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Information Constrained Optimal Transport:
From Talagrand, to Marton, to Cover

Yikun Bai, Xiugang Wu and Ayfer Özgür

Abstract

The optimal transport problem studies how to transport one measure to another in the most cost-effective way
and has wide range of applications from economics to machine learning. In this paper, we introduce and study an
information constrained variation of this problem. Our study yields a strengthening and generalization of Talagrand’s
celebrated transportation cost inequality. Following Marton’s approach, we show that the new transportation cost
inequality can be used to recover old and new concentration of measure results. Finally, we provide an application
of this new inequality to network information theory. We show that it can be used to recover almost immediately
a recent solution to a long-standing open problem posed by Cover regarding the capacity of the relay channel.

I. INTRODUCTION

The optimal transport (OT) theory, pioneered by Monge [2] and Kantorovich [3], studies how to
distribute supply to meet demand in the most cost-effective way. It has many known connections with,
and applications to areas such as geometry, quantum mechanics, fluid dynamics, optics, mathematical
statistics, and meteorology. More recently, it has received renewed interest due to its increasingly many
applications in imaging sciences, computer vision and machine learning.

A. Optimal Transport Problem
The basic OT problem in Kantorovich’s probabilistic formulation can be described as follows. Let Z

and Y be two measurable spaces, P(Z) and P(Y) be the sets of all probability measures on Z and Y
respectively, and P(Z × Y) be the set of all joint probability measures on Z × Y . Let c : Z × Y → R+

be a non-negative measurable function, which is called the cost function. Given two probability measures
PZ ∈ P(Z) and PY ∈ P(Y), the set of couplings of PZ and PY , denoted by Π(PZ , PY ), refers to the set
of all joint probability measures P ∈ P(Z × Y) such that their marginal measures are PZ and PY . The
OT problem is to find the optimal coupling in Π(PZ , PY ) that minimizes the expected cost:

inf
P∈Π(PZ ,PY )

EP [c(Z, Y )]. (1)

A special case of particular interest is when Z = Y = R and c(z, y) = |z − y|p, in which case the
quantity

Wp(PZ , PY ) , inf
P∈Π(PZ ,PY )

{EP [|Z − Y |p]}1/p (2)

defines a distance metric between two probability measures PZ and PY and is called the p-th order
Wasserstein distance. Various transportation cost inequalities have been developed that upper bound
the Wasserstein distance between two measures PZ and PY . For example, the celebrated Talagrand’s
transportation inequality [4] states that

W 2
2 (PZ , PY ) ≤ 2D(PZ‖PY ) (3)

when PY is standard Gaussian N (0, 1) and PZ � PY .
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B. Information Constrained Optimal Transport
In this paper, we propose to study a variation of the OT problem which we call the information

constrained OT problem. Here, we want to find the coupling P in Π(PZ , PY ) that minimizes the expected
cost while ensuring that the mutual information IP (Z;Y ) between Z and Y under the coupling P does
not exceed some pre-specified value R:

inf
P∈Π(PZ ,PY ):IP (Z;Y )≤R

EP [c(Z, Y )]. (4)

There are several reasons for us to study this extension of the classical OT problem, which will become
clear in the sequel. For now, note that when the infimum in (1) is achieved by a deterministic mapping
between Z and Y , the mutual information IP (Z;Y ) will be maximal and can be potentially unbounded.
For example, this is known to be the case in (2) when p = 2 and PZ or PY are absolutely continuous with
respect to the Lebesgue measure [5]. The mutual information constraint in (4) can be viewed as enforcing
a certain amount of randomization in the mapping between Z and Y .

It is also worth mentioning that an equivalent formulation of the information constrained OT problem
has received significant recent interest in the machine learning literature, where one seeks to minimize
the cost-information Lagrangian:

inf
P∈Π(PZ ,PY )

{EP [c(Z, Y )] + λIP (Z;Y )} . (5)

The problem (5) generally appears under the name entropy regularized OT or Sinkhorn distances. In the
machine learning literature, the interest in (5) has been mainly motivated by computational considerations;
in many cases computing the regularized OT in (5) from data turns out to be easier than computing the
classical OT in (1), which motivates the use of (5) instead of (1) as a distance between probability
measures [6]. For certain inference tasks, (5) also appears to be a more suitable distance than (1), leading
to superior empirical performance [7]. Moreover, it is also shown in [8]–[9] that (5) can be estimated with
much fewer samples as compared to (1). In contrast to these works which focus on the computational
and statistical aspects of (5), our interest in this paper mainly lies in understanding the solution of the
problem (4) as well as its fundamental connections to concentration of measure and network information
theory.

C. Summary of Results
In the information constrained OT setup, one can similarly define the Wasserstein distance between two

measures PZ and PY subject to the information constraint R:

Wp(PZ , PY ;R) , inf
P∈Π(PZ ,PY ):
IP (Z;Y )≤R

{EP [|Z − Y |p]}1/p . (6)

Note that when R = ∞, (6) reduces to the unconstrained Wasserstein distance in (2). The main result
of this paper, proved in Section II, is an upper bound on W2(PZ , PY ;R) for any R ∈ R+ when PY is
standard Gaussian and PZ � PY :

W 2
2 (PZ , PY ;R) ≤ E[Z2] + 1− 2

√
1

2πe
e2h(Z) (1− e−2R). (7)

This new transportation inequality captures the trade-off between information constraint and transportation
cost, and is tight when PZ is Gaussian. It can be regarded as a generalization and sharpening of Talagrand’s
inequality in (3). Note that when we take R→∞ in (7), we get the following bound on the unconstrained
Wasserstein distance:

W 2
2 (PZ , PY ) ≤ E[Z2] + 1− 2

√
1

2πe
e2h(Z). (8)



3

It is easy to check that the R.H.S. of (8) is smaller than or equal to that of Talagrand’s inequality in (3)
for any PZ , and therefore (8) is uniformly tighter than (3).

Since the pioneering work of Marton [10]–[11], it has been known that Talagrand’s transportation
inequality captures essentially the same geometric phenomenon as the Gaussian isoperimetric inequality,
both of which can be used to derive concentration of measure in Gaussian space. Do the new transportation
inequalities in (7) and (8) also have natural geometric counterparts? In Section III, we show that the
strengthening (8) of Talagrand’s inequality can be used to prove concentration of measure on the sphere,
which can be shown to imply concentration of measure in Gaussian space. In other words, the strengthening
of Talagrand’s inequality in (8) captures a stronger isoperimetric phenomenon, the one on the sphere
rather than that in Gaussian space. Furthermore, we show in Section III that the information constrained
transportation inequality in (7) captures a new isoperimetric phenomenon on the sphere that has not
been known before the recent work [12]–[13], co-authored by a subset of the authors. Different from the
standard isoperimetric inequality on the sphere where one is interested in the extremal set that minimizes
the measure of its neighborhood among all sets of equal measure, this new isoperimetric result deals with
the set that has minimal intersection measure with the neighborhood of a randomly chosen point on the
sphere.

Finally, in Section IV we demonstrate an application of the information constrained transportation
inequality (7) to network information theory. In particular, we show that it can be used to simplify the
recent solution of a long-standing open problem on communication over the three-node relay channel.
Specifically, this problem, “The Capacity of the Relay Channel”, was posed by Cover in the book Open
Problems in Communication and Computation, Springer-Verlag, 1987 [14]. The recent works [13], [15]
solved this problem in the canonical Gaussian case by developing a new converse for the relay channel.1

The proof in [13], [15] is geometric: the communication problem is recast as a problem about the geometry
of typical sets in high-dimensions, and then solved using the new isoperimetric result on the sphere
mentioned above. The new transportation inequality (7) allows us to recover the same result almost
immediately, which also enables an interpretation of the previous geometric proof in terms of auxiliary
random variables.

II. NEW TRANSPORTATION INEQUALITIES

Before stating and proving our new transportation inequalities, let us first formalize the definition of
the Wasserstein distance and Talagrand’s transportation inequality; see also [17]. Let (Ω, d) be a Polish
metric space. Given p ≥ 1, let Pp(Ω) denote the space of all Borel probability measures ν on Ω such that
the moment bound

Eω∼ν [dp(ω, ω0)] <∞ (9)

holds for some (and hence all) ω0 ∈ Ω.
Definition 2.1 (Wasserstein Distance): Given p ≥ 1, the Wasserstein distance of order p between any

pair PZ , PY ∈ Pp(Ω) is defined as

Wp(PZ , PY ) , inf
P∈Π(PZ ,PY )

{EP [dp(Z, Y )]}1/p (10)

where Π(PZ , PY ) is the set of all probability measures on the product space Ω × Ω with marginals PZ
and PY .

