haven’t heard of it or haven’t realized its importance. We’ll
come back to this when introducing “no free lunch theorem”.
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ERM with Inductive Bias

A solution to the above overfitting problem is to apply ERM learning rule over
a restricted search space. In particular, the learner should choose in advance
(before seeing the data) a set of predictors. This set is called a hypothesis class
and is denoted by H.

ERMH(Zn) 2 argmin
h2H

L(h, Zn).

A fundamental question in learning theory is, over which hypothesis classes
ERMH learning will not result in overfitting. We will study this question later
in the course, in particular when we introduce the VC theory.

Also, intuitively, choosing a more restricted hypothesis class better protects us
against overfitting but at the same time might cause us a stronger inductive
bias. We will get back to this fundamental (so-called complexity-bias) tradeo↵
later as well.
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Finite Hypothesis Class: Realizable Case

In this lecture, we consider perhaps the simplest type of restriction on a hypoth-
esis class, i.e. imposing an upper bound on its size. We will show that if H is a
finite class then ERMH will not overfit if the training sample is su�ciently large.

Particularly, for now also assume that H satisfies the realizability assumption:
there exists h⇤

2 H such that L(h⇤, P, f) = 0. Note that the realizability
assumption implies that the training error L(hZn , Zn) using ERMH algorithm
always equals to 0.
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Formalize “Successful Learning”

Since the training set Zn is randomly generated, there is randomness in the
choice of hZn and hence the true risk L(hZn , P, f) is a random variable depend-
ing on the training set Zn. What we desire to show is that for su�ciently large
training sample, we can achieve

Pn(L(hZn , P, f)  ✏) � 1� �,

where ✏ is called the accuracy parameter and � is called the confidence parameter.

• First it is not realistic to hope to find “exactly” correct hZn such that

L(hZn , P, f) = 0.

• Even relaxing to “approximately” correct hZn such that L(hZn , P, f)  ✏,
it is not realistic to expect that with full certainty Zn will su�ce to direct
the learner toward a good classifier, as there is always some probability
that the sampled training data happens to be very non-representative of
the underlying P .
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Probability of Failure of ERM Learner

We interpret the event L(hZn , P, f) > ✏ as a failure of the learner, while if
L(hZn , P, f)  ✏ we view the output of the algorithm as an approximately cor-
rect predictor. We are interested in upper bounding the probability of en-
countering such training sample Zn that leads to failure of the learner, i.e.
Pn(L(hZn , P, f) > ✏).

For this, let HB be the set of bad hypothesis that incurs a high test error, i.e.,

HB = {h 2 H : L(h, P, f) > ✏}

= {h 2 H : P (h(X) 6= f(X)) > ✏}.

In addition, let M be the set of misleading training samples, under which there
is some bad hypothesis that looks like a good hypothesis, i.e.,

M = {zn : 9h 2 HB s.t. L(h, zn) = 0}

=
[

h2HB

{zn : L(h, zn) = 0}.
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Probability of Failure of ERM Learner

Note that the failure of ERM learner, i.e. the event L(hZn , P, f) � ✏, can only
happen if Zn falls into the set M of misleading samples. Therefore,

Pn(L(hZn , P, f) � ✏)  Pn(Zn
2 M)



X

h2HB

Pn(L(h, Zn) = 0).

Since L(h, Zn) = 0 i↵ h(Xi) = f(Xi), 8i 2 [1 : n], we have for any h 2 HB that

Pn(L(h, Zn) = 0) = Pn(h(Xi) = f(Xi), 8i 2 [1 : n])

=
nY

i=1

P (h(Xi) = f(Xi))

 (1� ✏)n.

Combining the above we have

Pn(L(hZn , P, f) � ✏)  |HB |(1� ✏)n  |H|e�n✏.
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Summary

Corollary: Let H be a finite hypothesis class. Let � 2 (0, 1) and ✏ > 0 and let n
be an integer that satisfies

n �
log(|H|/�)

✏
.

