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Abstract—Consider a primitive relay channel, where, a source
X wants to send information to a destination Y with the help of
a relay Z and the relay can communicate to the destination via
an error-free digital link of rate R0. For the symmetric case, i.e.,
when Y and Z are conditionally i.i.d. given X , we have recently
developed new upper bounds on the capacity of this channel that
are tighter than existing bounds, including the celebrated cut-set
bound. In this paper, we extend these bounds to the asymmetric
case, where Y and Z are conditionally independent given X with
arbitrary conditional marginal distributions, for both discrete
memoryless and Gaussian channels.

I. INTRODUCTION

Characterizing the capacity of relay channels [1] has been
a long-standing open problem in information theory. The
seminal work of Cover and El Gamal [2] introduced two
basic achievability schemes: Decode-Forward and Compress-
Forward, and derived a general upper bound on the capacity,
now known as the cut-set bound. In most of the special
cases where the capacity is known, the cut-set bound is tight.
However, it is known to be not tight in general [3]–[5].

In our recent work [6]–[7], we developed upper bounds on
the capacity of the primitive relay channel depicted in Fig. 1,
which corresponds to a special case of the relay channel where
the multiple access channel from the source and the relay to the
destination has orthogonal components. We also assumed that
the broadcast channel (BC) from the source to the relay and
the destination is symmetric (i.e., Y and Z are conditionally
i.i.d. given X in Fig. 1). For this special case, when the BC
is discrete and memoryless, our bounds [6]–[7] significantly
improve over existing bounds for this channel [3], [5], and
unlike [5] are always tighter than the cut-set bound.1 In the
case when the BC is Gaussian, our bound [8] provides the first
example demonstrating that the cut-set bound is not tight for
the Gaussian relay channel. Our approach builds on measure
concentration to analyze the probabilistic geometric relations
between the typical sets of the n-letter random variables
associated with a reliable code. We translate these geometric
relations to new information inequalities between the random
variables involved.

This work was supported in part by the NSF CAREER award 1254786 and
by the NSF award CCF-1514538.

1Note that [4] proves an exact capacity result but for a very specific instance
of the primitive relay channel where the noise for the X-Y link is modulo
additive and Z is a corrupted version of this noise.

Fig. 1. Primitive relay channel.

Our arguments in [6]–[7] also critically build on the sym-
metry of the BC channel. In this paper, we extend our results
[6]–[8] on symmetric discrete memoryless and symmetric
Gaussian primitive relay channels to the general asymmetric
case, and obtain new upper bounds that improve on the cut-
set bound. In the discrete memoryless case, we use channel
simulation ideas to connect the asymmetric setting to the sym-
metric case. In the Gaussian case, we extend our arguments
in [8] to include asymmetric channels.

II. CHANNEL MODEL

Consider a discrete memoryless primitive relay channel as
depicted in Fig. 1. The source’s input X is received by the
relay Z and the destination Y through the channel

(ΩX , pY,Z|X(y, z|x),ΩY × ΩZ)

where ΩX ,ΩY and ΩZ are finite sets denoting the alphabets
of the source, the destination and the relay, respectively,
and pY,Z|X(y, z|x) is the channel transition probability; the
relay Z can communicate to the destination Y via an error-
free digital link of rate R0. We assume that Y and Z are
conditionally independent given X , i.e., pY,Z|X(y, z|x) =
pY |X(y|x)pZ|X(z|x). The main interest in this paper is this
general primitive relay channel. However, throughout the pa-
per, we will also refer to the following special cases for this
channel:

1) Symmetric: We say a primitive relay channel is sym-
metric, if Y and Z are further conditionally identically dis-
tributed given X , i.e., ΩY = ΩZ =: Ω and pY |X(ω|x) =
pZ|X(ω|x) =: p(ω|x) for any ω ∈ Ω and x ∈ ΩX .

2) Stochastically degraded: We say the channel is stochas-
tically degraded if Y is a stochastically degraded version
of Z (with respect to X), i.e., there exists some transi-
tion probability distribution q1(y|z) such that pY |X(y|x) =∑
z pZ|X(z|x)q1(y|z).