Indeed, the function Wp(PZ , PY ) of (PZ , PY ) in (10) satisfies all the metric axioms [18] and defines
a distance metric on the space Pp(Ω) of distributions. If p = 2, Ω = R with d(z, y) = |z − y|, and PY
is atomless, then the optimal coupling that achieves the infimum in (10) is given by the deterministic
mapping

Z = F−1
Z ◦ FY (Y ) (11)

1See also [16] for the solution in the case of binary symmetric channels.
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where FY is the cdf of PY , i.e. FY (y) = PY (Y ≤ y) and F−1
Z is the quantile function of PZ , i.e.

F−1
Z (α) = inf{z ∈ R : FZ(z) ≥ α}. Building on this optimal coupling and tensorization [17], one can

prove the following result for the case when Ω = Rn and d(zn, yn) = ‖zn − yn‖2, known as Talagrand’s
transportation inequality.

Proposition 2.1 (Talagrand [4]): For two probability measures PZn � PY n on Rn with PY n being
standard Gaussian N (0, In), we have

W 2
2 (PZn , PY n) ≤ 2D(PZn‖PY n), (12)

where the inequality is tight if and only if PZn is a shifted version of PY n , i.e. PZn = N (µ, In) for some
µ ∈ Rn.

A. Sharpening Talagrand’s Transportation Inequality
Talagrand’s transportation inequality can be sharpened to the following; see also [19], [20] for related

results.
Theorem 2.1: For PY n = N (0, In) and PZn � PY n , we have

W 2
2 (PZn , PY n) ≤ E[‖Zn‖2] + n− 2n

√
1

2πe
e

2
n
h(Zn), (13)

where the inequality is tight when PZn is isotropic Gaussian, i.e. PZn = N (µ, σ2In) for some µ ∈ Rn

and σ > 0.
Note that compared to Talagrand’s transportation inequality, which is tight only when PZn = N (µ, In),

the upper bound of the Wasserstein distance in Theorem 2.1 is tight for a wider class of PZn , i.e. when PZn
is isotropic Gaussian. If fact, it can been shown (c.f. Appendix A) that this new transportation inequality
is in general stronger than Talagrand’s, i.e. R.H.S. of (13) ≤ R.H.S. of (12), for any PZn � PY n where
the inequality holds with equality iff h(Zn) = n

2
ln 2πe, which is the case when PZn = N (µ, In).

B. Information Constrained OT
We next focus on bounding the information constrained OT.
Definition 2.2 (Information Constrained Wasserstein Distance): Given p ≥ 1, the Wasserstein distance

of order p between any pair PZ , PY ∈ Pp(Ω) subject to information constraint R is defined as

Wp(PZ , PY ;R) , inf
P∈Π(PZ ,PY ):
IP (Z;Y )≤R

{EP [dp(Z, Y )]}1/p . (14)

It can be verified that the function Wp(PZ , PY ;R) of (PZ , PY ) in (14) is nonnegative, symmetric in
(PZ , PY ), and satisfies the triangle inequality (see [6]). However, it is not a true metric despite that
we call it information constrained Wasserstein distance, because it violates the coincidence axiom, i.e.,
Wp(PZ , PY ;R) in general is not equal to zero when PZ = PY . For the case when Ω = Rn and d(zn, yn) =
‖zn − yn‖2, we can prove the following bound on it.

Theorem 2.2: For PY n = N (0, In) and PZn � PY n , we have

W 2
2 (PZn , PY n ;R) ≤ E[‖Zn‖2] + n− 2n

√
1

2πe
e

2
n
h(Zn)

(
1− e− 2R

n

)
. (15)

The above theorem characterizes a trade-off between the Wasserstein distance and the information
constraint, as depicted in Fig. 1. This includes Theorem 2.1 as an extreme case by letting R →∞. The
other extreme case is when R = 0, where now Zn and Y n are forced to be independent, and therefore
the information constrained Wasserstein distance simply reduces to E[‖Zn‖2] + n.

In Appendix B, we show that the new transportation inequality (15) is tight when PZn is isotropic
Gaussian; that is, when PZn = N (µ, σ2In) for some µ and σ2, the inequality in (15) is achieved with
equality. Therefore, the trade-off characterized in Theorem 2.2 is indeed tight when PZn is isotropic
Gaussian.
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Fig. 1. Wasserstein distance-information constraint tradeoff.

C. Conditional Transportation Inequality
Both Theorems 2.1 and 2.2 have their conditional versions. We start by defining the conditional

Wasserstein distance and the conditional information constrained Wasserstein distance.
Definition 2.3 (Conditional Wasserstein Distance): Fix a probability measure PT and two conditional

probability measures PZ|T and PY |T with PZ|T=t, PY |T=t ∈ Pp(Ω) for any t. Given p ≥ 1, the conditional
Wasserstein distance of order p between PZ|T , PY |T given PT is defined as

Wp(PZ|T , PY |T |PT ) , inf
P∈Π(PZ|T ,PY |T |PT )

{EP [dp(Z, Y )]}1/p (16)

where
Π(PZ|T , PY |T |PT ) , {PZ̄,Ȳ |T · PT : PZ̄|T = PZ|T , PȲ |T = PY |T}.

Theorem 2.3: For any probability measure PT and conditional probability measures PZn|T and PY n|T
such that for any t, PY n|T=t = PY n = N (0, In) and PZn|T=t � PY n , we have

W 2
2 (PZn|T , PY n|T |PT ) ≤ E[‖Zn‖2] + n− 2n

√
1

2πe
e

2
n
h(Zn|T ). (17)

Definition 2.4 (Conditional Information Constrained Wasserstein Distance): Fix a probability measure
PT and two conditional probability measures PZ|T and PY |T with PZ|T=t, PY |T=t ∈ Pp(Ω) for any t. Given
p ≥ 1, the conditional Wasserstein distance of order p between PZ|T , PY |T given PT subject to information
constraint R is defined as

Wp(PZ|T , PY |T |PT ;R) , inf
P∈Π(PZ|T ,PY |T |PT ),

IP (Z;Y |T )≤R

{EP [dp(Z, Y )]}1/p . (18)

Theorem 2.4: For any probability measure PT and conditional probability measures PZn|T and PY n|T
such that for any t, PY n|T=t = PY n = N (0, In) and PZn|T=t � PY n , we have

W 2
2 (PZn|T , PY n|T |PT ;R) ≤ E[‖Zn‖2] + n− 2n

√
1

2πe
e

2
n
h(Zn|T )

(
1− e− 2R

n

)
. (19)

D. Information Density Constrained OT
We now introduce an OT setup with information density constraint, and present a transportation

inequality for this new setup. As we will see, the information density constraint is more stringent than the
information constraint, and therefore our previous transportation inequality in Theorem 2.2 can be viewed
as a special case of this new inequality that we are going to present. This new inequality will be used to
prove a new concentration of measure result on the sphere, which has not been known before the recent
work [12]–[13]; see Proposition 3.3 and its proof in the next section.
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Recall that for a given joint distribution P ∈ P(Z × Y) with marginals PZ and PY , the information
density function iP (z; y) is defined as

iP (z; y) = ln
dP

dPZ ⊗ PY
(z, y),

whose expectation gives rise to the mutual information IP (Z;Y ), i.e.,

IP (Z;Y ) = EP [iP (Z;Y )].

We say that a distribution P satisfies (R, τ, δ)-information density constraint for some R ≥ 0 and τ, δ > 0,
if the following two conditions hold:

1) the expectation of the information density, i.e. the mutual information, is upper bounded by R,

IP (Z;Y ) ≤ R;

2) with probability at least 1−δ, the deviation between the information density and mutual information
is upper bounded by τ ,

P(Z,Y )∼P (|iP (Z;Y )− IP (Z;Y )| ≤ τ) ≥ 1− δ.
Definition 2.5 (Information Density Constrained Wasserstein Distance): Given p ≥ 1, the Wasserstein

distance of order p between any pair PZ , PY ∈ Pp(Ω) subject to (R, τ, δ)-information density constraint
is defined as

Wp(PZ , PY ;R, τ, δ) , inf
P∈Π(PZ ,PY ):IP (Z;Y )≤R,

P(Z,Y )∼P (|iP (Z;Y )−IP (Z;Y )|≤τ)≥1−δ

{EP [dp(Z, Y )]}1/p . (20)

Compared to the information constrained case, the definition of the information density constrained
Wasserstein distance in (20) involves an additional constraint P(Z,Y )∼P (|iP (Z;Y )−IP (Z;Y )| ≤ τ) ≥ 1−δ
in the infimization and therefore given arbitrary PZ , PY and R we have

Wp(PZ , PY ;R) ≤ Wp(PZ , PY ;R, τ, δ)

for any τ, δ > 0. As in the information constrained case, the quantity Wp(PZ , PY ;R, τ, δ) is not a true
metric because Wp(PZ , PY ;R, τ, δ) in general is not equal to zero when PZ = PY . However, it can
be shown to also satisfy a certain triangle inequality under some conditions, as stated in the following
proposition. The proof of this proposition is included in Appendix C.

