Chapter 1: Combinatorial Analysis

Xiugang Wu

University of Delaware

Spring, 2020

Example Revisited

A communication system consists of four antennas.

$((p))(p)(p)(p)$

How many possibilities are there for exactly two antennas to be defective? How many possibilities for exactly two consecutive antennas to be defective?

Naive way: List all the possiblities - $0110,0101,1010,0011,1001,1100$

Chapter 1 is all about how to count effectively and systematically; the mathematical theory of counting is formally known as combinatorial analysis.

Outline

- Basic Principle of Counting
- Permutations
- Combinations
- Multinomial Coefficients

Outline

- Basic Principle of Counting
- Permutations
- Combinations
- Multinomial Coefficients

Basic Principle of Counting

Suppose that two experiments are to be performed. If experiment 1 can result in any one of m possible outcomes, and if for each outcome of experiment 1 , there are n possible outcomes of experiment 2 , then together there are $m n$ possible outcomes of the two experiments.

$(1,1)$	$(1,2)$	\cdots	$(1, n)$
$(2,1)$	$(2,2)$	\cdots	$(2, n)$
\vdots	\vdots	\ddots	\vdots
$(m, 1)$	$(m, 2)$	\cdots	(m, n)

Example: A small community has 10 women, each of whom has 3 children. If one woman and one of her children are to be selected as mother and child of the year. How many possibilities?

Solution: $10 \times 3=30$

Generalization

Suppose that r experiments are to be performed. If experiment 1 has n_{1} possible outcomes; for each of them, there are n_{2} possible outcomes of experiment $2 ; \ldots .$. ; for each of them, there are n_{r} possible outcomes of experiment r, then there are totally $n_{1} n_{2} \cdots n_{r}$ possible outcomes of the r experiments.

Example: How many different 7-place license plates are possible if the first 3 places are to be occupied by letters and the final 4 by numbers?

Solution: $26 \times 26 \times 26 \times 10 \times 10 \times 10 \times 10=175,760,000$

What if repetition among letters or numbers is prohibited?
Solution: $26 \times 25 \times 24 \times 10 \times 9 \times 8 \times 7=78,624,000$

Outline

- Basic Principle of Counting
- Permutations
- Combinations
- Multinomial Coefficients

Permutations

Example: How many different ordered arrangements of a, b, c ?
Solution: $a b c ; a c b ; b a c ; b c a ; c a b ; c b a$

In the above example, each ordering is known as a permutation. By the principle of counting, there are

$$
3 \times 2 \times 1=6
$$

different permutations. Generally, for n objects, there are

$$
n \cdot(n-1) \cdot(n-2) \cdots 2 \cdot 1=n!
$$

different permutations.

Permutations

Example: Suppose we want to put 10 books on the bookshelf. Of these 10 books, 4 are math, 3 are chemistry, 2 are history, 1 is language. The books of the same subject should be put together. How many different arrangements are possible?

Solution: There are $4!\times 3!\times 2!\times 1!\times 4!=6912$ different arrangements. (Note that without the restriction that the books of the same subject should be put together, there are 10! different arrangements.)

Example: A class consists of 6 men and 4 women. An exam is given and no two students obtain the same score.
(a): How many different rankings are possible? Solution: $10!=3,628,800$
(b): What if men and women are ranked separately? Solution: $4!\times 6!=17,280$

Permutations

Example: How many different letter arrangements can be formed using the letters PEPPER?

Solution: $\frac{6!}{3!2!}=60$.

In general, there are

$$
\frac{n!}{n_{1}!n_{2}!n_{3}!\cdots n_{r}!}
$$

different permutations of n objects, of which n_{1} are alike, n_{2} are alike,, n_{r} are alike. $\left(n_{1}+n_{2}+\cdots+n_{r}=n\right.$.)

Example: How many different signals are possible, by hanging 9 flags in a line, of which 4 are white, 3 red and 2 blue?

Solution: $\frac{9!}{4!3!2!}=1260$.

Outline

- Basic Principle of Counting
- Permutations
- Combinations
- Multinomial Coefficients

Combinations

Example: How many different groups of 3 can be selected from the 5 items A, B, C, D, E ?

Solution: $\frac{5 \times 4 \times 3}{3!}=10$. (Hint: $A B C, A C B, B A C, \ldots$ are the same group.)

In general, if we select r items from n items, then the number of different groups is given by

$$
\frac{n(n-1)(n-2) \cdots(n-r+1)}{r!}=\frac{n!}{(n-r)!r!} \triangleq\binom{n}{r} .
$$

Quick facts:

$$
\binom{n}{r}=\binom{n}{n-r}=\frac{n!}{(n-r)!r!}
$$

For example,

$$
\binom{n}{1}=\binom{n}{n-1}=n \quad \text { and } \quad\binom{n}{n}=\binom{n}{0}=1=\frac{n!}{n!0!}
$$

where $0!=1$ by convention.

Combinations

Example: From 5 women and 7 men, how many different committees of 2 women and 3 men can be formed?

Solution:

$$
\binom{5}{2}\binom{7}{3}=\frac{5 \times 4}{2 \times 1} \times \frac{7 \times 6 \times 5}{3 \times 2 \times 1}=350 .
$$

What if 2 of the men refuse to serve together?
Solution: Suppose the 2 men are A and B. Then there are situations:

1) both A and B are in: $\binom{5}{2}\binom{5}{1}$
2) A in, B out: $\binom{5}{2}\binom{5}{2}$
3) A out, B in: $\binom{5}{2}\binom{5}{2}$
4) neither is in: $\binom{5}{2}\binom{5}{3}$

Therefore, the are

$$
350-\binom{5}{2}\binom{5}{1}, \quad \text { or alternatively, } \quad\binom{5}{2}\binom{5}{2} \times 2+\binom{5}{2}\binom{5}{3}
$$

different committees.