2016 IEEE International Symposium on Information Theory

978-1-5090-1806-2/16/$31.00 ©2016 IEEE 1675



3) Reversely stochastically degraded: We say the chan-
nel is reversely stochastically degraded if Z is a stochasti-
cally degraded version of Y , i.e., there exists some transi-
tion probability distribution q2(z|y) such that pZ|X(z|x) =∑
y pY |X(y|x)q2(z|y).
We will be also interested in the Gaussian version of this

channel, given by {
Z = X +W1

Y = X +W2

where X ∈ R denotes the source signal which is constrained
to average power P , Z ∈ R and Y ∈ R denote the received
signals of the relay and the destination, and W1 and W2 are
Gaussian noises that are independent of each other and X ,
and have zero mean and variances N1 and N2 respectively.
We say a Gaussian primitive relay channel is symmetric if
N1 = N2 =: N .

III. MAIN RESULT

The main result of this paper is to extend our previous
results in [6] and [8] for the symmetric discrete memoryless
and symmetric Gaussian primitive relay channels respectively,
to the general case. In particular, in [6] we present two upper
bounds on the capacity of the symmetric discrete memoryless
primitive relay channel. The first of these bounds is given as
follows:

Proposition 3.1: For the symmetric discrete memoryless
primitive relay channel, if a rate R is achievable, then there
exists some pX(x) and a ≥ 0 such that

R ≤ I(X;Y,Z) (1)
R ≤ I(X;Y ) +R0 − a (2)

R ≤ I(X;Y ) +H

(√
a ln 2

2

)

+

√
a ln 2

2
log(|Ω| − 1)− a (3)

where H(·) is the binary entropy function.
In this paper, we extend this bound to general discrete

memoryless primitive relay channels as follows:
Theorem 3.1: For the general primitive relay channel, if a

rate R is achievable, then there exists some pX(x) and a ≥ 0
such that

R ≤ I(X;Y,Z) (4)
R ≤ I(X;Y ) +R0 − a (5)

R ≤ I(X;Y, Z̃) +H

(√
a ln 2

2

)

+

√
a ln 2

2
log(|ΩZ | − 1)− a (6)

for any random variable Z̃ with the same conditional distri-
bution as Z given X , i.e., pZ̃|X(z|x) = pZ|X(z|x).

The evaluation of the bound in Theorem 3.1 involves
optimizing over all the Z̃ random variables that have the same
conditional distribution as Z. While this optimization may not

be straightforward in general, note that any valid choice of
Z̃ provides an upper bound on the capacity. In the following
cases, it is trivial to find Z̃ that gives the tightest bound.

1) Symmetric: When the channel is symmetric, choosing
Z̃ = Y makes the mutual information term I(X;Y, Z̃)
in constraint (6) equal to I(X;Y ), which is the minimum
possible value I(X;Y, Z̃) can achieve. In this case, Theorem
3.1 reduces to Proposition 3.1.

2) Stochastically degraded: It is easy to check that in
the stochastically degraded case, the optimal Z̃ is such that
pY,Z̃|X(y, z|x) = pZ|X(z|x)q1(y|z), i.e., X ↔ Z̃ ↔ Y

form a Markov chain. To see this, observe that I(X;Y, Z̃) ≥
I(X; Z̃) = I(X;Z), where the inequality holds with equality
if and only if X ↔ Z̃ ↔ Y form a Markov chain.

3) Reversely stochastically degraded: In this case it
is optimal to choose Z̃ such that pY,Z̃|X(y, z|x) =

pY |X(y|x)q2(z|y), i.e., X ↔ Y ↔ Z̃ form a Markov chain.
With this choice of Z̃, I(X;Y, Z̃) becomes I(X;Y ) and
the constraints of Theorem 3.1 reduce to those as stated in
Proposition 3.1 except that the |Ω| in (3) is replaced by |ΩZ |.

It is trivial to observe that the above bound is in general
tighter than the cut-set bound given in the following proposi-
tion.