Proposition 2.2: Consider three measures µ1, µ2, µ3 ∈ Pp(Ω) such that there exists a one-to-one mapping
g : Ω→ Ω satisfying that

1) µ1 is the push-forward measure of µ2 under g, i.e., µ1 = µ2 ◦ g−1;
2) g induces one optimal coupling that attains Wp(µ1, µ2), i.e.,

Wp(µ1, µ2) = {EY∼µ2 [dp(g(Y ), Y )]}1/p .

Then the following triangle inequality holds:

Wp(µ1, µ3;R, τ, δ) ≤ Wp(µ1, µ2) +Wp(µ2, µ3;R, τ, δ). (21)

For this OT setup with information density constraint, we have the following bound when Ω = Rn and
d(zn, yn) = ‖zn − yn‖2.

Theorem 2.5: For PY n = N (0, In) and PZn � PY n , we have that for any R, τ ≥ 0

W 2
2 (PZn , PY n ;R, τ, 6n/τ 2) ≤ E[‖Zn‖2] + n− 2n

√
1

2πe
e

2
n
h(Zn)

(
1− e− 2R

n

)
(22)

It is easy to see that the above theorem includes Theorem 2.2 as a special case by noting that

W 2
2 (PZn , PY n ;R) ≤ W 2

2 (PZn , PY n ;R, τ, 6n/τ 2)

for any R, τ ≥ 0.
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E. Proofs of New Transportation Inequalities
In this subsection, we provide the proofs of Theorems 2.1–2.5. Recall that Theorems 2.1, 2.2 and 2.5

are unconditional transportation inequalities, while Theorems 2.3 and 2.4 are the conditional versions. In
particular, Theorem 2.1 follows from Theorem 2.2, which in turn follows from Theorem 2.5 as a special
case. Thus, in the following we first focus on proving Theorem 2.5 to establish all the unconditional
transportation inequalities stated in the paper. Then we show how to obtain the conditional versions, in
particular Theorems 2.3 and 2.4; for this, it suffices to show how to extend Theorem 2.2 to Theorem 2.4.

Proof of Theorem 2.5: To show Theorem 2.5, it suffices to construct a coupling P of PZn and PY n
such that the (R, τ, 6n/τ 2)-information density constraint is satisfied, i.e.,

IP (Zn;Y n) ≤ R

and
P(Zn,Y n)∼P (|iP (Zn;Y n)− IP (Zn;Y n)| ≤ τ) ≥ 1− 6n/τ 2,

and simultaneously EP [‖Zn − Y n‖2] is upper bounded by the R.H.S. of (22). For this, let

Y n =

√
1− e− 2R

n Y n
1 + e−

R
n Y n

2 ,

where Y n
1 , Y

n
2 ∼ N (0, In) are independent of each other, and let Zn satisfy

Zn = g(Y n
1 )

for some g : Rn → Rn that pushes PY n1 = N (0, In) forward to PZn , where g is a differentiable one-to-one
mapping whose Jacobian matrix Jg has only nonnegative eigenvalues. Note that such a mapping g always
exists provided that PY n1 = N (0, In) is absolute continuous with respect to the Lebesgue measure and
PZn � PY n1 , and examples include the Brenier mapping [5] and the Knothe-Rosenblatt mapping [18].
See also Lemma 1 of [20].

It is easy to verify that the joint distribution P of (Zn, Y n) defined by the above is indeed a coupling
of PZn and PY n . To see that this coupling satisfies the information density constraint, first note that

IP (Zn;Y n) = h(Y n)− h(

√
1− e− 2R

n Y n
1 + e−

R
n Y n

2 |Zn)

= h(Y n)− h(e−
R
n Y n

2 |Zn) (23)

= h(Y n)− h(e−
R
n Y n

2 ) (24)

= h(Y n)− n ln(e−
R
n )− h(Y n

2 )

= R

where (23) holds because g is a one-to-one mapping and thus Y n
1 is determined given Zn, and (24) follows

from the independence between Y n
2 and Zn. Also we have

P(|iP (Zn;Y n)− IP (Zn;Y n)| ≤ τ)

= P
(∣∣∣∣ln

(
fY n|Zn(Y n|Zn)

fY n(Y n)

)
−R

∣∣∣∣ ≤ τ

)

= P

(∣∣∣∣∣ln
(
fe−R/nY n2 (e−R/nY n

2 )

fY n(Y n)

)
−R

∣∣∣∣∣ ≤ τ

)

= P(|‖Y n‖2 − ‖Y n
2 ‖2| ≤ 2τ)

≥ P(|‖Y n‖2 − n| ≤ τ, |‖Y n
2 ‖2 − n| ≤ τ)

≥ 1− (P(|‖Y n‖2 − n| ≥ τ) + P(|‖Y n
2 ‖2 − n| ≥ τ))

≥ 1− 6n

τ 2
(25)
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where (25) holds by Chebyshev’s inequality.
Now it remains to show EP [‖Zn− Y n‖2] ≤ R.H.S of (22). For this, we will lower bound EP [Zn · Y n]

in the sequel. In particular, letting gi denote the ith coordinate of g, we have

EP [Zn · Y n
1 ] =

n∑

i=1

EP
[
∂gi
∂y1i

(Y n
1 )

]
(26)

= EP [trace(Jg(Y
n

1 ))]

≥ EP [n(det(Jg(Y
n

1 )))1/n] (27)

= nEP [eln(det(Jg(Y n1 )))1/n ] (28)

≥ ne
1
n
EP ln[det(Jg(Y n1 ))] (29)

= ne
1
n

(h(Zn)−h(Y n1 )) (30)

= n

√
1

2πe
e

2
n
h(Zn)

where (26) follows from Stein’s lemma for PY n1 = N (0, In), which says that if Y n
1 ∼ N (0, In) and

f : Rn → R is differentiable, then E[f(Y n
1 )Y1i] = E[ ∂

∂yi
f(Y n

1 )]; (27) holds by the fact that for any matrix
A whose eigenvalues are all nonnegative, 1

n
trace(A) ≥ (det(A))1/n; (28) follows from the nonnegativity

of det(Jg(Y
n

1 )); (29) is due to Jensen’s inequality; and (30) holds because Zn = g(Y n
1 ) and therefore

fZn(g(yn1 )) det(Jg(y
n
1 )) = fY n1 (yn1 ),∀yn1 .

Therefore, EP [Zn · Y n] is lower bounded by

EP [Zn · Y n] =

√
1− e− 2R

n EP [Zn · Y n
1 ]

≥ n

√
1− e− 2R

n

√
1

2πe
e

2
n
h(Zn),

and hence

EP [‖Zn − Y n‖2] = E[‖Zn‖2] + n− 2EP [Zn · Y n]

≤ E[‖Zn‖2] + n− 2n

√
1

2πe
e

2
n
h(Zn)

(
1− e− 2R

n

)
.

This completes the proof of Theorem 2.5.

We now show how to obtain Theorem 2.4 based on Theorem 2.2.
Proof of Theorem 2.4: By Theorem 2.2, there exists some PZ̄n,Ȳ n|T such that for any t

PȲ n|T=t = N (0, In), PZ̄n|T=t = PZn|T=t, (31)
I(Z̄n; Ȳ n|T = t) ≤ R, (32)

and E[Z̄n · Ȳ n|T = t] ≥ n

√
1− e− 2R

n

√
1

2πe
e

2
n
h(Zn|T=t). (33)

Since (31) holds for any t, we have PȲ n|T = N (0, In) and PZ̄n|T = PZn|T , and hence

PZ̄n,Ȳ n|T ∈ Π(PZn|T , PZn|T |PT ). (34)

From (32), we get

I(Z̄n; Ȳ n|T ) = ES∼PT [I(Z̄n; Ȳ n|T = S)] ≤ ES∼PT [R] = R. (35)
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Moreover, using (33) we can lower bound E[Z̄n · Ȳ n] by

E[Z̄n · Ȳ n] = ES∼PT [E[Z̄n · Ȳ n|T = S]]

≥ ES∼PT

[
n

√
1− e 2R

n

√
1

2πe
e

2
n
h(Zn|T=S)

]

≥ n

√
1− e 2R

n

√
1

2πe
e

2
n
ES∼PT [h(Zn|T=S)] (36)

= n

√
1− e 2R

n

√
1

2πe
e

2
n
h(Zn|T ),

where (36) follows from Jensen’s inequality, and therefore E[‖Z̄n − Ȳ n‖2] can be upper bounded by

E[‖Z̄n − Ȳ n‖2] = E[‖Zn‖2] + n− 2n

√
1− e 2R

n

√
1

2πe
e

2
n
h(Zn|T ). (37)

Combining (34), (35) and (37) completes the proof of Theorem 2.4.

