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Abstract—Consider a memoryless relay channel, where the
channel from the relay to the destination is an isolated bit pipe of
capacity C0. Let C(C0) denote the capacity of this channel as a
function of C0. What is the critical value of C0 such that C(C0)
first equals C(∞)? This is a long-standing open problem posed by
Cover and named “The Capacity of the Relay Channel,” in Open
Problems in Communication and Computation, Springer-Verlag,
1987. In our recent work, we answered this question in the case
when the channels from the source to the relay and destination
are symmetric, which is the original assumption imposed by
Cover, and when these channels are Gaussian. We showed that
C(C0) can not equal to C(∞) unless C0 =∞, regardless of the
SNR of the Gaussian channels, while the cut-set bound would
suggest that C(∞) can be achieved at finite C0.

In this paper, we show that our techniques for solving Cover’s
problem can be naturally extended to the general Gaussian case,
where the channels from the source to the relay and destination
may be asymmetric, and prove an upper bound on the capacity
C(C0) of a general Gaussian relay channel for any C0. This
upper bound immediately implies that our previous conclusion,
i.e. C(C0) can not equal to C(∞) unless C0 =∞, also holds in
the asymmetric case. Our approach is geometric and relies on
a strengthening of the isoperimetric inequality on the sphere by
using the Riesz rearrangement inequality.

I. INTRODUCTION, PROBLEM SETUP AND RESULTS

Consider a simple relay channel as depicted in Fig. 1,
where the source’s input X is received by the relay Z and
the destination Y through a channel p(y, z|x), and the relay
Z can communicate to the destination Y via an isolated bit
pipe of capacity C0. A (2nR, n) code for this channel consists
of an encoding function Xn : [1 : 2nR] → Xn, a relay
function fn : Zn → [1 : 2nC0 ] and a decoding function
gn : Yn × [1 : 2nC0 ] → [1 : 2nR]. The average probability
of error of the code is defined as

P (n)
e = Pr(gn(Y n, fn(Zn)) 6=M),

where the message M is assumed to be uniformly drawn from
the message set [1 : 2nR]. A rate R is said to be achievable if
there exists a sequence of (2nR, n) codes such that the average
probability of error P (n)

e → 0 as n → ∞. The capacity of
the relay channel is the supremum of all achievable rates,
denoted by C(C0). Obviously, C(C0) is a non-decreasing
function in C0, and we have C(0) = maxp(x) I(X;Y ) and
C(∞) = maxp(x) I(X;Y,Z).

Characterizing C(C0) for this channel has proven to be very
difficult after decades of significant research efforts [1]–[3].
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Fig. 1. A relay channel.

A seemingly less demanding question that we believe still
captures a lot of the difficulties in the problem is the one
posed by Cover, and indeed named “The Capacity of the Relay
Channel” by him, in Open Problems in Communication and
Computation, Springer-Verlag, 1987 [4]. Specifically, assum-
ing Z and Y are conditionally independent and identically
distributed given X , Cover asked: “What is the critical value
of C0 such that C(C0) first equals C(∞)?” In other words,
we are interested in characterizing

C∗0 := inf{C0 : C(C0) = C(∞)}, (1)

i.e., the minimum rate needed for the Z-Y link so that the
maximum possible rate C(∞), corresponding to full cooper-
ation between the relay and the destination, can be achieved.

A. Main Result
In our recent work [5], we answered this long-standing

open question in the Gaussian case. In particular, consider a
Gaussian relay channel as depicted in Fig. 2, in which

{
Z = X +W1

Y = X +W2

with X being constrained to average power P , i.e.1,

E[‖Xn‖2] = 1

2nR

2nR∑

m=1

‖xn(m)‖2 ≤ nP, (2)

and W1 ∼ N (0, N1),W2 ∼ N (0, N2) representing Gaussian
noises that are independent of each other and X . When Z and
Y are conditionally i.i.d. given X , i.e. when N1 = N2 =: N ,
we observe that

C(∞) =
1

2
log

(
1 +

2P

N

)
.

Moreover, the cut-set bound [2] yields the following lower
bound on C∗0 :

C∗0 ≥
1

2
log

(
1 +

2P

N

)
− 1

2
log

(
1 +

P

N

)
,

1Note that this constraint is less stringent than requiring ‖xn(m)‖2 ≤
nP, ∀m ∈ [1 : 2nR].