Then, for any labeling function f and distribution P , for which the realizability
assumption holds (that is, for some h 2 H, L(h, P, f) = 0), with probability of
at least 1�� over the choice of an i.i.d. sample Zn, we have that for every ERM
returned predictor, hZn , it holds that

L(hZn , P, f)  ✏.

The preceding corollary tells us that for a su�ciently large sample size n, the
ERMH rule over a finite hypothesis class will be probably (with confidence 1��)
approximately (up to an error of ✏) correct. Next we formally define the model
of Probably Approximately Correct (PAC) learning.
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PAC Learning Model

Label set. We now extend our model by relaxing the binary label set Y = {0, 1}
to be the set of real vectors or the set of multiple labels. This allow us to include
regression or multiclass classification problems. The generalized Y set is also
often referred to as the target set.

Learning: 

Prediction: 

   

X
  

{(Xi, Yi)}ni=1
Learner

h
Ŷ = h(X)

h 2 H
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PAC Learning Model

Data-Generation Mechanism. We will consider a joint distribution PXY ,

or simply P , over X ⇥ Y . One can view such a distribution as being composed

of two parts: a distribution PX over unlabeled domain points and a conditional

distribution over labels for each domain point, PY |X .

Learning: 

Prediction: 

   

X
  

{(Xi, Yi)}ni=1
Learner

h
Ŷ = h(X)

h 2 H
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PAC Learning Model

Performance Measure of a Predictor. We now introduce a general frame-
work of quantifying the performance of a predictor. Given a target set Y and a
reconstructed target set Ŷ, let ` be any function from Y ⇥ Ŷ to the set of non-
negative real numbers, ` : Y ⇥ Ŷ ! R+. Such functions are referred to as loss
functions as they are used to quantify how bad we feel about our reconstruction
ŷ once we find out the ground truth y. Define the risk L(h, P ) associated with
a predictor h under data-generating distribution P as the expected loss when
applying h to X, i.e.

L(h, P ) , E(X,Y )⇠P [`(Y, h(X))].

This risk is also called the true risk as it statistically measures the true per-
formance of predictor h on unseen data. In contrast, one can also consider the
empirical risk that the predictor h incurs over the training sample,

1

n

nX

i=1

`(yi, h(xi)).

It can be readily seen that the the empirical risk is simply the risk of h evaluated
under the empirical distribution Pn, i.e. L(h, Pn).
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Loss Functions

0-1 loss: The 0-1 loss, widely used in classification, is defined as

`0�1(y, ŷ) = 1� 1y(ŷ).

The risk of h under distribution P and loss function `0�1 is simply the proba-
bility of error,

EP [`0�1(Y, h(X))] = P (Y 6= h(X)).

Square loss: The square loss, also known as `2 loss or quadratic loss, is usually
used in the regression problem and is defined as

`sq(y, ŷ) = ky � ŷk2.

The risk of h under distribution P and loss function `sq is generally known as
the Mean Square Error (MSE),

EP [`sq(Y, h(X))] = EP [kY � h(X)k2].
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Loss Functions

Logarithmic loss: The logarithmic loss (or log loss in short), also known as
the cross entropy loss, is a loss function widely used in classification when the
reconstruction is “soft” and ŷ represents a distribution over Y,

`log(y, ŷ) = log
1

ŷ(y)
= H(1y, ŷ),

where H(p, q) is the cross entropy between two distributions p and q:

H(p, q) ,
X

y2Y
p(y) log

1

q(y)
.

The risk of h under distribution P and loss function `log is given by

EP [`log(Y, h(X))] = EP [� log [h(X)](Y )] = EPX [H(PY |X , h(X))].
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Bayes Predictor

Suppose that one knows the underlying distribution P . The predictor

f = argmin
h

L(h, P )

that minimizes the true risk is called the Bayes predictor, or Bayes estimator,
or Bayes decision rule, and its resultant risk

min
h

L(h, P )

is called the Bayes risk.