III. GEOMETRY: CONCENTRATION AND ISOPERIMETRY

Transportation cost inequalities of the form (3) are known to imply concentration of measure, an
inherently geometric phenomenon tightly coupled with isoperimetric inequalites. This section discusses
the geometric implications of Theorems 2.1–2.2. For this, we begin with the geometry of Talagrand’s
transportation inequality.

A. Concentration and Isoperimetry in Gaussian Space
Consider a Gaussian space (Rn, γ), where γ = N (0, In) is the standard Gaussian measure on Rn. For

any A ⊆ Rn and t > 0, let At denote the t-blowup set of A:

At = {xn ∈ Rn : ‖xn − an‖ ≤ t for some an ∈ A}.
The following concentration of measure result is generally known as the blowing-up lemma in Gaussian
space [17].

Proposition 3.1: For any A ⊆ Rn with γn(A) ≥ e−na,

γn(At)→ 1 as n→∞

when t ≥
√

2n(a+ ε) for some ε > 0.
Roughly, the above result states that under the product Gaussian measure, slightly blowing up any

set with a small but exponentially significant probability suffices to increase its probability to nearly 1;
hence the name blowing-up lemma. This lemma can be thought of as a consequence of the isoperimetric
inequality in Gaussian space, which says that among all sets with equal Gaussian measure, a halfspace
minimizes the measure of its t-blowup. Therefore, if we start with two sets A and H , where γ(A) = γ(H)
and H is a halfspace, then γ(At) ≥ γ(Ht) and hence it suffices to check that γ(Ht)→ 1, which follows
from a simple calculation.

An alternative approach to proving the above blowing-up lemma, pioneered by Marton [10], [11], is
through Talagrand’s transportation inequality. A formal proof via this approach can be found in [17]. The
key observation here is that for any measure ν and set A, ν(A) can be related to the KL divergence as

D(νA‖ν) = ln
1

ν(A)
,
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where νA is the conditional probability measure defined as νA(C) , ν(C ∩A)/ν(A) for any C. Together
with the triangle inequality for the Wasserstein distance, this allows us to conclude that, for any A,B ⊆ Rn,

W2(γA, γB) ≤ W2(γA, γ) +W2(γB, γ)

≤
√

2D(γA‖γ) +
√

2D(γB‖γ)

=

√
2 ln

1

γ(A)
+

√
2 ln

1

γ(B)
,

where the second inequality follows from Talagrand’s transportation inequality in (12). The proof of
Proposition 3.1 follows by taking B = Act , Rn \ At and noting that W2(γA, γAct ) ≥ t.

B. Concentration and Isoperimetry on the Sphere
We next show that the stronger transportation inequality (7) also has a natural geometric counterpart. In

particular, it implies the following concentration result on the sphere: Consider a unit sphere Sn−1 ⊆ Rn

equipped the uniform probability measure µ on Sn−1, denoted by (Sn−1, µ), where

Sn−1 = {zn ∈ Rn : ‖zn‖ = 1} .
Recall that a spherical cap with angle θ on Sn−1 is defined as a ball on Sn−1 in the geodesic metric (or
simply the angle) ∠(zn, yn) = arccos(〈zn, yn〉), i.e.,

Cap(zn0 , θ) ,
{
zn ∈ Sn−1 : ∠(zn0 , z

n) ≤ θ
}
.

We will say that an arbitrary set A ⊆ Sn−1 has an effective angle θ if µ(A) = µ(C), where C = Cap(zn0 , θ)
for some arbitrary zn0 ∈ Sn−1. In particular, using the the formula for the area of a spherical cap (see [13,
Appendix C]), we can show that if A has an effective angle θ, then as n→∞

µ(A)1/n → sin θ. (38)

Proposition 3.2: Let A ⊆ Sn−1 be an arbitrary set with effective angle θ ∈ (0, π/2]. Then for any
ω > π/2− θ,

µ(Aω)→ 1 as n→∞, (39)

where Aω is the ω-blowup of A defined as

Aω , {xn ∈ Sn−1 : ∠(zn, xn) ≤ ω for some zn ∈ A}.
As in the case of Gaussian measure concentration, the result in Proposition 3.2 is tightly related to the

isoperimetric inequality on the sphere. It is easy to see that when A is a spherical cap with angle θ, its
blowup Aπ

2
−θ+ε is also a cap (slightly bigger than a halfsphere) whose probability approaches 1 in high

dimensions. Therefore, when A is a spherical cap of angle θ, ω = π/2 − θ + ε is precisely the blowup
angle needed for Aω to approach probability 1. Proposition 3.2 asserts that the same blowup angle is
sufficient for any other set A with the same measure, therefore effectively identifying the spherical cap
as the extremal set for minimizing the measure of its blowup. We next show that Proposition 3.2 can
be derived by properly combining the strengthening (13) of Talagrand’s transportation inequality with an
argument similar to Marton’s procedure.

Proof of Proposition 3.2: Fix two sets A,B ⊆ Sn−1 with µ(A), µ(B) > 0. Define the cone extension
Ā of A as

Ā ,

{
zn ∈ Rn :

zn

‖zn‖ ∈ A
}

and define the cone extension B̄ of B similarly. It can be easily seen that the measure of A,B under µ
are the same as the measures of their cone extensions Ā, B̄ under any rotationally invariant probability
measure on Rn, and in particular, under the standard Gaussian measure γ, i.e.,

γ(Ā) = µ(A) and γ(B̄) = µ(B).
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Now define two conditional probability measures on Rn based on Ā, B̄:

γA(C) ,
γ(Ā ∩ C)

γ(Ā)
and γB(C) ,

γ(B̄ ∩ C)

γ(B̄)
(40)

for arbitrary C ⊆ Rn. Then γA, γB � γ and we have

W2(γA, γB) ≤ W2(γA, γ) +W2(γB, γ) (41)

≤

√

E[‖Xn
A‖2] + n− 2n

√
1

2πe
e

2h(XnA )

n +

√

E[‖Xn
B‖2] + n− 2n

√
1

2πe
e

2h(XnB )

n (42)

where Xn
A ∼ γA and Xn

B ∼ γB, and (41) follows from the triangle inequality and (42) follows from
Theorem 2.1. Note that the density function of Xn

A can be expressed as

dγA
dxn

(xn) =
1(xn ∈ Ā)

γ(Ā)

dγ

dxn
(xn),

and therefore the second moment E[‖Xn
A‖2 is given by

EγA [‖Xn
A‖2] =

1

γ(Ā)

∫

Rn
‖xn‖21(xn ∈ Ā)γ(dxn)

=
1

γ(Ā)
Eγ[‖Xn‖21(Xn ∈ Ā)]

=
1

γ(Ā)
Eγ[1(Xn ∈ Ā)]Eγ[‖Xn‖2] (43)

= n (44)

and the differential entropy h(Xn
A) is given by

h(Xn
A) = −EγA

[
ln

(
dγA
dxn

)]

= − 1

γ(Ā)

∫

Rn
ln

(
1

γ(Ā)

dγ

dxn
(xn)

)
1(xn ∈ Ā)γ(dxn)

=
1

γ(Ā)
Eγ
[(

n

2
ln(2π) +

1

2
‖Xn‖2 + ln(γ(Ā))

)
· 1(Xn ∈ Ā)

]

=
Eγ[1(Xn ∈ Ā)]

γ(Ā)
Eγ
[
n

2
ln(2π) +

1

2
‖Xn‖2 + ln(γ(Ā))

]
(45)

=
n

2
ln 2πe(γ(Ā))2/n

=
n

2
ln 2πe(µ(A))2/n (46)

where both (43) and (45) hold because 1(Xn ∈ Ā) is independent of ‖Xn‖2 (except when Xn = 0).
Similar expressions for E[‖Xn

B‖2] and h(Xn
B) can also be obtained and thus (42) simplifies to2

W2(γA, γB) ≤
√

2n(1− (µ(A))1/n) +
√

2n(1− (µ(B))1/n). (47)

On the other hand, we can also obtain a lower bound on W2(γA, γB). Let ∠(A,B) be the angle distance
between A and B, defined as