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 2233



X

Z

Y

W1 ⇠ N (0, N1)

W2 ⇠ N (0, N2)
C0

Fig. 2. A Gaussian relay channel.

which may lead one to suspect that C(∞) could be achieved at
finite C0. Surprisingly, however, it turns out that C(C0) cannot
equal C(∞) unless C0 = ∞, regardless of the SNR = P

N
of the Gaussian channels. Formally, we have the following
theorem.

Theorem 1.1 ([5]): For the Gaussian relay channel depicted
in Fig. 2, C∗0 =∞ when N1 = N2.

In this paper, we further consider the general Gaussian case
when Z and Y are independently Gaussian given X but not
necessarily have the same variance, i.e. N1 and N2 may be
different. We show that our approach developed in [5] for
solving Cover’s problem can be naturally extended to this
general case and leads to an upper bound on the capacity
C(C0) of the channel for any C0 under any configuration
of (P,N1, N2). This upper bound is formally stated in the
following theorem.

Theorem 1.2: For a general Gaussian relay channel as
depicted in Fig. 2, the capacity C(C0) satisfies





C(C0) ≤
1

2
log

(
1 +

P

N2

)
+ C0 + log sin θ (3)

C(C0) ≤
1

2
log

(
1 +

P

N2

)
+ min
ω∈(π2−θ,π2 ]

hθ(ω), (4)

for some θ ∈
[
arcsin 2−C0 , π2

]
, where hθ(ω) is defined to be

1

2
log

([
P (N1 +N2) +N1N2sin2ω − 2P

√
N1N2cosω

]
sin 2θ

N1(P +N2)(sin2θ − cos2 ω)

)
.

In Fig. 3 we plot the upper bound in Theorem 1.2 (label:
New bound) for the symmetric case when N1 = N2 = N
under three different values of the SNR = P

N of the Gaussian
channels, together with the celebrated cut-set bound [2] and
an upper bound on the capacity of this channel we have
previously derived in [10] (label: Old bound). For reference,
we also provide the rate achieved by a compress-and-forward
relay strategy (label: C-F), which employs Gaussian input
distribution at the source combined with Gaussian quantization
and Wyner-Ziv binning at the relay. Note that from these
figures one can visually observe that the new upper bound
reaches the value C(∞) only as C0 →∞, which leads to the
conclusion in Theorem 1.1. In fact, as we will show in the next
section, the new upper bound in Theorem 1.2 directly bounds
the capacity C(C0) of a general Gaussian relay channel away
from C(∞) for any finite C0, and thus resolves Cover’s
problem regarding C∗0 for the more general asymmetric case.
In particular, we have the following corollary.

Corollary 1.1: For a general Gaussian relay channel as
depicted in Fig. 2, C∗0 =∞.

Due to space constraints, in this paper we only provide a
proof sketch for Theorem 1.2. The proof details can be found
in the long version posted on arxiv [6], however note that this
long version only focuses on the symmetric case of N1 = N2.

B. Approach

Our approach builds on the method we developed in our
earlier work [7]–[11] for characterizing information tensions
in a Markov chain by using high-dimensional geometry. The
main idea is to study the geometry of the high-dimensional
typical sets associated with the random variables in the Markov
chain and then translate this high-dimensional geometry to
information inequalities for the random variables. The main
geometric tool employed in our previous work [7]–[11] was
the so-called blowing-up lemma. In the current paper, our main
geometric ingredient is a strengthening of the isoperimetric
inequality on a high-dimensional sphere, which we developed
in [5] by building on the Riesz rearrangement inequality.
The classical isoperimetric inequality on the sphere states that
among all sets on the sphere with a given volume the spherical
cap has the smallest boundary or more generally the smallest
volume of neighborhood. In [5] (see also [6]), we showed
that the spherical cap is the extremal set not only in terms
of minimizing the volume of its neighborhood, but roughly
speaking also in terms of minimizing its total intersection
volume with a ball drawn around a randomly chosen point
on the sphere.

II. PROOFS

The proof of Theorem 1.2 follows from the below lemma,
which is the main technical focus of this paper and whose
proof is outlined in Section II-C. We now state this lemma
and show how it leads to the bound in Theorem 1.2, which is
then used to establish Corollary 1.1.

