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Random Variables

Frequently, we are mainly interested in some function of the outcome rather than
the outcome itself. These real-valued functions defined on the sample space are
known as random variables (RV’s).

Example: Toss three fair coins. Let Y denote the number of heads happening.
Then Y is a RV taking one of the values 0, 1, 2, 3 with respective probabilities:

P(Y =0) = P(TTT}) = |
P(Y =1) = P({TTH, THT, HTT}) = g
P(Y = 2) = P({HHT, HTH, THH}) = g
P(Y =3) = P({HHH}) = _

and



Random Variables

Example: Independent trials of flipping a coin with probability p of taking up
heads are continuously performed until a heads occurs. Let X denote the num-
ber of times the coin is flipped. Then X is a RV taking values on {1,2,3,4,...}.
We have

P(X = 1) = P({H}) = p
P(X =2)=P{TH}) =1 —-p)p
P(X =3) = P{TTH}) = (1 —p)°p
P(X =n)=P{TT---TH}) = (1 —p)" " 'p
and - -
— ) = _oyn—1 P _
Y P(X=n)=> (1-p)"'p 1) 1
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Discrete Random Variables

A RV that can take on at most a countable number of possible values is said to
be discrete.

For a discrete RV X, the probability mass function (PMF) of X, denoted by
px(a) or simply p(a), is defined as

Example: If X must assume one of the values x1, 3, x3, ..., then we have p(x;) >
0, for i =1,2,... and p(x) = 0 for all the other values of =, and

ZP(%) = 1.



Example

Example: Consider a RV Y with
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The PMF of Y can be demonstrated using the following diagram:
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Example

Problem: The PMF of a RV X is given by

cA”
p(x):?, x=20,1,2,...

where A is some positive number, and p(z) = 0 for other values. 1) Find the
value of ¢; 2) Find P(X =0) and P(X > 2).

Solution: 1) Since p(x) is a PMF, we have

I:Zp(a:)zzcx—'zczg:c@
r=1 ) r=1 )

=1
and therefore ¢ = e,
2)
P(X =0) = p(0) = 6_0?0 =
and
o0 2 A2~




Cumulative Distribution Function

The cumulative distribution function (CDF) of a discrete RV X, denoted by
Fx(a) or simply F(a), can be expressed in terms of PMF p(z) by

F(a) =) plx).

z<a
Later we will generalize CDF to continuous RV’s. Indeed, note that PMF only

exists for discrete RV’s, but CDF can be defined for any RV.

If Y is a discrete RV, then its CDF is a step function. For example, if Y has
PMF given by
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Cumulative Distribution Function
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F(y) is a right-continuous but not left-continuos function.
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Expected Value

If X is a discrete RV having a PMF p(z), then the expectation or expected
value of X is

For example, if the PMF of X is p(0) = p(1) = %, then
B[X] =0~ 41— 2
2 2 2
If the PMF of X is p(0) = 1,p(1) = 2, then
E[X] = ! +1 2_ 2
B 3 3

The concept of expectation is analogous to the physical concept of the center of
mass. Think of it in diagram!
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Example

Suppose X is the outcome when we roll a fair die. Then the expectation of X

E[X] :Zi-p(i): Zz:;

1=1 1=1

| =

Let an indicator variable for the event A be defined as

1 if A occurs
A p—

0 if A€ occurs

Then the expectation of I4 is

E[la] =1-p(1) +0-p(0) = P(A)

14
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Expectation of Function

Given a RV X with PMF p(x), we can also calculate the expectation of some
function g of X. In particular, we have

Elg(X)] = )Y gla) p()

z: p(x)>0

Corollary: If a,b are constant and X is a RV, then E[aX + b] = aE[X] + b.

Example: Suppose X has PMF given by p(0) = p(1) =

Elg(X)] = 9(0) - p(0) + (1) - p(1) = 5
In general, the expectation

B = S o p(a)

z: p(x)>0

is called the n-th moment of X. In particular, the expectation of X is also
called the first moment, or the mean of X.
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Variance

Two RV’s can have the same expectation, but behave (quite) differently in their
distributions. For example, consider RV’s Y and Z, where the pmf for Y is
py (1) = py(—=1) = 0.5 and the pmf for Z is pz(100) = pz(—100) = 0.5. Both
Y and Z have the same expectation, i.e. E[Y] = E[Z] = 0, but obviously they
have very different spread of distributions.

To measure the spread of the distribution of X, we will consider the average
squared deviation of X from its mean E[X]| = pu, and call this measure the

variance of X, i.e.,
Var(X) = B[(X — )2

The square root of Var(X) is called the standard deviation of X, i.e.,
SD(X) = v/ Var(X).
Fact: Note that we have
Var(X) = E[(X — u)?] = B[X? + p® — 2Xp] = B[X?] + pi* — 2p° = E[X?] — p/®.
Also, Var(aX + b) = a*Var(X) because

Var(aX +b) = E[(aX + b — E[aX +b])?] = E[a*(X — E[X])?] = a*Var(X).
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Example

For the previous example of Y and Z, we have

Var(Y) = E[Y?] — E[Y]* = E[Y?] = (—1)?- % + 1. % =1

and

1 1
Var(Z) = E[Z?%] — E[Z])? = E[Z?] = (-100)? - 5+ 1007 - 5 = 10000.

Another example: If X denotes the outcome of rolling a fair die, then E[X] = £
and

0 91
E[X?] =) i*p(i) = —
X = 30 =
and therefore

Var(X) = E[X?] - E[X]* = %1 B (5)2

_ 35
12
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Bernoulli and Binomial RV

Bernoulli RV (success and failure):

v _ 1 wop.p
0O wp.1—p

PMF: p(1) = p and p(0) =1 — p.
Expectation: E[X] = p. Second Moment: E[X?]| = p.

Variance: Var(X) = E[X?] — E[X]? = p — p*.

Binomial RV: Now suppose that we do n independent trials (each time being
success w.p. p and failure w.p. 1 —p). Let X represent the number of successes
in the n trials. Then X is said to be a binomial RV with parameter (n,p),
denoted by X ~ Binomial(n, p); in particular the case of (1,p) is Bernoulli.

PMEF: p(i) = ()p'(1—p)™ " where 0 < ¢ < n; the shape of PMF is interesting

Expectation: E[X]| = np. Variance: Var(X) = np(1 — p).

21
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Poisson and Geometric RV

Poisson RV: A RV X taking on one of the values 0,1,2,..., is said to be a
Poisson RV with parameter A > 0 if its PMF' is given by

)\z’
p(z’):e—’\,—',z’:O,l,Q,...
1.

The parameter A affects the shape of PMF for X ~ Poisson(\)

Expectation: E[X] = \. Second moment: E[X?] = \? + ).

Variance: Var(X) = A.

Geometric RV: Perform independent trials until a success occurs. The number
of times we do the trials is a Geometric RV.

PMF: p(i) = p(1 — p)'~!

Expectation: E[X] = %. Variance: Var(X) = 1p_2p :
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