Chapter 4: Random Variables

Xiugang Wu

University of Delaware

Spring, 2020

Outline

- Random Variables
- Discrete Random Variables
- Expected Value
- Expectation of a Function
- Variance
- Bernoulli and Binomial Random Variables
- Poisson Random Variables
- Geometric Random Variables

Outline

- Random Variables
- Discrete Random Variables
- Expected Value
- Expectation of a Function
- Variance
- Bernoulli and Binomial Random Variables
- Poisson Random Variables
- Geometric Random Variables

Random Variables

Frequently, we are mainly interested in some function of the outcome rather than the outcome itself. These real-valued functions defined on the sample space are known as random variables (RV's).

Example: Toss three fair coins. Let Y denote the number of heads happening. Then Y is a RV taking one of the values $0,1,2,3$ with respective probabilities:

$$
\begin{aligned}
& P(Y=0)=P(\{\mathrm{TTT}\})=\frac{1}{8} \\
& P(Y=1)=P(\{\mathrm{TTH}, \mathrm{THT}, \mathrm{HTT}\})=\frac{3}{8} \\
& P(Y=2)=P(\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\})=\frac{3}{8} \\
& P(Y=3)=P(\{\mathrm{HHH}\})=\frac{1}{8}
\end{aligned}
$$

and

$$
\sum_{i=0}^{3} P(Y=i)=1
$$

Random Variables

Example: Independent trials of flipping a coin with probability p of taking up heads are continuously performed until a heads occurs. Let X denote the number of times the coin is flipped. Then X is a RV taking values on $\{1,2,3,4, \ldots\}$. We have

$$
\begin{aligned}
& P(X=1)=P(\{\mathrm{H}\})=p \\
& P(X=2)=P(\{\mathrm{TH}\})=(1-p) p \\
& P(X=3)=P(\{\mathrm{TTH}\})=(1-p)^{2} p \\
& \quad \\
& \\
& P(X=n)=P(\{\mathrm{TT} \cdots \mathrm{TH}\})=(1-p)^{n-1} p
\end{aligned}
$$

and

$$
\sum_{n=1}^{\infty} P(X=n)=\sum_{n=1}^{\infty}(1-p)^{n-1} p=\frac{p}{1-(1-p)}=1
$$

Outline

- Random Variables
- Discrete Random Variables
- Expected Value
- Expectation of a Function
- Variance
- Bernoulli and Binomial Random Variables
- Poisson Random Variables
- Geometric Random Variables

Discrete Random Variables

A RV that can take on at most a countable number of possible values is said to be discrete.

For a discrete RV X, the probability mass function (PMF) of X, denoted by $p_{X}(a)$ or simply $p(a)$, is defined as

$$
p(a)=P(X=a)
$$

Example: If X must assume one of the values $x_{1}, x_{2}, x_{3}, \ldots$, then we have $p\left(x_{i}\right) \geq$ 0 , for $i=1,2, \ldots$ and $p(x)=0$ for all the other values of x, and

$$
\sum_{i=1}^{\infty} p\left(x_{i}\right)=1
$$

Example

Example: Consider a RV Y with

$$
Y= \begin{cases}0 & \text { with probability } \frac{1}{8} \\ 1 & \text { with probability } \frac{3}{8} \\ 2 & \text { with probability } \frac{3}{8} \\ 4 & \text { with probability } \frac{1}{8}\end{cases}
$$

The PMF of Y can be demonstrated using the following diagram:

Example

Problem: The PMF of a RV X is given by

$$
p(x)=\frac{c \lambda^{x}}{x!}, x=0,1,2, \ldots
$$

where λ is some positive number, and $p(x)=0$ for other values. 1) Find the value of $c ; 2)$ Find $P(X=0)$ and $P(X>2)$.

Solution: 1) Since $p(x)$ is a PMF, we have

$$
1=\sum_{x=1}^{\infty} p(x)=\sum_{x=1}^{\infty} \frac{c \lambda^{x}}{x!}=c \sum_{x=1}^{\infty} \frac{\lambda^{x}}{x!}=c e^{\lambda}
$$

and therefore $c=e^{-\lambda}$.
2)

$$
P(X=0)=p(0)=\frac{e^{-\lambda} \lambda^{0}}{0!}=e^{-\lambda}
$$

and

$$
P(X>2)=\sum_{x=3}^{\infty} p(x)=1-\sum_{x=0}^{2} p(x)=1-e^{-\lambda}-\lambda e^{-\lambda}-\frac{\lambda^{2} e^{-\lambda}}{2}
$$

Cumulative Distribution Function

The cumulative distribution function (CDF) of a discrete RV X, denoted by $F_{X}(a)$ or simply $F(a)$, can be expressed in terms of PMF $p(x)$ by

$$
F(a)=\sum_{x \leq a} p(x)
$$

Later we will generalize CDF to continuous RV's. Indeed, note that PMF only exists for discrete RV's, but CDF can be defined for any RV.