Lemma 2.1: Let In be an integer random variable and
Xn, Y n and Zn be n-length random vectors which form the
Markov chain In−Zn−Xn−Y n. Assume moreover that Zn

and Y n are independent white Gaussian vectors given Xn such
that Zn ∼ N (Xn, N1 In×n) and Y n ∼ N (Xn, N2 In×n)
where In×n denotes the identity matrix, and E[‖Xn‖2] = nP ,
and In = fn(Z

n) is a deterministic mapping of Zn to a
set of integers. Let H(In|Xn) be denoted by −n log sin θn,
i.e., define θn := arcsin 2−

1
nH(In|Xn). Then the inequality

(5) holds for any n.

A. Proof of Theorem 1.2

Suppose a rate R is achievable. Then there exists a sequence
of (2nR, n) codes such that the average probability of error
P

(n)
e → 0 as n → ∞. Let the relay’s transmission be

denoted by In = fn(Z
n). By standard information theoretic

arguments, for this sequence of codes we have

nR ≤ I(Xn;Y n, In) + nµ (6)
= I(Xn;Y n) + I(Xn; In|Y n) + nµ

= I(Xn;Y n) +H(In|Y n)−H(In|Xn) + nµ (7)
≤ nI(XQ;YQ) +H(In|Y n)−H(In|Xn) + nµ (8)
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Fig. 3. Upper bounds and achievable rates for the Gaussian relay channel.

H(In|Y n) ≤ n · min
ω∈(π2−θn,π2 ]

1

2
log

(
P (N1 +N2) +N1N2sin2ω − 2P

√
N1N2cosω

N1(P +N2)(sin2θn − cos2 ω)

)
. (5)

≤ n

2
log

(
1 +

P

N2

)
+H(In|Y n)−H(In|Xn) + nµ, (9)

for any µ > 0 and n sufficiently large. In the above, (6) follows
from Fano’s inequality, (7) uses the fact that In −Xn − Y n
form a Markov chain and thus H(In|Xn, Y n) = H(In|Xn),
(8) follows by defining the time sharing random variable Q to
be uniformly distributed over [1 : n], and (9) follows because
E[X2

Q] ≤ P .
Now we use Lemma 2.1 to upper bound the difference

H(In|Y n) − H(In|Xn) in (9). We start by verifying that
the random variables In, Xn, Zn and Y n associated with a
code of blocklength n satisfy the conditions in the lemma.
It is trivial to observe that they satisfy the required Markov
chain condition and Zn and Y n are independently Gaussian
given Xn due to the channel structure. Note also that without
loss of generality we can assume that the code satisfies the
average power constraint in (2) with equality, because given
a (2nR, n) code with average probability of error P (n)

e and
E[‖Xn‖2] = nP ′ < nP , we can always scale up the
codewords by a factor of

√
nP/nP ′ and achieve an average

probability of error smaller than or equal to P (n)
e .

Therefore, applying Lemma 2.1 to the random variables
associated with a code for the relay channel, we can bound
the difference of the two entropy terms in (9) and conclude
that for any achievable rate R,

R ≤ 1

2
log

(
1 +

P

N2

)
+ min
ω∈(π2−θn,π2 ]

hθn(ω) + µ, (10)

where hθn(ω) is defined similarly as in Theorem 1.2, with
θn := arcsin 2−

1
nH(In|Xn) satisfying

θ0 := arcsin 2−C0 ≤ arcsin 2−
1
nH(In|Xn) = θn ≤

π

2
. (11)

At the same time, for any achievable rate R, we also have

R ≤ 1

2
log

(
1 +

P

N2

)
+ C0 + log sin θn + µ, (12)

which simply follows from (9) by upper bounding H(In|Y n)
with nC0 and plugging in the definition of θn. Combining (10)
and (12) concludes the proof of the theorem.

B. Proof of Corollary 1.1

To see Theorem 1.2 implies Corollary 1.1, consider the
second bound (4) on C(C0) in Theorem 1.2. Note that for
any θ > 0, the function hθ(ω) in (4) satisfies

hθ

(π
2

)
=

1

2
log

P (N1 +N2) +N1N2

N1(P +N2)

= C(∞)− 1

2
log

(
1 +

P

N2

)
(13)

and hθ(ω) is increasing at π
2 , or more precisely, h′θ

(
π
2

)
> 0.