Proposition 3.2 (Cut-set Bound): For the general primitive
relay channel, if a rate R is achievable, then there exists some
pX(x) such that {

R ≤ I(X;Y,Z) (7)
R ≤ I(X;Y ) +R0. (8)

Since a ≥ 0 in Theorem 3.1, the constraint (5) is in general
tighter than (8) and therefore our bound in Theorem 3.1 is in
general tighter than the cut-set bound. In fact, the bound in
Proposition 3.1, therefore Theorem 3.1 in the special case of
symmetric channels, is strictly tighter than the cut-set bound.
To see this, note that (2) will reduce to (8) only if a = 0;
however, if a = 0 then (3) will constrain R by the rate
I(X;Y ) which is lower than the cut-set bound. Given this
fact, it is easy to create examples of asymmetric primitive
relay channels for which Theorem 3.1 is tighter than the cut-set
bound. For example, as observed in 3) above, when the channel
is reversely stochastically degraded, Theorem 3.1 has the same
constraints as in Proposition 3.1 and is therefore strictly tighter
than the cut-set bound. One can also create examples of
stochastically degraded channels for which Theorem 3.1 is
tighter than the cut-set bound by simply taking any symmetric
channel and adding a sufficiently small degradation to the X-
Y link so that I(X;Y ) ≈ I(X;Z).

In [6], we also provide a second bound on the capacity of the
symmetric discrete memoryless primitive relay channel which
does not include the bound in Theorem 3.1 in general and vice
versa. The advantage of this second bound is that it can be
significantly tighter than the one in Theorem 3.1 in some cases,
as shown in [7] for the case of the binary symmetric channel,
and can be extended to the continuous case, the Gaussian
channel in particular as shown in [8]. Instead of recalling this
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second bound and providing its corresponding extension to the
general case, due to space constraints, in this paper we only
provide an extension of [8] to general Gaussian primitive relay
channels. In particular, we have the following result which
includes the result of [8] for symmetric Gaussian primitive
relay channels as a special case.

Theorem 3.2: For the Gaussian primitive relay channel, if a
rate R is achievable, then there exists some a ≥ 0 such that

R ≤ 1

2
log

(
1 +

P

N1
+

P

N2

)
(9)

R ≤ 1

2
log

(
1 +

P

N2

)
+R0 − a (10)

R ≤ 1

2
log

(
1 +

P

N1

)
+
N1

N2
a+

(
N1

N2
− 1

)+

log e

+

√
N1

N2

(
N1

N2
− 1

)+

(1 +
√

2a ln 2) log e

+

√√√√N1

N2

(
N1

N2
2a ln 2 +

(
1− N1

N2

)+
)

log e (11)

where (t)+ = max{t, 0}.
IV. DISCRETE MEMORYLESS PRIMITIVE RELAY

CHANNELS

In this section, we sketch the proof of Theorem 3.1 for
discrete memoryless primitive relay channels. We first prove
the theorem for the special cases of reversely stochastically
degraded and stochastically degraded primitive relay channels
where the arguments are relatively simple. We then prove the
result for the general case. We build on a brief overview of
the proof of Proposition 3.1 which we provide next.

A. Proof of Proposition 3.1

Let the bin index forwarded by the relay, which is a function
of Zn, be denoted by In ∈ [1 : 2nR0 ]. The cut-set bound
in (7)–(8) can be derived by first using Fano’s inequality to
conclude that nR ≤ I(Xn;Y n, In) + nε, and then single-
letterizing this mutual information in two different ways. To
obtain (7) we proceed as

I(Xn;Y n, In) ≤ I(Xn;Y n, Zn) ≤ nI(X;Y, Z);

and to obtain (8) we can observe that

I(Xn;Y n, In) = I(Xn;Y n)+H(In|Y n)−H(In|Xn), (12)

and upper bound I(Xn;Y n) and H(In|Y n) with nI(X;Y )
and nR0 respectively while lower bounding H(In|Xn) by 0.