If Y is a discrete RV , then its CDF is a step function. For example, if Y has PMF given by

$$
p(0)=\frac{1}{8}, p(1)=\frac{3}{8}, p(2)=\frac{3}{8}, p(4)=\frac{1}{8}
$$

then its CDF is given by

$$
F(a)= \begin{cases}0 & a<0 \\ \frac{1}{8} & 0 \leq a<1 \\ \frac{1}{2} & 1 \leq a<2 \\ \frac{7}{8} & 2 \leq a<4 \\ 1 & a \geq 4\end{cases}
$$

Cumulative Distribution Function

$F(y)$ is a right-continuous but not left-continuos function.

Outline

- Random Variables
- Discrete Random Variables
- Expected Value
- Expectation of a Function
- Variance
- Bernoulli and Binomial Random Variables
- Poisson Random Variables
- Geometric Random Variables

Expected Value

If X is a discrete RV having a PMF $p(x)$, then the expectation or expected value of X is

$$
\mathrm{E}[X]=\sum_{x: p(x)>0} x \cdot p(x)
$$

For example, if the PMF of X is $p(0)=p(1)=\frac{1}{2}$, then

$$
\mathrm{E}[X]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2}
$$

If the PMF of X is $p(0)=\frac{1}{3}, p(1)=\frac{2}{3}$, then

$$
\mathrm{E}[X]=0 \cdot \frac{1}{3}+1 \cdot \frac{2}{3}=\frac{2}{3}
$$

The concept of expectation is analogous to the physical concept of the center of mass. Think of it in diagram!

Example

Suppose X is the outcome when we roll a fair die. Then the expectation of X is

$$
\mathrm{E}[X]=\sum_{i=1}^{6} i \cdot p(i)=\frac{1}{6} \sum_{i=1}^{6} i=\frac{7}{2}
$$

Let an indicator variable for the event A be defined as

$$
I_{A}= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { if } A^{c} \text { occurs }\end{cases}
$$

Then the expectation of I_{A} is

$$
\mathrm{E}\left[I_{A}\right]=1 \cdot p(1)+0 \cdot p(0)=P(A)
$$

Outline

- Random Variables
- Discrete Random Variables
- Expected Value
- Expectation of a Function
- Variance
- Bernoulli and Binomial Random Variables
- Poisson Random Variables
- Geometric Random Variables

Expectation of Function

Given a RV X with PMF $p(x)$, we can also calculate the expectation of some function g of X. In particular, we have

$$
\mathrm{E}[g(X)]=\sum_{x: p(x) \geq 0} g(x) \cdot p(x)
$$

Corollary: If a, b are constant and X is a RV, then $\mathrm{E}[a X+b]=a \mathrm{E}[X]+b$.

Example: Suppose X has PMF given by $p(0)=p(1)=\frac{1}{2}$, and $g(x)=x^{2}$. Then

$$
\mathrm{E}[g(X)]=g(0) \cdot p(0)+g(1) \cdot p(1)=\frac{1}{2}
$$

In general, the expectation

$$
\mathrm{E}\left[X^{n}\right]=\sum_{x: p(x) \geq 0} x^{n} \cdot p(x)
$$

is called the n-th moment of X. In particular, the expectation of X is also called the first moment, or the mean of X.

Outline

- Random Variables
- Discrete Random Variables
- Expected Value
- Expectation of a Function
- Variance
- Bernoulli and Binomial Random Variables
- Poisson Random Variables
- Geometric Random Variables

Variance

Two RV's can have the same expectation, but behave (quite) differently in their distributions. For example, consider RV's Y and Z, where the pmf for Y is $p_{Y}(1)=p_{Y}(-1)=0.5$ and the pmf for Z is $p_{Z}(100)=p_{Z}(-100)=0.5$. Both Y and Z have the same expectation, i.e. $\mathrm{E}[Y]=\mathrm{E}[Z]=0$, but obviously they have very different spread of distributions.