Therefore, as long as θ > 0, which is the case when C0 is
finite, the minimization of hθ(ω) with respect to ω in (4) yields
a value strictly smaller than hθ

(
π
2

)
in (13), and thus C(C0)

for any finite C0 is strictly smaller than C(∞).

C. Proof Outline for Lemma 2.1

Recall that Lemma 2.1 upper bounds H(In|Y n) in terms
of H(In|Xn) in a Markov chain In − Zn − Xn − Y n,
where Zn and Y n are independent Gaussian vectors given
Xn, E[‖Xn‖2] = nP and In = fn(Z

n) is a deterministic
mapping of Zn to a set of integers. Interestingly, although this
result itself is stated for random variables in n dimensions, to
prove it we will take a lifting step to a higher dimensional
space and look at the i.i.d. extensions of the random variables
Xn, Y n, Zn and In. Specifically, we consider the following
B-length i.i.d. sequence

{(Xn(b), Y n(b), Zn(b), In(b))}Bb=1, (14)

where for any b ∈ [1 : B], (Xn(b), Y n(b), Zn(b), In(b))
has the same distribution as (Xn, Y n, Zn, In). For notational
convenience, in the sequel we write the B-length sequence
[Xn(1), Xn(2), . . . , Xn(B)] as X and similarly define Y,Z
and I; note that here we have

I = [fn(Z
n(1)), fn(Z

n(2)), . . . , fn(Z
n(B))] =: f(Z).
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Fig. 4. A spherical cap with angle θn.

Now with a standard typicality argument, it can be shown
that if H(In|Xn) is fixed to be −n log sin θn, then as B gets
large for any typical (x, i) pair, we have

p(i|x) = Pr(f(Z) = i|x) .= 2nB log sinθn . (15)

Since given x, typical z sequences will be approximately
uniformly distributed on an ε-thin spherical shell centered at
x and of radius

√
nBN1, denoted as

Shell
(
x,
√
nB(N1 ± ε)

)

:=
{
a ∈ RnB : ‖a− x‖ ∈

[√
nB(N1 − ε),

√
nB(N1 + ε)

]}
,

the relation (15) can be used to argue that the set of z’s jointly
typical with x that are mapped to the given i, denoted by

Ax(i) =
{
z ∈ Shell

(
x,
√
nB(N1 ± ε)

)
: f(z) = i

}
,

will occupy a volume

|Ax(i)| .= 2nB(
1
2 log 2πeN1sin2θn), (16)

on this thin shell.
Assume now that the set Ax(i) were a spherical cap

as illustrated in Fig. 4. In general, a spherical cap on
Shell

(
x,
√
nB(N1 ± ε)

)
can be defined as a ball in terms

of the angle, i.e.,

Cap(z0, φ) =
{
z ∈ Shell

(
x,
√
nB(N1 ± ε)

)
: ∠(z0, z) ≤ φ

}

where we will refer to z0 as the pole and φ as the angle
of the cap. Using the volume formula for the hyperspherical
cap and characterizing the exponent of such a volume (c.f. [6,
Appx. A]), it can be shown that the volume in (16) would
correspond to an angle of θn for the spherical cap. Now, a
straightforward computation would yield the following result:
Let Vn = |Cap(z0, θn)∩Cap(z1, ωn)| where ∠(z0, z1) = π/2
and θn + ωn > π/2. Then,

Pr
(
|Ax(i) ∩ Cap(Z, ωn)|

.
≥ Vn

∣∣∣x
)
→ 1 as B →∞. (17)

In words, if we take a z uniformly at random on the shell and
draw a spherical cap centered at z with angle ωn > π/2− θn,
then with high probability the intersection volume of this cap
with the cap Ax(i) will be approximately lower bounded

z0

x

✓n

Cap(z0, ✓n)

 !n

  

z1

Cap(z1, !n)

Cap(z0, ✓n) \ Cap(z1, !n)

p
nBN1

Fig. 5. Intersection of two spherical caps.

by Vn. This statement follows from the fact that in high
dimensions most of the volume of the shell is concentrated
around any equator, and in particular the equator at angle π/2
from the pole of Ax(i). Therefore, as the dimension nB gets
large, for almost all z’s, the intersection volume of the two
spherical caps will be approximately given by Vn (see Fig. 5),
which can be shown to be