To obtain Proposition 3.1, instead of simply lower bounding
H(In|Xn) by 0 in the last step, we let H(In|Xn) = nan,
yielding R ≤ I(X;Y ) + R0 − an + ε, and prove a third
constraint that forces an to be strictly non-zero. This new
constraint is obtained by bounding H(In|Y n) in (12) as

H(In|Y n) ≤ n
[
H

(√
an ln 2

2

)
+

√
an ln 2

2
log(|Ω| − 1)

]
,

for which the proof can be found in [7] and omitted here.
Interestingly, such a proof is based on considering the i.i.d.
extensions of the random variables (Xn, Y n, Zn, In) and
studying the geometric relations between their typical sets
using the generalized blowing-up lemma. It holds for any set
of random variables (Xn, Y n, Zn, In) satisfying the following
properties:
(a) Xn, Y n, Zn, In are discrete random variables, where In

is a function of Zn such that H(In|Xn) = nan;
(b) In ↔ Zn ↔ Xn ↔ Y n form a Markov chain;
(c) ΩY = ΩZ =: Ω and

pY n|Xn(ωn|xn) = pZn|Xn(ωn|xn) =
n∏
i=1

p(ωi|xi).

B. Reversely Stochastically Degraded Case

  Xn

Zn

Y n   Z̃np(y, z|x) q2(z|y)

In 2 [1 : 2nR0 ]

Fig. 2. Random variables in the reversely stochastically degraded case.

We now prove Theorem 3.1 for the case when Z is
a stochastically degraded version of Y , i.e., there exists
some transition probability distribution q2(z|y) such that
pZ|X(z|x) =

∑
y pY |X(y|x)q2(z|y). For this, we introduce an

auxiliary random variable Z̃n, which is obtained by passing
Y n through the channel q2(z|y). See Fig. 2. Since Zn and Z̃n

are conditionally i.i.d. given Xn, conditions (a)–(c) at the end
of the previous subsection are satisfied for random variables
(Xn, Z̃n, Zn, In) and we have

H(In|Z̃n) ≤ n
[
H

(√
an ln 2

2

)
+

√
an ln 2

2
log(|ΩZ | − 1)

]
.

(13)

Noting the Markov chain In ↔ Y n ↔ Z̃n, we further have

H(In|Y n) ≤ H(In|Z̃n) ≤ R.H.S. of (13),

which combined with (12) yields the following constraint

R ≤ I(X;Y )+H

(√
an ln 2

2

)
+

√
an ln 2

2
log(|ΩZ |−1)−an+ε

This proves Theorem 3.1 for the reversely stochastically
degraded case.

C. Stochastically Degraded Case

  Xn

Zn

  Z̃np(z, z̃|x)

In 2 [1 : 2nR0 ]

Y nq1(y|z)

Fig. 3. Random variables in the stochastically degraded case.
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When Y is a stochastically degraded version of Z, i.e., there
exists some transition probability distribution q1(y|z) such
that pY |X(y|x) =

∑
z pZ|X(z|x)q1(y|z), we can equivalently

think of the random variables (Xn, Y n, Zn, In) as generated
according to the structure depicted in Fig. 3, where we
introduce an intermediate random variable Z̃n so that Z̃n and
Zn are conditionally i.i.d. given Xn, and Y n is obtained by
passing Z̃n through the channel q1(y|z). Again, conditions
(a)–(c) in Section IV-A are satisfied for (Xn, Z̃n, Zn, In)
and inequality (13) also holds here. Noting the Markov chain
Xn ↔ (Z̃n, In)↔ (Y n, In), we have the following:

nR ≤ I(Xn;Y n, In) + nε

≤ I(Xn; Z̃n, In) + nε

= I(Xn; Z̃n) +H(In|Z̃n)−H(In|Xn) + nε

≤ n(I(X;Z) +H

(√
an ln 2

2

)

+

√
an ln 2

2
log(|ΩZ | − 1)− an + ε), (14)

where in the last step we have used inequality (13) and the fact
that Z̃n and Zn are conditionally i.i.d. given Xn. This finishes
the proof of Theorem 3.1 for the stochastically degraded case.