• 0-1 loss: Under the 0-1 loss, the Bayes predictor f is given by the well-
known maximum a posteriori (MAP) rule, i.e.,

f(x) = argmax
y2Y

pY |X(y|x),

with the Bayes risk

L(f, P ) = 1�
X

x2X
max
y2Y

pX,Y (x, y).
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Bayes Predictor

Suppose that one knows the underlying distribution P . The predictor

f = argmin
h

L(h, P )

that minimizes the true risk is called the Bayes predictor, or Bayes estimator,
or Bayes decision rule, and its resultant risk

min
h

L(h, P )

is called the Bayes risk.

• Square loss: Under the square loss, the Bayes predictor f is given by the
conditional expectation of Y given X = x, i.e.,

f(x) = EP [Y |X = x],

with the Bayes risk

L(f, P ) = EP [Var(Y |X)].
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Bayes Predictor

Suppose that one knows the underlying distribution P . The predictor

f = argmin
h

L(h, P )

that minimizes the true risk is called the Bayes predictor, or Bayes estimator,
or Bayes decision rule, and its resultant risk

min
h

L(h, P )

is called the Bayes risk.

• Log loss: Under the log loss, the Bayes predictor f is given by the condi-
tional distribution of Y given X = x, i.e.,

[f(x)](y) = pY |X(y|x),

with the Bayes risk being the conditional entropy of Y given X:

L(f, P ) = E(X,Y )⇠P [� log pY |X(Y |X)] = HP (Y |X).
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Bayes Predictor

Suppose that one knows the underlying distribution P . The predictor

f = argmin
h

L(h, P )

that minimizes the true risk is called the Bayes predictor, or Bayes estimator,
or Bayes decision rule, and its resultant risk

min
h

L(h, P )

is called the Bayes risk.

Unfortunately, since we do not know P , we cannot utilize the above Bayes
predictors to achieve the minimal possible error. Instead, what the learner does
have access to is the training sample. So we will choose some hypothesis class,
and require that the learner will, based on the training sample, find a predictor
whose error is not much larger than the best possible error achievable by any
hypothesis within the class.
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PAC Learnability

Definition (PAC Learnability): A hypothesis class H is PAC (Probably Approx-
imately Correct) learnable if there exist a function nH : (0, 1)⇥(0, 1) ! N and a
learning algorithm with the following property: For every ✏, � 2 (0, 1) and every
distribution P , if n � nH, then

PZn⇠Pn

✓
L(hZn , P )  min

h2H

L(h, P ) + ✏

◆
� 1� �.

• Accuracy and confidence parameters: The definition of PAC learnability
contains two approximation parameters mentioned before. The accuracy
parameter ✏ determines how far the output predictor can be from the opti-
mal one within the class (this corresponds to the “approximately correct”),
and the confidence parameter � indicates how likely the output predictor
is to meet that accuracy requirement (corresponds to the “probably” part
of “PAC”).
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PAC Learnability

Definition (PAC Learnability): A hypothesis class H is PAC (Probably Approx-
imately Correct) learnable if there exist a function nH : (0, 1)⇥(0, 1) ! N and a
learning algorithm with the following property: For every ✏, � 2 (0, 1) and every
distribution P , if n � nH, then

PZn⇠Pn

✓
L(hZn , P )  min

h2H

L(h, P ) + ✏

◆
� 1� �.

• Sample complexity: The function nH determines the sample complexity of
learning H, that is, how many examples at least are required to guarantee
a probably approximately correct solution. The sample complexity is a
function of the accuracy and confidence parameters. It also depends on
properties of the hypothesis class H — for example, we showed that for a
finite class satisfying the realizability assumption the sample complexity
depends on log of the size of H. In fact, using the above definition of
PAC learnability, one can rephrase that result as the following: Every
finite hypothesis class H satisfying the realizability assumption is PAC
learnable with sample complexity nH(✏, �)  log(|H|/�)

✏ .
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PAC Learnability

Definition (PAC Learnability): A hypothesis class H is PAC (Probably Approx-
imately Correct) learnable if there exist a function nH : (0, 1)⇥(0, 1) ! N and a
learning algorithm with the following property: For every ✏, � 2 (0, 1) and every
distribution P , if n � nH, then

PZn⇠Pn

✓
L(hZn , P )  min

h2H

L(h, P ) + ✏

◆
� 1� �.