Vn
.
= 2nB(

1
2 log 2πeN1(sin2θn−cos2 ωn)),

by using the volume formula for the intersection of two
hyperspherical caps and characterizing the exponent of this
volume (c.f. [6, Appx. B]). One of the main technical steps we
develop in [5] (see also [6]) is to show that the statement (17)
holds for any arbitrary set Ax(i) with volume given in (16),
not only when Ax(i) is a spherical cap as we assumed above.
Note that this is proved by using the Riesz rearrangement
inequality to strengthen the isoperimetric inequality on the
sphere and show that the spherical cap is the extremal set, not
only for minimizing the volume of its neighborhood as done
by the classical isoperimetric inequality, but also the extremal
set when one is interested in minimizing the total intersection
volume at given distance.

Next we translate the probabilistic statement (17) with
respect to Z to that with respect to Y. Particularly, for any
Z let Z′ =

√
N2/N1Z. Since given x the typical z’s lie on

a thin shell centered at x and of radius
√
nBN1, the scaled

version z′ then typically lie on the thin shell with the same
center and of radius

√
nBN2. Furthermore, using the cosine

formula it can be shown that for a typical z, the spherical
Cap(z, ωn) is contained by the Euclidean ball centered at z′

and of radius ln =
√
nB(N1 +N2 − 2

√
N1N2 cosωn). See

Fig. 6. This combined with (17) immediately yields that

Pr
(
|Ax(i) ∩ Ball (Z′, ln)|

.
≥ Vn

∣∣∣x
)
→ 1 as B →∞.

Since Z′ and Y have the same distribution given x, the above
relation still holds with Z′ replaced by Y.

Now noting that the above statement holds for any typical
(x, i) pair, we can eliminate the conditioning with respect to
x and reach the following conclusion regarding the random
vectors (I,Y) with high probability: if we take Y and draw
a Euclidean ball of radius ln around it, the volume of the
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Fig. 6. Euclidean ball contains the cap.

intersection of the set A(I) with this ball is lower bounded
by |A(I) ∩ Ball (Y, ln)|

.
≥ Vn, where A(I) is defined as

A(I) =
{
z ∈ RnB : f(z) = I

}
. This puts an upper limit on

the number of possible values of I given Y. To get a tighter
bound, we can incorporate the fact that typical x’s lie on a
thin shell centered at 0 of radius

√
nBP , and typical z’s and

y’s lie on shells of radii
√
nB(P +N1) and

√
nB(P +N2),

respectively. Therefore the number of possible values for I
given Y can be bounded by the ratio of the spherical cap
volume
∣∣∣Shell

(
0,
√
nB(P +N1 ± ε)

)
∩ Ball

(√
nB(P +N2)e, ln

)∣∣∣ ,

where e is any arbitrary unit vector, to the volume each
possible i occupies from this cap, i.e. Vn. See Figure 7. To
calculate the cap volume, i.e. the volume of the shaded area
in Fig. 7, we use the cosine formula to conclude that

sin 2φ =
P (N1 +N2) +N1N2sin2ωn − 2P

√
N1N2 cosωn

(P +N1)(P +N2)

where φ is the angle of the cap, and therefore the cap volume
can be shown to be

·
≤ 2nB(

1
2 log 2πe(P+N1)sin 2φ)

= 2
nB

(
1
2 log 2πe

P (N1+N2)+N1N2sin2ωn−2P
√
N1N2 cosωn

P+N2

)
,

and its ratio to Vn is

·
≤ 2

nB

(
1
2 log

P (N1+N2)+N1N2sin2ωn−2P
√
N1N2 cosωn

N1(P+N2)(sin2θn−cos2 ωn)

)
.

p
nB(P + N1)

p
nB(P + N2)

q
nB(N1 + N2 � 2

p
N1N2 cos!n)

 �
Y

(a) N1 ≤ N2

p
nB(P + N1)

p
nB(P + N2)

q
nB(N1 + N2 � 2

p
N1N2 cos!n)

 �
Y

(b) N1 > N2

Fig. 7. The cap on z sphere.

This in turn imposes the following bound on H(In|Y n):

n

(
1

2
log

P (N1 +N2) +N1N2sin2ωn − 2P
√
N1N2 cosωn

N1(P +N2)(sin2θn − cos2 ωn)

)
.

The upper bound (5) in Lemma 2.1 then follows by noting
that the above argument holds for any ωn > π/2− θn.
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