D. General Case

In the general case, the construction of the auxiliary random
variable Z̃n (so that Z̃n and Zn are conditionally i.i.d.
given Xn) may not be readily doable as in the previous
two subsections, and we will resort to channel simulation
theory [9]–[10]. Specifically, consider the channel simulation
setup as depicted in Fig. 4, where we want to simulate some
channel pZ̃|X(z|x) such that pZ̃|X(z|x) = pZ|X(z|x), i.e., Z̃
has the same conditional distribution as Z. The simulation
encoder sees the source Xn, side information Y n, and a
common random variable Kn which is uniformly distributed
on [1 : 2nR2 ] and independent of those random variables
(Xn, Y n, Zn, In) associated with the original channel, and
it generates a simulation codeword Jn ∈ [1 : 2nR1 ] based
on a randomized encoding function En(Xn, Y n,Kn). The
simulation decoder also observes Y n and Kn, and upon
receiving Jn it outputs a random variable Z̃n based on a
randomized decoding function Dn(Jn, Y

n,Kn).

  

  Xn

Zn

Y n

  Z̃n

p(y, z|x)

En   DnJn

Kn

In 2 [1 : 2nR0 ]

Channel Simulator: p(z̃|x)

Fig. 4. Channel simulation for the general case.

Following the similar lines as in [9]–[10] and [5], it can
be shown that the channel pZ̃|X(z̃|x) can be simulated in
the above setup, i.e., Z̃n is (essentially) the same as if it
is generated by passing Xn through the channel pZ̃|X(z̃|x),
if R1 = I(X; Z̃|Y ) + ε and R2 is sufficiently large. In
this case, Z̃n and Zn are conditionally identically distributed
given Xn, and due to the Markov chain Zn ↔ Xn ↔
(Y n, Jn,Kn) ↔ Z̃n they are also conditionally independent
given Xn. Therefore inequality (13) also holds here. Now
consider expanding H(In, Jn,Kn|Y n) in two different ways
as follows:

H(In, Jn,Kn|Y n)

= H(In|Y n) +H(Kn|Y n, In) +H(Jn|Y n, In,Kn)

= H(Kn|Y n) +H(Jn|Y n,Kn) +H(In|Y n,Kn, Jn).

Therefore,

H(In|Y n)

= H(Kn|Y n) +H(Jn|Y n,Kn) +H(In|Y n,Kn, Jn)

−H(Kn|Y n, In)−H(Jn|Y n, In,Kn)

≤ H(Kn|Y n) +H(Jn|Y n,Kn) +H(In|Y n,Kn, Jn)

−H(Kn|Y n, In)

= H(Jn|Y n,Kn) +H(In|Y n,Kn, Jn) (15)

= H(Jn|Y n,Kn) +H(In|Y n,Kn, Jn, Z̃
n) (16)

≤ n(I(X; Z̃|Y ) + ε) +H(In|Z̃n) (17)

≤ n(I(X; Z̃|Y ) + ε) + R.H.S. of (13)

where (15) follows because Kn is independent of (Y n, In),
(16) follows from the Markov chain In ↔ (Y n,Kn, Jn) ↔
Z̃n, and (17) follows because H(Jn|Y n,Kn) ≤ nR1 =
n(I(X; Z̃|Y ) + ε) and removing condition does not reduce
entropy. Finally, it is straightforward to check that the above
upper bound on H(In|Y n) combined with (12) yields con-
straint (6), completing the proof of Theorem 3.1.

V. GAUSSIAN PRIMITIVE RELAY CHANNELS

We now sketch the proof of Theorem 3.2 for Gaussian
primitive relay channels. Similarly, we first briefly overview
the proof for the symmetric case, and then prove the theorem
for the general case.

A. Symmetric Case

The proofs of (9)–(10) follow the same lines as the proofs
of (4)–(5), i.e., by applying Fano’s inequality and letting
H(In|Xn) = nan. In the symmetric case, (11) simplifies to:

R ≤ 1

2
log

(
1 +

P

N

)
+ a+

√
2a ln 2 log e, (18)

which can be proved by expanding I(Xn;Y n, In) as

I(Xn;Y n, In) = I(Xn; In) + h(Y n|In)− h(Y n|Xn) (19)



and upper bounding h(Y n|In) by

h(Y n|In) ≤ H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN

+ n(an +
√

2an ln 2 log e). (20)

To derive (20), we consider the B-letter i.i.d. exten-
sions of the random variables (Xn, Y n, Zn, In), denoted by
(X,Y,Z, I), and study the geometric relations between their
typical sets via Gaussian measure concentration. The outcome
of our geometric analysis is an interesting result that can be
roughly stated as follows. Suppose:
(a) Zn = Xn +Wn

1 and Y n = Xn +Wn
2 , where both Wn

1

and Wn
2 are i.i.d. sequences of Gaussian random variables

with zero mean and variance N and they are independent
of each other and Xn;

(b) In is a function of Zn which takes value on a finite set
and satisfies H(In|Xn) = nan.