∠(A,B) , inf{∠(xn, yn) : xn ∈ A, yn ∈ B},
2Note that applying the original Talagrand’s inequality (12) to γA and γB here would yield W2(γA, γB) ≤

√
2 ln 1

µ(A)
+

√
2 ln 1

µ(B)

instead of (47). This inequality is weaker than (47) and follows from (47) by using the fact that lnx+ 1 ≤ x.
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and assume that ∠(A,B) ∈ [0, π/2] so cos(∠(A,B)) ≥ 0. To lower bound on W2(γA, γB), note that for
any coupling P of γA and γB we have

EP [‖Xn
A −Xn

B‖2] = EγA [‖Xn
A‖] + EγB [‖Xn

B‖]− 2EP [‖Xn
A‖‖Xn

B‖ cos(∠(XA, XB))]

≥ 2n− 2EP [‖Xn
A‖‖Xn

B‖] · cos(∠(A,B))

≥ 2n− 2n cos(∠(A,B)) (48)

where (48) follows from the Cauchy-Schwarz inequality, and therefore we can get the following lower
bound on W2(γA, γB)

W2(γA, γB) ≥
√

2n− 2n cos(∠(A,B)). (49)

Combining this with (47) gives the following inequality:
√

1− cos(∠(A,B)) ≤
√

1− (µ(A))1/n +
√

1− (µ(B))1/n. (50)

To finish the proof of Proposition 3.2, fix an arbitrary set A ⊆ Sn−1 with effective angle θ ∈ (0, π
2
]

and choose B = Acω = Sn−1 \ Aω for ω ∈ (π/2 − θ, π/2]. We will use (50) to show that µ(Acω) → 0 as
n → ∞. The proof of the proposition for larger ω, follows from the fact that µ(Aω) is increasing in ω.
Note that by definition, we have

∠(A,Acω) = ω. (51)

Plugging this into (50), and also using (38) we obtain
√

1− cosω ≤
√

1− sinθ + lim inf
n→∞

√
1− (µ(Acω))1/n. (52)

Therefore, given cosω < sin θ, i.e. ω > π/2− θ, we have

lim inf
n→∞

√
1− (µ(Acω))1/n > 0. (53)

This in turn implies that

µ(Acω)→ 0 (54)

as n→∞, which completes the proof of Proposition 3.2.

C. A New Measure Concentration Result on the Sphere
We next show that the transportation inequality for information constrained OT leads to a new con-

centration of measure result on (Sn−1, µ), which recovers Proposition 3.2 as a special case. This new
result was recently proved in [13], [12] by using Riesz’ rearrangement inequality [21] and can be stated
as follows:

Proposition 3.3: Let A ⊆ Sn−1 be an arbitrary set with effective angle θ ∈ (0, π/2]. Then for any
ω ∈ (π/2− θ, π/2] and ε > 0,

µ({yn : lnµ(A ∩ Cap(yn, ω)) > lnV (θ, ω)− nε})→ 1, (55)

in which V (θ, ω) is defined as

V (θ, ω) = µ(Cap(zn0 , θ) ∩ Cap(yn0 , ω)), (56)

where zn0 , y
n
0 are perpendicular to each other, i.e. ∠(zn0 , y

n
0 ) = π/2.
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In the proposition, V (θ, ω) corresponds to the intersection measure of two spherical caps with poles
perpendicular to each other. By using the surface area formula for the intersection of two spherical caps
in [13, Appendix C-B], one can provide an asymptotic characterization of lnV (θ, ω),

1

n
lnV (θ, ω)→ 1

2
ln(sin 2θ − cosω2), as n→∞. (57)

Note that an equivalent way to state the blowing-up lemma in Proposition 3.2 is the following: Let
A ⊆ Sn−1 be an arbitrary set with effective angle θ ∈ (0, π/2]. Then for any ω ∈ (π/2− θ, π/2],

µ({yn : µ(A ∩ Cap(yn, ω)) > 0})→ 1.

This is true because µ(A∩Cap(yn, ω)) > 0 if and only if yn ∈ Aω. Proposition 3.3 extends Proposition 3.2
by providing a lower bound on µ(A∩Cap(yn, ω)) for ω ∈ (π/2− θ, π/2]. When A itself is a cap, (55) is
straightforward and follows from the fact that Y n w.h.p. concentrates around the equator at angle π/2 from
the pole of A, and therefore the intersection of the two spherical caps is given by V w.h.p. Proposition 3.3
asserts that this intersection measure is w.h.p. lower bounded by V for any arbitrary A with the same
measure. In other words, the spherical cap not only minimizes the measure of its neighborhood as captured
by Proposition 3.2, but roughly speaking, also minimizes its intersection measure with the neighborhood
of a randomly chosen point on the sphere.

Proof of Proposition 3.3: Fix two sets A,B ⊆ Sn−1 with µ(A), µ(B) > 0. Consider their cone
extensions Ā, B̄ and the induced conditional probability measures γA, γB as defined in (40). Since γB � γ
and γ is absolutely continuous with respect to the Lebesgue measure, the optimal coupling that attains
W2(γB, γ) is a one-to-one mapping that pushes γ forward to γB. By Proposition 2.2, for any R ≥ 0 and
τ > 0 we have

W2(γA, γB;R, τ, 6n/τ 2) (58)
≤ W2(γA, γ;R, τ, 6n/τ 2) +W2(γB, γ)

≤

√

E[‖Xn
A‖2] + n− 2n

√
1

2πe
e

2h(XnA )

n

(
1− e− 2R

n

)
+

√

E[‖Xn
B‖2] + n− 2n

√
1

2πe
e

2h(XnB )

n (59)

=

√
2n
(

1− (µ(A))1/n
√

1− e−2R/n
)

+
√

2n(1− (µ(B))1/n) (60)

where Xn
A ∼ γA and Xn

B ∼ γB; (59) follows from Theorem 2.5 and Theorem 2.1; and (60) follows
because E[‖Xn

A‖2] = n and h(Xn
A) = n

2
ln 2πe(µ(A))2/n as respectively stated in (44) and (46), and

similar expressions hold for E[‖Xn
B‖2] and h(Xn

B).
On the other hand, we can also obtain a lower bound on (58). For any η ∈ [0, π], let the function α(η)

be defined as

α(η) ,
1

n

(
lnµ(A)−R− sup

yn∈B
{lnµ(Cap(yn, η) ∩ A)}

)
(61)

and for any ε > 0 define the parameter η∗ε as

η∗ε , sup{η : α(η) ≥ ε}. (62)

The following lemma states a lower bound of (58) in terms of η∗ε that will be useful for proving Proposition
3.3. The proof of this lemma will be presented after we finish the proof of Proposition 3.3.

Lemma 3.1: For any ε > 0,

W2(γA, γB;R, τ, 6n/τ 2) ≥
√

2n(1− cos η∗ε − σ(n, τ))

where σ(n, τ)→ 0 as τ/n, n/τ 2 → 0 and n→∞.
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By lemma 3.1 and (60), we get
√

1− cos η∗ε − σ(n, τ) ≤
√

1− (µ(A))1/n
√

1− e−2R/n +
√

1− (µ(B))1/n, (63)

for any ε > 0. To finish the proof of Proposition 3.3, fix an arbitrary set A ⊆ Sn−1 with effective angle
θ ∈ (0, π

2
] and let

B , {yn ∈ Sn−1 : lnµ(A ∩ Cap (yn, ω)) ≤ lnV (θ, ω)− nβ},
for some arbitrary ω ∈ (π/2− θ, π/2] and β > 0, where V (θ, ω) is as defined in (56). In the sequel, we
will use (63) to show that µ(B)→ 0 as n→∞.

To do this, we will apply (63) for a particular choice of R > 0 and ε = β
4
. Note that (38) combined

with the fact that sin θ > cosω implies that

lim
n→∞

(µ(A))1/n > cosω.