To measure the spread of the distribution of X, we will consider the average squared deviation of X from its mean $\mathrm{E}[X]=\mu$, and call this measure the variance of X, i.e.,

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]
$$

The square root of $\operatorname{Var}(X)$ is called the standard deviation of X, i.e.,

$$
\mathrm{SD}(X)=\sqrt{\operatorname{Var}(X)}
$$

Fact: Note that we have
$\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left[X^{2}+\mu^{2}-2 X \mu\right]=\mathrm{E}\left[X^{2}\right]+\mu^{2}-2 \mu^{2}=\mathrm{E}\left[X^{2}\right]-\mu^{2}$.
Also, $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$ because

$$
\operatorname{Var}(a X+b)=\mathrm{E}\left[(a X+b-\mathrm{E}[a X+b])^{2}\right]=\mathrm{E}\left[a^{2}(X-\mathrm{E}[X])^{2}\right]=a^{2} \operatorname{Var}(X)
$$

Example

For the previous example of Y and Z, we have

$$
\operatorname{Var}(Y)=\mathrm{E}\left[Y^{2}\right]-\mathrm{E}[Y]^{2}=\mathrm{E}\left[Y^{2}\right]=(-1)^{2} \cdot \frac{1}{2}+1^{2} \cdot \frac{1}{2}=1
$$

and

$$
\operatorname{Var}(Z)=\mathrm{E}\left[Z^{2}\right]-\mathrm{E}[Z]^{2}=\mathrm{E}\left[Z^{2}\right]=(-100)^{2} \cdot \frac{1}{2}+100^{2} \cdot \frac{1}{2}=10000
$$

Another example: If X denotes the outcome of rolling a fair die, then $\mathrm{E}[X]=\frac{7}{2}$ and

$$
\mathrm{E}\left[X^{2}\right]=\sum_{i=1}^{6} i^{2} p(i)=\frac{91}{6},
$$

and therefore

$$
\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
$$

Outline

- Random Variables
- Discrete Random Variables
- Expected Value
- Expectation of a Function
- Variance
- Bernoulli and Binomial Random Variables
- Poisson Random Variables
- Geometric Random Variables

Bernoulli and Binomial RV

Bernoulli RV (success and failure):

$$
X= \begin{cases}1 & \text { w.p. } p \\ 0 & \text { w.p. } 1-p\end{cases}
$$

PMF: $p(1)=p$ and $p(0)=1-p$.
Expectation: $\mathrm{E}[X]=p$. Second Moment: $\mathrm{E}\left[X^{2}\right]=p$.
Variance: $\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}=p-p^{2}$.

Binomial RV: Now suppose that we do n independent trials (each time being success w.p. p and failure w.p. $1-p$). Let X represent the number of successes in the n trials. Then X is said to be a binomial RV with parameter (n, p), denoted by $X \sim \operatorname{Binomial}(n, p)$; in particular the case of $(1, p)$ is Bernoulli.

PMF: $p(i)=\binom{n}{i} p^{i}(1-p)^{n-i}$ where $0 \leq i \leq n$; the shape of PMF is interesting
Expectation: $\mathrm{E}[X]=n p$. Variance: $\operatorname{Var}(X)=n p(1-p)$.

Outline

- Random Variables
- Discrete Random Variables
- Expected Value
- Expectation of a Function
- Variance
- Bernoulli and Binomial Random Variables
- Poisson Random Variables
- Geometric Random Variables

Poisson and Geometric RV

Poisson RV: A RV X taking on one of the values $0,1,2, \ldots$, is said to be a Poisson RV with parameter $\lambda>0$ if its PMF is given by

$$
p(i)=e^{-\lambda} \frac{\lambda^{i}}{i!}, i=0,1,2, \ldots
$$

The parameter λ affects the shape of PMF for $X \sim \operatorname{Poisson}(\lambda)$
Expectation: $\mathrm{E}[X]=\lambda$. Second moment: $\mathrm{E}\left[X^{2}\right]=\lambda^{2}+\lambda$.
Variance: $\operatorname{Var}(X)=\lambda$.

Geometric RV: Perform independent trials until a success occurs. The number of times we do the trials is a Geometric RV.

PMF: $p(i)=p(1-p)^{i-1}$
Expectation: $\mathrm{E}[X]=\frac{1}{p}$. Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$.