Then we have for a typical (y, i) pair, there exists some z
belonging to the ith bin such that

d(y, z) ≤
√
nB
√

2Nan ln 2, (21)

with d(y, z) := ||y − z|| denoting the Euclidean distance.
Based on the geometric relation (21), one can then derive (20).
We will not expose the argument here but instead we will
extend it to the general case in the next subsection and explain
it there in detail.

B. General Case

To prove Theorem 3.2, we focus on the case when N1 ≤ N2

to illustrate the main argument while only pointing out the
difference for the N1 > N2 case. When N1 ≤ N2, one can
equivalently think of Z and Y as given by{

Z = X +W1

Y = X +W21 +W22

where W1,W21,W22 are zero-mean Gaussian random vari-
ables with variances N1, N1, N2 − N1 respectively, and they
are independent of each other and X . Based on this, we write{

Zn = Xn +Wn
1

Y n = Z̃n +Wn
22

with Z̃n := Xn + Wn
21. Note that now (Xn, Z̃n, Zn, In)

satisfy conditions (a)–(b) in the previous subsection, and thus
for a typical (z̃, i) pair, there exists some z belonging to the ith
bin such that d(z̃, z) ≤

√
nB
√

2N1an ln 2. Moreover, since
Y n = Z̃n + Wn

22 with Z̃n and Wn
22 being independent, it

can be shown that for a fixed pair of (z̃, z), the following
pythagorean relation holds with high probability:

d2(Y, z) ≈ d2(Y, z̃) + d2(z̃, z) (22)

≈ nB(N2 −N1) + d2(z̃, z), (23)

and thus for a typical (y, i) pair, there exists some z belonging
to the ith bin such that

d(y, z) ≤
√
nB
√
N2 +N1(2an ln 2− 1). (24)

We now lower bound the conditional density f(y|i) for a
typical (y, i) pair based on the geometric relation (24). In
particular, consider the set of x’s that are jointly typical with
the z satisfying (24). It can be shown that the x’s that are
jointly typical with this z satisfy p(x|i) .

= 2−BH(Xn|In) and
d(x, z) ≤ √nBN1. Therefore, by the triangle inequality for
each x in this set

d(x,y) ≤
√
nB(

√
N1 +

√
N2 +N1(2an ln 2− 1)),

which leads to the following lower bound on f(y|x),

f(y|x)
.
≥ 2
−nB

(
1
2 log 2πeN2+

N1
N2
a+

√
N1
N2

(
N1
N2

2an ln 2+1−N1
N2

)
log e

)
(25)

by using the fact that Y is Gaussian given X. The set of such
x’s can be shown to have cardinality approximately given by
2BH(Xn|Zn). Combining this with the above, we have

f(y|i) =
∑
x

f(y|x)p(x|i)
.
≥ 2B(H(Xn|Zn)−H(Xn|In)) × R.H.S. of (25).

Finally, translating the above lower bound on f(y|i) for typical
(y, i) pairs to the upper bound on h(Y n|In), we have

h(Y n|In) ≤ H(Xn|In)−H(Xn|Zn) +
n

2
log 2πeN2

+ n

(
N1

N2
a+

√
N1

N2

(
N1

N2
2an ln 2 + 1− N1

N2

)
log e

)
Plugging the above inequality into (19), we obtain constraint
(11) with N1 ≤ N2, which proves the theorem for this case.

To prove the theorem for the case of N1 > N2, construct
an auxiliary random variable Z̃n as Z̃n := Y n + W̃n, where
W̃n is an i.i.d. sequence of Gaussian random variables with
zero mean and variance N1 − N2. Again (Xn, Z̃n, Zn, In)
satisfy conditions (a)–(b) in the previous subsection, and one
can then proceed as in the N1 ≤ N2 case.
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