This implies that there exists a fixed φ > 0 such that for sufficiently large n

(µ(A))1/n ≥ cos(ω − φ). (64)

Therefore, letting R be

R =
n

2
ln

(µ(A))2/n

(µ(A))2/n − cos2(ω − φ)
, (65)

we have that R > 0 for n sufficiently large. We will also assume that φ > 0 is chosen sufficiently small
so that

R ≤ n

2
ln

(µ(A))2/n

(µ(A))2/n − cos2 ω
+ n

β

8
. (66)

Note that this is always possible since choosing φ smaller makes it easier to satisfy (64). With the choice
of R in (65), the first term on the R.H.S. of (63) reduces to

√
1− (µ(A))1/n

√
1− e−2R/n =

√
1− cos(ω − φ). (67)

Now we will focus on the L.H.S. of (63) and show that it can be lower bounded by
√

1− cos η∗ε − σ(n, τ) ≥
√

1− cosω − σ(n, τ)

by choosing ε = β
4
. For this, we evaluate α(η) at η = ω under our choice of A,B and R:

α(ω) =
1

n

(
− sup

yn∈B
{lnµ(Cap(yn, ω) ∩ A)}+ lnµ(A)−R

)

≥ 1

n
(nβ − lnV (θ, ω) + lnµ(A)−R). (68)

In (68), we can easily lower bound lnµ(A) by

lnµ(A) ≥ n ln sin θ − nβ
4

(69)

for n sufficiently large. Also, by using (70), we have

lnV (θ, ω) ≤ n

2
ln(sin 2θ − cos2 ω) + n

β

4
(70)

for n sufficiently large. Moreover, using (38) in (66), R can be further bounded by

R ≤ n

2
ln

sin 2θ

sin 2θ − cos2 ω
+ n

β

4
, (71)
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for n sufficiently large. Plugging (69)–(71) into (68) , we obtain

α(ω) ≥ β

4
,

and therefore

ω ≤ η∗β/4 (72)

by the definition of η∗ε and the nonincreasing property of α(η). Hence, by setting ε = β/4 on the L.H.S.
of (63) and using (72), we obtain

√
1− cos η∗β/4 − σ(n, τ) ≥

√
1− cosω − σ(n, τ). (73)

Combining (63), (67) and (73) yields
√

1− cosω − σ(n, τ) ≤
√

1− cos(ω − φ) +
√

1− (µ(B))1/n.

Setting τ = n3/4, we have τ/n, n/τ 2 → 0 as n → ∞, and thus σ(n, n3/4) → 0 as n → ∞. Therefore,
given cosω < cos(ω − φ) and for sufficiently large n, we have

µ(B) ≤
(

1−
(√

1− cosω − σ(n, n3/4)−
√

1− cos(ω − φ)

)2
)n

, (74)

which tends to zero as n→∞. This completes the proof of Proposition 3.3.

Proof of Lemma 3.1: Consider an arbitrary coupling P of (γA, γB) that satisfies the (R, τ, 6n/τ 2)-
information density constraint. To find a lower bound on W2(γA, γB;R, τ, 6n/τ 2), it suffices to lower
bound EP [‖Xn

A −Xn
B‖2], or equivalently to upper bound EP [Xn

A ·Xn
B]. Fix ε > 0 and define

F = {∠(Xn
A, X

n
B) ≥ η∗ε , (X

n
A, X

n
B) ∈ S}

where

S =
{

(xnA, x
n
B) : |‖xnA‖2 − n| ≤ τ, |‖xnB‖2 − n| ≤ τ, iP (xnA;xnB) ≤ R + τ

}
.

Then EP [Xn
A ·Xn

B] can be upper bounded by conditioning on F and F c respectively, i.e.,

EP [Xn
A ·Xn

B] = EP [Xn
A ·Xn

B|F ]P(F ) + EP [Xn
A ·Xn

B|F c]P(F c)

≤ EP [Xn
A ·Xn

B|F ] + EP [Xn
A ·Xn

B|F c]P(F c).

In the sequel, we will upper bound EP [Xn
A ·Xn

B|F ] and EP [Xn
A ·Xn

B|F c]P(F c) respectively.
First, from the definition of F , we have

EP [Xn
A ·Xn

B|F ] = EP [‖Xn
A‖‖Xn

B‖ cos(∠(Xn
A, X

n
B))|F ]

≤ (n+ τ) cos(η∗ε ). (75)

Also, by the Cauchy-Schwarz inequality, we have

EP [Xn
A ·Xn

B|F c]P(F c) ≤
√

EP [‖Xn
A‖2|F c]P(F c)

√
EP [‖Xn

B‖2|F c]P(F c)

=
√

E[‖Xn
A‖2]− EP [‖Xn

A‖2|F ]P(F )
√

E[‖Xn
B‖2]− EP [‖Xn

B‖2|F ]P(F )

≤ n− (n− τ)P(F ). (76)

To continue with (76), we need to lower bound P(F ). Since P(F ) can be written as

P(F ) = P((Xn
A, X

n
B) ∈ S)− P(∠(Xn

A, X
n
B) ≤ η∗ε , (X

n
A, X

n
B) ∈ S),
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we will bound P((Xn
A, X

n
B) ∈ S) and P(∠(Xn

A, X
n
B) ≤ η∗ε , (X

n
A, X

n
B) ∈ S) respectively.

To bound P((Xn
A, X

n
B) ∈ S), note that

P(|‖Xn
A‖2 − n| ≤ τ) =

∫

Ā

1(|‖xnA‖2 − n| ≤ r)γA(dxnA)

=
1

γ(Ā)

∫

Rn
1(|‖xn‖2 − n| ≤ τ)1(xn ∈ Ā)γ(dxn)

=
1

γ(Ā)
Eγ[1(|‖Xn‖2 − n| ≤ τ)1(Xn ∈ Ā)]

=
1

γ(Ā)
Eγ[1(|‖Xn‖2 − n| ≤ τ)]Eγ[1(Xn ∈ Ā)] (77)

= P(|‖Xn‖2 − n| ≤ τ)

≥ 1− 3n/τ 2, (78)

where Xn ∼ γ, (77) holds because 1(|‖Xn‖2 − n| ≤ τ) and 1(Xn ∈ Ā) are independent (except when
Xn = 0), and (78) follows from Chebyshev’s inequality. Similarly, P(|‖Xn

B‖2 − n| ≤ τ) ≥ 1− 3n/τ 2. In
addition, since P satisfies the (R, τ, 6τ 2/n)- information density constraint, we have

P(iP (Xn
A;Xn

B) ≤ R + τ) ≥ 1− 6n/τ 2.

Therefore, by the union bound we have

P((Xn
A, X

n
B) ∈ S) ≥ 1− 12n/τ 2. (79)

To upper bound P(∠(Xn
A, X

n
B) ≤ η∗ε , (X

n
A, X

n
B) ∈ S), we have

P(∠(Xn
A, X

n
B) ≤ η∗ε , (X

n
A, X

n
B) ∈ S)

=

∫

B̄

∫

Ā

fXn
A|X

n
B

(xnA|xnB)1 ((xnA, x
n
B) ∈ S,∠(xnA, x

n
B) ≤ η∗ε ) dx

n
AfXn

B
(xnB)dxnB

≤
∫

B̄

∫

Ā

eR−h(γA)+ 3
2
τ1((xnA, x

n
B) ∈ S,∠(xnA, x

n
B) ≤ η∗ε )dx

n
AfXn

B
(xnB)dxnB (80)

≤
∫

B̄

eR−h(γA)+ 3
2
τe−nε+h(γA)−R+ 1

2
τ+nε1fXn

B
(xnB)dxnB (81)

= e−n(ε− 2τ
n
−ε1)

≤ ε2, (82)

where ε1 → 0 as n→∞, and ε2 → 0 as n→∞ and τ
n
→ 0. In the above, (80) holds because for each

(xnA, x
n
B) ∈ S ∩ (Ā× B̄), the conditional density fXn

A|X
n
B

(xnA|xnB) satisfies

fXn
A|X

n
B

(xnA|xnB) = eiP (xnA;xnB)fXn
A

(xnA)

≤ eR+τe−
n
2

ln(2πeµ(A)2/n)+ 1
2

(n−‖xnA‖
2) (83)

≤ eR−h(γA)+ 3
2
τ , (84)

where (83) and (84) follows from the facts that iP (xnA;xnB) ≤ R+ τ and |‖xnA‖2−n| ≤ τ respectively by
the definition of S. Inequality (81) holds because for each xnB ∈ B̄, we have

∫

Ā

1((xnA, x
n
B) ∈ S,∠(xnA, x

n
B) ≤ ηnε )dxnA ≤ µ(A ∩ Cap(xnB, η

∗
ε ))|B(0,

√
n+ τ)|

≤ µ(A ∩ Cap(xnB, η
∗
ε ))e

n
2

ln(2πe)+ 1
2
τ+nε1 (85)

≤ e−nα(η∗ε )+ln(µ(A))−Re
n
2

ln(2πe)+ 1
2
τ+nε1 (86)
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≤ e−nε+ln(µ(A))−Re
n
2

ln(2πe)+ 1
2
τ+nε1 (87)

= e−nε+h(γA)−R+ 1
2
τ+nε1 ,

where |B(0,
√
n+ τ) = {xn : ‖xn‖ ≤ √n+ τ}| denotes the volume of the Euclidean ball with center 0

and radius
√
n+ τ . Here, (85) holds because from [13, Lemma 13], we have

|B(0,
√
n+ τ)| ≤ e

n
2

ln(2πe(1+ τ
n

))+nε1 ≤ e
n
2

ln 2πe+ 1
2
τ+nε1 ,

where the last inequality uses the fact ln(1 + a) ≤ a for any a ≥ 0, (86) follows from the definition of
α(η), and (87) holds because α(η) is continuous in η by Lemma D.1 and hence α(η∗ε ) ≥ ε.

