Chapter 2: Axioms of Probability

Xiugang Wu

University of Delaware

Spring, 2020

Example Re-Revisited

A communication system consists of four antennas. Assume that this system will be functional if no two consecutive antennas are defective.

$(p)(p)(p)(p)$

Question: If there are exactly two antennas defective, what is the probability that the resulting system will be functional?

Thinking process:

1) List all the possiblities: $0110,0101,1010,0011,1001,1100$
2) If all the cases are equally likely, then the desired probability is $\frac{3}{6}=\frac{1}{2}$.

Outline

- Sample Space and Events
- Axioms of Probability
- Some Simple Propositions
- Sample Space with Equally Likely Outcomes

Outline

- Sample Space and Events
- Axioms of Probability
- Some Simple Propositions
- Samnle Snace writh Equally Likely Outcomes

Sample Space

S - Sample space: the set of all possible outcomes of an experiment

1) Flip a coin. $S=\{$ tails, heads $\}$
2) Flip two coins. $S=\{\mathrm{hh}, \mathrm{tt}, \mathrm{ht}, \mathrm{th}\}$
3) Toss two dices. $S=\{(i, j): i, j=1,2,3,4,5,6\}$
4) The order of finish in a race among 7 horses. $S=\{$ all 7 ! permutations of $(1,2,3,4,5,6,7)\}$
5) Measuring (in hours) the life time of a transistor. $S=\{x: 0 \leq x<\infty\}$

Event

Event: any subset E of the sample space is known as an event; an event is a set of some possible outcome. If the outcome of the experiment is contained in E, then we say that E has occurred.

1) Flip a coin. $S=\{$ tails, heads $\}$.
$E=\{$ heads $\}, F=\{$ tails $\}$.
2) Flip two coins. $S=\{\mathrm{hh}, \mathrm{tt}, \mathrm{ht}, \mathrm{th}\}$.
$E=\{\mathrm{hh}, \mathrm{ht}\}, F=\{\mathrm{th}, \mathrm{ht}\}$.
3) Toss two dices. $S=\{(i, j): i, j=1,2,3,4,5,6\}$.
$E=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$.
4) The order of finish in a race among 7 horses. $S=\{$ all 7 ! permutations of $(1,2,3,4,5,6,7)\}$. $E=\{$ all permutations starting with 3$\}$.
5) Measuring (in hours) the life time of a transistor. $S=\{x: 0 \leq x<\infty\}$.
$E=\{x: 0 \leq x \leq 5\}$

Set Operations

1) Union: $E \cup F ; \cup_{i=1}^{n} E_{i} ; \cup_{i=1}^{\infty} E_{i}$
2) Intersection: $E \cap F$ or $E F ; \cap_{i=1}^{n} E_{i} ; \cap_{i=1}^{\infty} E_{i}$
E and F are said to be mutually exclusive or disjoint if $E F=\emptyset$
3) Complement: $E^{c}=\{$ all outcomes not in $E\} ; S^{c}=\emptyset$
4) Subset: $E \subseteq F$ iff all elements in E are also in F. If $E \subseteq F$ and $F \subseteq E$, then $E=F$.

Can you demonstrate these operations by using Venn Diagrams?

Laws of Set Theory

1) Commutative laws: $E \cup F=F \cup E$; $E F=F E$
2) Associative laws: $(E \cup F) \cup G=E \cup(F \cup G) ;(E F) G=E(F G)$
3) Distributive laws: $(E \cup F) G=(E G) \cup(F G) ;(E F) \cup G=(E \cup G)(F \cup G)$
4) DeMorgan's law: $\left(\cup_{i=1}^{n} E_{i}\right)^{c}=\cap_{i=1}^{n} E_{i}^{c} ;\left(\cap_{i=1}^{n} E_{i}\right)^{c}=\cup_{i=1}^{n} E_{i}^{c}$

Can you justify these laws by using Venn Diagrams?