Combinations

Example: A communication system with n antennas has m defective. The system will still be functional if no two consecutive antennas are defective. What is the probability that the system is functional?

Solution:

1) The total number of possibilities: $\binom{n}{m}$
2) The number of cases where no two consecutive antennas are defective:

$$
\sqcup 1 \sqcup 1 \sqcup 1 \cdots \sqcup 1 \sqcup \Rightarrow\binom{n-m+1}{m}
$$

Therefore, the probability of being functional is

$$
\frac{\binom{n-m+1}{m}}{\binom{n}{m}}
$$

where the probability is 0 if $n-m+1<m$.

A Combinatorial Identity

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

Proof:

$$
\begin{aligned}
\binom{n-1}{r-1}+\binom{n-1}{r} & =\frac{(n-1)!}{(r-1)!(n-r)!}+\frac{(n-1)!}{r!(n-1-r)!}=\frac{(n-1)!r}{r!(n-r)!}+\frac{(n-1)!(n-r)}{r!(n-r)!} \\
& =\frac{(n-1)!(r+n-r)}{r!(n-r)!}=\frac{(n-1)!n}{r!(n-r)!}=\frac{n!}{r!(n-r)!}=\binom{n}{r}
\end{aligned}
$$

Combinatorial Argument: Suppose we want to choose r items from n items.
Consider the following two cases:

1) The 1st item is chosen: $\binom{n-1}{r-1}$
2) The 1st item is not chosen: $\binom{n-1}{r}$

Therefore, it follows that

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

The Binomial Theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Example: $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$

Example: How many subsets are there of a set consisting of n items $\{1,2, \ldots, n\}$?
Solution:

$$
\sum_{k=1}^{n}\binom{n}{k}=\sum_{k=1}^{n}\binom{n}{k} 1^{k} 1^{n-k}=2^{n}
$$

Alternatively, the answer 2^{n} can be obtained directly by considering whether an item is in the subset or not, and using the basic principle of counting.

Outline

- Basic Principle of Counting
- Permutations
- Combinations
- Multinomial Coefficients

Multinomial Coefficient

Example: Suppose that n distinct items are to be divided into r distinct groups of respective sizes $n_{1}, n_{2}, \ldots, n_{r}$. How many different divisions are possible?

Solution: We fill the r groups one by one. There are $\binom{n}{n_{1}}$ possible choices for the first group, $\binom{n-n_{1}}{n_{2}}$ possible choices for the second group,, and ($\left.\begin{array}{c}n-n_{1}-n_{2}-\cdots-n_{r-1} \\ n_{r}\end{array}\right)$ choices for the r th group. By the basic principle of counting, the number of different divisions is

$$
\begin{aligned}
& \binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}}\binom{n-n_{1}-n_{2}}{n_{3}} \cdots\binom{n-n_{1}-n_{2}-\cdots-n_{r-1}}{n_{r}} \\
= & \frac{n!}{\left(n-n_{1}\right)!n_{1}!} \frac{\left(n-n_{1}\right)!}{\left(n-n_{1}-n_{2}\right)!n_{2}!} \frac{\left(n-n_{1}-n_{2}\right)!}{\left(n-n_{1}-n_{2}-n_{3}\right)!n_{3}!} \cdots \frac{\left(n-n_{1}-n_{2}-\cdots-n_{r-1}\right)!}{0!n_{r}!} \\
= & \frac{n!}{n_{1}!n_{2}!n_{3}!\cdots n_{r}!} \\
\triangleq & \binom{n}{n_{1}, n_{2}, \ldots, n_{r}},
\end{aligned}
$$

where $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}$ is known as multinomial coefficient.
Question: Can the answer be r^{n} ? Why?

Multinomial Coefficient

Example: Suppose that n distinct items are to be divided into r distinct groups of respective sizes $n_{1}, n_{2}, \ldots, n_{r}$. How many different divisions are possible?

Alternative Reasoning: Think of the problem as throwing n items into n holes:

Each permutation corresponds to a way to group them, but if we take n ! as the total number of possible ways of grouping, we have over-counted because it doesn't matter how we permute the items within the same group. Therefore, there are $\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}$ different possible divisions.

Or, we can think of the problem as assigning n labels to n items. Of the n labels, n_{1} are alike, n_{2} are alike, $\ldots . . ., n_{r}$ are alike. If one item receives the k th label, then it is contained by the k th group. There are $\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}$ possible ways to assign the labels.

Multinomial Coefficient

Example: A class of 68 students are to be divided into 3 sections of sizes $21,22,25$. How many different divisions are possible?

Solution: $\frac{68!}{21!22!25!}=\binom{68}{21,22,25}$.

Example: 10 Children are to be divided into 2 basketball teams, each of 5 to play against each other. How many different divisions are possible?

Solution: $\frac{10!}{5!5!} \times \frac{1}{2}$.

The Multinomial Theorem

The Binomial Theorem:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

The Multinomial Theorem:

$$
\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{n}=\sum_{\substack{\left(n_{1}, n_{2}, \ldots, n_{r}\right): \\ n_{1}+n_{2}+\cdots+n_{r}=n}}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}}
$$