Combining (79) and (82), we have

P(F ) ≥ 1− 12n/τ 2 − ε2
≥ 1− ε3 (88)

where ε3 → 0 as n→∞, n/τ 2 → 0 and τ/n→ 0. Combining (75), (76) and (88), we have

EP [Xn
A ·Xn

B] ≤ n(cos η∗ε + σ(n, τ)) (89)

where σ(n, τ)→ 0 as n→∞, n/τ 2 → 0 and τ/n→ 0, and therefore

EP [‖Xn
A −Xn

B‖2] ≥ 2n(1− cos η∗ε − σ(n, τ)).

Since the above inequality holds for any coupling P of (γA, γB) that satisfies the (R, τ, 6n/τ 2)-information
constraint, we can conclude that

W2(γA, γB;R, τ, 6n/τ 2) ≥ 2n(1− cos η∗ε − σ(n, τ)).

This completes the proof of Lemma 3.1.

IV. AN APPLICATION TO NETWORK INFORMATION THEORY

We next demonstrate an application of our transportation inequalities in network information theory. In
particular, we show that the information constrained transportation inequality can be used to recover the
recent solution of a problem posed by Cover in 1987 [14] regarding the capacity of the relay channel.

To describe Cover’s problem, consider a Gaussian primitive relay channel given by
{
Z = X +W1

Y = X +W2

where X denotes the source signal constrained to average power P , Z and Y denote the received signals
of the relay and the destination respectively, and W1 ∼ N (0, N) and W2 ∼ N (0, 1) are Gaussian noises
that are independent of each other and X . The relay channel is “primitive” in the sense that the relay is
connected to the destination with an isolated bit pipe of capacity C0. Let C(C0) denote the capacity of
this relay channel as a function of C0. What is the critical value of C0 such that C(C0) first equals C(∞)?
This is problem posed by Cover in Open Problems in Communication and Computation, Springer-Verlag,
1987 [14], which he calls “The Capacity of the Relay Channel”.

This question was answered in a recent work [13], [15], which shows that C(C0) can not be equal to
C(∞) unless C0 =∞, regardless of the SNR of the Gaussian channels. This result follows as a corollary
to a new upper bound developed in [13], [15] on the capacity of this channel, which builds on a strong
data processing inequality (SDPI) for a specific Markov chain. The proof of this SDPI in [13], [15] is
geometric and heavily relies on the new measure concentration result stated in Proposition 3.3. We next
show that the transportation inequality we develop in the current paper can also be used to establish this
SDPI providing a much shorter and simpler proof. We now state the SDPI and briefly illustrate how it
leads to a new upper bound on the relay channel. We then prove it by using the conditional version of
the information constrained transportation inequality as stated in Theorem 2.4.
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A. A Strong Data Processing Inequality
Consider a long Markov chain

Y n −Xn − Zn − Un, (90)

with Zn = Xn+W n
1 and Y n = Xn+W n

2 , where E[‖Xn‖2] = nP , W n
1 ∼ N (0, NIn), W n

2 ∼ N (0, In), and
Xn,W n

1 ,W
n
2 are mutually independent. For this long Markov chain, the following SDPI was established

in [13], [15] and is the key step in resolving Cover’s problem.
Proposition 4.1: For the Markov chain described in (90), if I(Zn;Un|Y n) ≤ nC0, then I(Xn;Un|Y n)

is upper bounded by

I(Xn;Un|Y n) ≤ max
C′∈[0,C0]

min
r>0

n

2
ln
P (N + 1− 2e−C

′√
N(1− e−2r)) +N(1− e−2C′(1− e−2r))

(P + 1)Ne−2r
. (91)

Proposition 4.1 allows us to derive a new upper bound on the relay channel. In particular, if we use
Un to denote the relay’s transmission over the bit pipe, then it is easy to see that Y n −Xn − Zn − Un
for the relay channel satisfies the conditions of the Markov chain described in (90), and

I(Zn;Un|Y n) = H(Un|Y n)−H(Un|Zn, Y n) ≤ H(Un) ≤ nC0.

Therefore, by Fano’s inequality and Proposition 4.1 we can bound C(C0) by

nC(C0) ≤ I(Xn;Y n, Un) + nε

= I(Xn;Y n) + I(Xn;Un|Y n) + nε

≤ max
C′∈[0,C0]

min
r>0

n

2
ln
P (N + 1− 2e−C

′√
N(1− e−2r)) +N(1− e−2C′(1− e−2r))

Ne−2r
+ nε (92)

where we have used the simple fact that I(Xn;Y n) ≤ n
2

ln(1 + P ). The upper bound in (92) resolves
Cover’s problem as one can easily verify that it is strictly smaller than nC(∞) for any finite C0.

B. Proof of SDPI via Transportation Inequality
To prove Proposition 4.1, we need the following lemma, which is a consequence of the conditional

transportation inequality stated in Theorem 2.4.
Lemma 4.1: For the Markov chain (90), if I(Zn;Un|Xn) = nC ′ for some C ′ ≥ 0, then for any r > 0

there exists a random vector Z̄n such that:
1) PXn,Z̄n,Un = PXn,Zn,Un;
2) E[Z̄n · Y n] ≥ n(P +

√
N(1− e−2r)e−C

′
);

3) I(Z̄n;Y n|Xn, Un) ≤ nr.

Proof: Lemma 4.1 follows immediately from Theorem 2.4 by setting T = (Xn, Un). In particular,
noting that the random vector W n

2 = Y n −Xn ∼ N (0, In) and is independent of (Xn, Un), we have by
Theorem 2.4 that

W 2
2 (PZn|Xn,Un , PY n−Xn|Xn,Un|PXn,Un ;nr) ≤ E[‖Zn‖2] + n− 2n

√
1− e−2r

√
1

2πe
e

2
n
h(Zn|Xn,Un).

Therefore, there exists a random vector Z̄n such that

(Z̄n, Xn, Un) ∼ PZn,Xn,Un ,

I(Z̄n;Y n|Xn, Un) ≤ nr,

E[Z̄n · (Y n −Xn)] ≥ n
√

1− e−2r

√
1

2πe
e

2
n
h(Zn|Xn,Un). (93)
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This proves 1) and 3) of Lemma 4.1. To show 2) of Lemma 4.1, note that

E[Z̄n · Y n] = E[Z̄n · (Y n −Xn)] + E[Z̄n ·Xn]

≥ n
√

1− e2r

√
1

2πe
e

2
n
h(Zn|Xn,Un) + E[Zn ·Xn] (94)

= n
√

1− e2r
√
Ne−2C′ + nP (95)

= n(P +
√
N(1− e−2r)e−C

′
)

where (94) follows from (93) and the fact that (Z̄n, Xn) ∼ PZn,Xn , and (95) holds because

h(Zn|Xn, Un) = h(Zn|Xn)− I(Zn;Xn|Un) =
n

2
ln 2πeNe−2C′ .

This completes the proof of Lemma 4.1.
We now use Lemma 4.1 to prove Proposition 4.1. Assuming that for the Markov chain (90),

I(Zn;Un|Xn) = nC ′

for some C ′ ≥ 0, we can create an auxiliary random vector Z̄n coupled with Xn, Un, Y
n so as to satisfy

the properties in Lemma 4.1. Therefore, we have

I(Xn;Un|Y n)

= I(Z̄n;Un|Y n) + I(Xn;Un|Y n, Z̄n)− I(Z̄n;Un|Y n, Xn)

= I(Z̄n;Un|Y n) + h(Un|Y n, Z̄n)− h(Un|Y n, Xn)

≤ I(Z̄n;Un|Y n) + h(Un|Z̄n)− h(Un|Xn)

= I(Z̄n;Un|Y n)− I(Z̄n;Un|Xn) (96)
= h(Z̄n|Y n)− h(Z̄n|Y n, Un)− I(Z̄n;Un|Xn) (97)

where (96) follows because PXn,Z̄n,Un = PXn,Zn,Un by 1) of Lemma 4.1 and thus Xn − Z̄n − Un forms
a Markov chain. In the following, we will bound the first two terms in (97) respectively. (Note that this
bounding process precisely mirrors the packing argument used in the geometric proof of [13] and [15],
and provides an interpretation of the packing argument in terms of auxiliary random variables.)