• Agnostic PAC learning: This framework is also generally known as agnos-
tic PAC learning as it doesn’t assume realizability. We will often omit the
prefix “agnostic” in this course, in which case PAC learning refers to this
general agnostic case.
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Uniform Convergence Is Sufficient For Learnability

For ERM to work, it su�ces to ensure that the empirical risk of all hypothesis
in H are good approximations of their true risk.

Definition: A training sequence Zn is called ✏-representative if

8h 2 H, |L(h, Pn)� L(h, P )|  ✏.

Lemma: If Zn is ✏/2-representative, then the output hZn of ERMH(Zn) satisfies

L(hZn , P )  L(h⇤, P ) + ✏,

where we assume that h⇤ achieves the minimum risk within the class H.

Proof: L(hZn , P )  L(hZn , Pn) + ✏/2  L(h⇤, Pn) + ✏/2  L(h⇤, P ) + ✏/2 + ✏/2.
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Uniform Convergence Is Sufficient For Learnability

The last lemma implies that to ensure that ERM is a PAC learner, it su�ces to
show that with probability of at least 1��, Zn is ✏-representative. The uniform
convergence condition formalizes this requirement.

Definition (Uniform convergence): We say H has the uniform convergence prop-
erty if there exists a function nUC

H
: (0, 1)2 ! N such that for every ✏, � 2 (0, 1)

and P , if Zn
⇠ P with n � nUC

H
then with probability of at least 1 � �, Zn is

✏-representative.

Corollary: If H has the uniform convergence property with a function nUC
H

, then
the class is PAC learnable with sample complexity nH(✏, �)  nUC

H
(✏/2, �), and

in this case ERM is a successful PAC learner for H.
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Finite Classes Are Agnostic PAC Learnable

We now show that finite classes are agnostic PAC learnable by showing that

uniform convergence holds for any finite hypothesis class. For this, we first in-

troduce a measure concentration inequality due to Hoe↵ding, which quantifies

the gap between empirical averages and their expected value.

Lemma (Hoe↵ding’s Inequality): Let X1, X2, . . . , Xn be a sequence of indepen-

dent random variables and assume that for all i, E[Xi] = µ and P(Xi 2 [a, b]) =
1. Then, for any ✏ > 0,

P
 �����

1

n

nX

i=1

Xi � µ

����� � ✏

!
 2e

� 2n✏2

(b�a)2 .
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Finite Classes Are Agnostic PAC Learnable

Now consider the empirical risk of any h 2 H under training sample Zn
,

L(h, Pn) =
1

n

nX

i=1

`(Yi, h(Xi)),

where `(Yi, h(Xi)), i 2 [1 : n] are i.i.d. with mean L(h, P ) for any i 2 [1 : n].
Let us further assume that the range of ` is [0, 1]. Then applying Hoe↵ding’s

inequality to the sequence of `(Yi, h(Xi)), we obtain

Pn
(|L(h, Pn)� L(h, P )| � ✏)  2e�2n✏2 ,

and therefore

Pn
(9h 2 H, s.t. |L(h, Pn)� L(h, P )| � ✏)  2|H|e�2n✏2 .

This shows that if

n �
log(2|H|/�)

2✏2
,

then

Pn
(|L(h, Pn)� L(h, P )|  ✏, 8h 2 H) � 1� �,
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Summary

Corollary: Let H be a finite hypothesis class and ` be a loss function with range
[0, 1]. Then H enjoys the uniform convergence property with sample complexity

nUC
H

(✏, �) 
log(2|H|/�)

2✏2
.

Furthermore, the class is agnostically PAC learnable using the ERM algorithm
with sample complexity

nH(✏, �)  nUC
H

(✏/2, �) =
2 log(2|H|/�)

✏2
.