Outline

- Sample Space and Events
- Axioms of Probability
- Some Simple Propositions
- Sample Space with Equally Likely Outcomes

Axioms of Probability

1) Non-negativity: $0 \leq P(E) \leq 1$, for any E
2) Normalization: $P(S)=1$
3) Additivity: For any sequence of mutually exclusive events E_{1}, E_{2}, \ldots, i.e. $E_{i} E_{j}=\emptyset$ for $i \neq j$,

$$
P\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right)
$$

Example: Toss a coin. If heads is as likely as tails, then $P(\{\mathrm{~h}\})=P(\{\mathrm{t}\})=0.5$. Or $P(\{\mathrm{~h}\})=1-P(\{\mathrm{t}\})=0.25$ for a biased coin.

Example: Roll a dice. If all sides are equally likely, then $P(\{i\})=1 / 6$ for any $i=1,2,3,4,5,6$.

Outline

- Sample Space and Events
- Axioms of Probability
- Some Simple Propositions
- Sample Space with Equally Likely Outcomes

Some Simple Propositions

1) $P\left(E^{c}\right)=1-P(E)$
2) If $E \subseteq F$, then $P(E) \leq P(F)$
3) $P(E \cup F)=P(E)+P(F)-P(E F)$
4) $P(E \cup F \cup G)=P(E)+P(F)+P(G)-P(E F)-P(E G)-P(F G)+P(E F G)$

Using Venn Diagrams can help understand these propositions.

Inclusion-Exclusion Identity

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)= & \sum_{i} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}} P\left(E_{i_{1}} E_{i_{2}}\right) \\
& +\cdots+(-1)^{r+1} \sum_{i_{1}<i_{2}<\cdots<i_{r}} P\left(E_{i_{1}} E_{i_{2}} \cdots E_{i_{r}}\right) \\
& +\cdots+(-1)^{n+1} P\left(E_{1} E_{2} \cdots E_{n}\right)
\end{aligned}
$$

Example

Example: Mike is going to take two course A and B next semester. With probability 0.8 he will like course A; with probability 0.7 he will like B; with probability 0.6 he will like both. What is the probability that he will like neither course?

Solution: Let $A=\{$ Mike will like course $A\}$ and $B=\{$ Mike will like course $B\}$. Then we have

$$
A \cup B=\{\text { Mike will like course } A \text { or } B\}
$$

which happens with probability

$$
P(A \cup B)=P(A)+P(B)-P(A B)=0.8+0.7-0.6=0.9
$$

Therefore,
$P(\{$ Mike will like neither course A nor $B\})=1-P(A \cup B)=1-0.9=0.1$

Outline

- Sample Space and Events
- Axioms of Probability
- Some Simple Propositions
- Sample Space with Equally Likely Outcomes

Sample Space with Equally Likely Outcomes

Suppose $S=\{1,2, \ldots, N\}$ and $P(\{i\})=1 / N$ for any $i=1,2, \ldots, N$. Then for any E,

$$
P(E)=\frac{\text { number of outcomes in } E}{\text { total number of outcomes in } S}
$$

Example: If two dice are rolled. What is the probability that the sum of the dice will equal 7 ?

Solution: The sample space $S=\{(i, j): i, j=1,2,3,4,5,6\}$. The event of interest is
$E=\{$ the sum of the dice will equal 7$\}=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$.
Therefore,

$$
P(E)=\frac{6}{36}=\frac{1}{6} .
$$

Example

Example: Suppose we randomly draw 3 balls from an urn containing 6 white and 5 black balls. What is the probability that of the 3 balls, one is white and two are black?

Solution:

$$
\frac{\binom{6}{1}\binom{5}{2}}{\binom{11}{3}}=\frac{4}{11}
$$

What is the probability that of the 3 balls, one is black and two are white?
Solution:

$$
\frac{\binom{6}{2}\binom{5}{1}}{\binom{11}{3}}=\frac{15}{33}
$$

Example

Example: There are n people in a room. What is the probability that no two of them celebrate their birthday on the same day of the year?

Solution:

$$
p_{n}=\frac{365 \times 364 \times 363 \times \cdots \times(365-n+1)}{365^{n}}
$$

How big should n be such that this probability is less than $1 / 2$?
Solution: Obviously p_{n} is decreasing with n. When $n \geq 23, p_{n}$ is less than $1 / 2$. Also when $n=50, p_{n} \approx 3 \%$; when $n=100, p_{n} \approx \frac{1}{3,000,000}$.