To bound the first term in (97), we have for any r > 0,

h(Z̄n|Y n) = h

(
Z̄n − E[Z̄n · Y n]

E[‖Y n‖2]
Y n
∣∣∣Y n

)

≤ h

(
Z̄n − E[Z̄n · Y n]

E[‖Y n‖2]
Y n

)

≤ n

2
ln

2πe

n
E

[∥∥∥∥Z̄n − E[Z̄n · Y n]

E[‖Y n‖2]
Y n

∥∥∥∥
2
]

=
n

2
ln

2πe

n

(
E[‖Z̄n‖2]− E[Z̄n · Y n]2

E[‖Y n‖2]

)

≤ n

2
ln 2πe

P (N + 1− 2e−C
′√
N(1− e−2r)) +N(1− e−2C′(1− e−2r))

P + 1
(98)

where in the last step we have used 2) of Lemma 4.1. To bound the second term in (97), we have for
any r > 0,

h(Z̄n|Y n, Un) ≥ h(Z̄n|Y n, Un, X
n)

= h(Z̄n|Un, Xn)− I(Z̄n;Y n|Un, Xn)

= h(Z̄n|Xn)− I(Z̄n;Un|Xn)− I(Z̄n;Y n|Un, Xn)
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≥ n

2
ln 2πeN − nC ′ − nr

=
n

2
ln 2πNe1−2(C′+r) (99)

where the second inequality follows from 3) of Lemma 4.1.
Plugging (98)–(99) into (97) gives a bound on I(Xn;Un|Y n) in terms of the value of I(Zn;Un|Xn) =

nC ′ that holds for any r > 0. Therefore, the bound can be tightened by minimizing over r > 0. The value
C ′ is unknown, but due to the Markov chain (90) we have

I(Zn;Un|Xn) ≤ I(Zn;Un|Y n) ≤ nC0.

The bound in Proposition 4.1 follows by taking a maximum over C ′ ∈ [0, C0].

APPENDIX A
COMPARISON OF (12) AND (13)

Given PY n = N (0, In) and PZn � PY n , let fY n and fZn denote their respective densities. Then we
have

R.H.S. of (12) = 2E
[
ln
fZn(Zn)

fY n(Zn)

]

= 2E[ln fZn(Zn)]− 2E
[
ln

1

(2π)n/2
exp

(
−‖Z

n‖2

2

)]

= −2h(Zn) + n ln 2π + E[‖Zn‖2]

= E[‖Zn‖2] + n− 2n

[
1

2

(
2

n
h(Zn)− ln 2πe

)
+ 1

]

= E[‖Zn‖2] + n− 2n

[
ln

√
1

2πe
e

2
n
h(Zn) + 1

]

≥ E[‖Zn‖2] + n− 2n

√
1

2πe
e

2
n
h(Zn)

= R.H.S. of (13)

where the inequality follows from ln a + 1 ≤ a and holds with equality iff
√

1
2πe
e

2
n
h(Zn) = 1, i.e.

h(Zn) = n
2

ln 2πe.

APPENDIX B
ON THE TIGHTNESS OF (15)

Here we show that the inequality in (15) is achieved with equality when PY n = N (0, In) and PZn =
N (µ, σ2In) for some µ and σ2. Specifically, for any coupling P ∈ Π(PZn , PY n) with IP (Zn;Y n) ≤ R,
we have

R ≥ h(Zn)− hP (Zn|Y n)

= h(Zn)− hP
(
Zn − EP [Zn · Y n]2

E[‖Y n‖2]
Y n
∣∣∣Y n

)

≥ h(Zn)− hP
(
Zn − EP [Zn · Y n]2

E[‖Y n‖2]
Y n

)

≥ h(Zn)− n

2
ln

2πe

n
EP

[∥∥∥∥Zn − EP [Zn · Y n]

E[‖Y n‖2]
Y n

∥∥∥∥
2
]
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= h(Zn)− n

2
ln

2πe

n

(
E[‖Z̄n‖2]− EP [Z̄n · Y n]2

E[‖Y n‖2]

)

=
n

2
ln 2πeσ2 − n

2
ln 2πe

(
σ2 − EP [Zn · Y n]2

n2

)

= −n
2

ln

(
1− EP [Zn · Y n]2

n2σ2

)
,

i.e.,

EP [Zn · Y n] ≤ n

√
σ2(1− e− 2R

n ) = n

√
1

2πe
e

2
n
h(Zn)(1− e− 2R

n ).

Therefore, for any coupling P ∈ Π(PZn , PY n) with IP (Zn;Y n) ≤ R, we have

EP [‖Zn − Y n‖2] = E[‖Zn‖2] + E[‖Y n‖2]− 2EP [Zn · Y n]

≥ R.H.S. of (15),

and thus,

W 2
2 (PZn , PY n ;R) = inf

P∈Π(PZn ,PY n ):
IP (Zn;Y n)≤R

EP [‖Zn − Y n‖2] ≥ R.H.S. of (15).

Combining this with inequality (15) itself, we can conclude that

W 2
2 (PZn , PY n ;R) = R.H.S. of (15)

when PY n = N (0, In) and PZn = N (µ, σ2In) for some µ and σ2.

APPENDIX C
PROOF OF PROPOSITION 2.2

Let (X1, X2, X3) ∼ P be a coupling of (µ1, µ2, µ3) such that
1) X1 = g(X2) where g is a one-to-one mapping and (g(X2), X2) is an optimal coupling of (µ1, µ2)

that attains Wp(µ1, µ2), i.e.,

Wp(µ1, µ2) = {EP [dp(X1, X2)]}1/p ;

2) (X2, X3) is an optimal coupling of (µ2, µ3) under the (R, τ, δ)-information density constraint that
attains Wp(µ2, µ3;R, τ, δ), i.e.,

Wp(µ2, µ3;R, τ, δ) = {EP [dp(X2, X3)]}1/p .

From the above two conditions, it follows that (X1, X3) is a coupling of (µ1, µ3) that also satisfies the
(R, τ, δ)-information density constraint. Indeed, since X1 and X2 are one-to-one mappings of each other,
we have

IP (X1;X3) = IP (X2;X3) ≤ R

and

P(|iP (X1;X3)− IP (X1;X3)| ≤ τ) = P(|iP (X2;X3)− IP (X2;X3)| ≤ τ) > 1− δ.
Therefore, we have

Wp(µ1, µ3;R, τ, δ) ≤ EP [d(X1, X3)p]1/p

≤ EP [(d(X1, X2) + d(X2, X3))p]1/p

≤ EP [d(X1, X2)p]1/p + EP [d(X2, X3)p]1/p (100)
= Wp(µ1, µ2) +Wp(µ2, µ3;R, τ, δ)

where (100) follows from the Minkowski inequality. This completes the proof of Proposition 2.2.
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APPENDIX D
CONTINUITY OF α(η)

Lemma D.1: The function α(η) defined in (61) is continuous in η.
Proof: Rewrite α(η) as

α(η) =
1

n

(
− sup

xn∈B
{lnµ(Cap(xn, η) ∩ A)}+ ln(µ(A))−R

)

=
1

n

(
− ln

(
sup
xn∈B
{µ(Cap(xn, η) ∩ A)}

)
+ ln(µ(A))−R

)
.

To prove α(η) is continuous in η, it suffices to show

sup
xn∈B

µ(Cap(xn, η) ∩ A) (101)

is continuous in η.
For any ε > 0, we have

∣∣∣∣ sup
xn∈B

µ(Cap(xn, η + ε) ∩ A)− sup
xn∈B

µ(Cap(xn, η) ∩ A)

∣∣∣∣
= sup

xn∈B
µ(Cap(xn, η + ε) ∩ A)− sup

xn∈B
µ(Cap(xn, η) ∩ A)

= sup
xn∈B

{
µ(Cap(xn, η + ε) ∩ A)− sup

xn∈B
µ(Cap(xn, η) ∩ A)

}

≤ sup
xn∈B

{
µ(Cap(xn, η + ε) ∩ A)− µ(Cap(xn, η) ∩ A)

}

= sup
xn∈B

µ((Cap(xn, η + ε) \ Cap(xn, η)) ∩ A)

≤ sup
xn∈B

µ(Cap(xn, η + ε) \ Cap(xn, η))

≤ δ(ε) (102)

for some δ(ε) → 0 as ε → 0, and therefore we have shown the right-continuity of (101). Similarly, we
can show the left-continuity of (101). This proves the lemma.
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