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Cut-Set Bound Is Loose for
Gaussian Relay Networks

Xiugang Wu, Member, IEEE, and Ayfer Özgür, Member, IEEE

Abstract— The cut-set bound developed by Cover and
El Gamal in 1979 has since remained the best known upper
bound on the capacity of the Gaussian relay channel. We develop
a new upper bound on the capacity of the Gaussian primitive
relay channel, which is tighter than the cut-set bound. Our proof
uses Gaussian measure concentration to establish geometric rela-
tions, satisfied with high probability, between the n-letter random
variables associated with a reliable code for communicating over
this channel. We then translate these geometric relations into new
information inequalities that cannot be obtained with classical
methods. Combined with a tensorization argument proposed by
Courtade and Ozgur in 2015, our result also implies that the
current capacity approximations for Gaussian relay networks,
which have linear gap to the cut-set bound in the number of
nodes, are order-optimal and lead to a lower bound on the
pre-constant.

Index Terms— Gaussian relay channel, cut-set bound, converse,
capacity approximation, information inequality, geometry.

I. INTRODUCTION

THE single-relay channel is one of the simplest examples
of a network information theory problem, which defies

our complete understanding despite decades of research. The
Gaussian version of this problem models the communica-
tion scenario where a wireless link is assisted by a sin-
gle relay. Motivated by the need to increase the spectral
efficiency of wireless systems and the increasing impor-
tance of relaying for small cells, it has been studied exten-
sively since its formulation by van der Meulen in 1971 [1].
However, the characterization of its capacity still remains
an open problem. Perhaps more interestingly, the exist-
ing literature almost exclusively focuses on developing
achievable strategies for this channel as well as larger
relay networks. This has led to a plethora of relaying
schemes over the last decade, such as decode-and-forward,
compress-and-forward, amplify-and-forward, compute-and-
forward, quantize-map-and-forward, noisy network coding,
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Fig. 1. Gaussian primitive relay channel.

etc [2]–[8]. In sharp contrast, the only available upper bound
on the capacity of the Gaussian relay channel is the so called
cut-set bound developed by Cover and El Gamal in 1979 [2].
In the 40-year long literature on the problem, the cut-set bound
has been consistently used as a benchmark for performance –
for example the recent approximation approach [6], [8], [11]
in wireless information theory focuses on bounding the gap of
the achievable strategies to the cut-set bound of the network–
however to our knowledge, whether the cut-set bound is indeed
achievable or not in a Gaussian relay channel (except in trivial
cases) remains unknown to date.

In this paper, we make progress on this problem by devel-
oping a new upper bound on the capacity of the Gaussian
primitive relay channel. This is a special case of the Gaussian
single relay channel where the multiple-access channel from
the source and the relay to the destination has orthogonal com-
ponents [9], [10]. See Fig. 1. Here, the relay can be thought of
as communicating to the destination over a Gaussian channel
in a separate frequency band. Our upper bound is tighter
than the cut-set bound for this channel for all (non-trivial)
channel parameters. While this result is developed for the
single-relay setting, it has implications also for networks
with multiple relays. In particular, combined with a recently
proposed tensorization argument [13], it implies that the
linear (in the number of nodes) gap to the cut-set bound in
current capacity approximations for Gaussian relay networks is
indeed fundamental. The capacity of Gaussian relay networks
can have linear gap to the cut-set bound and our result can be
used to obtain a lower bound on the pre-constant.

Proving that the cut-set bound is not tight requires to capture
the following phenomenon: if a relay is not able to decode
the transmitted message and therefore remove the noise in
its received signal by decoding, then the signal it forwards
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necessarily contains noise along with information. The injected
noise then decreases the end-to-end achievable rate with
respect to the cut-set bound, where the latter simply upper
bounds the end-to-end capacity by the maximal information
flow over cuts of the network assuming all nodes on the
source side of the cut have noiseless access to the message
and all nodes on the destination side can freely cooperate
to decode the transmitted message. As basic as it sounds,
existing approaches for developing infeasibility results in
information theory seem insufficient to quantitatively capture
this phenomenon.1

In this and our concurrent work [15]–[17] on the discrete
memoryless version of this problem, we build a novel geo-
metric approach to capture this phenomenon. The main idea
is to study the geometric relations that are satisfied by typical
realizations of the n-letter random variables associated with
a reliable code for communicating over the relay channel.
(Equivalently, these are the geometric relations that are satis-
fied with high probability by these n-letter random variables.)
We then translate these geometric relations into new and
surprising relations between the entropies of the corresponding
random variables. A key ingredient in this approach is a
measure concentration result, namely the blowing-up lemma
due to Marton [29], which says that under a product measure
slightly blowing up any set with a small but exponentially
significant probability suffices to increase its probability to
nearly 1.2 This lemma allows us to obtain distance relations
between typical sets, which we then translate to entropy
relations.

While our bounds for the discrete memoryless relay channel
in [15]–[17] and the Gaussian case treated in the current paper
have similar flavor, these two cases also comprise some signif-
icant differences. In particular, the discrete memoryless case
seems easier to deal with as one can make explicit counting
arguments and rely on the standard notion of strong typicality.
Indeed, the Gaussian case has proven to be associated with
some inherent difficulty historically—for example, the earlier
results by Zhang [18], and Aleksic et al. [20] that demonstrate
the looseness of the cut-set bound in the discrete memoryless
case do not have counterparts in the Gaussian case. Also,
the recent upper bound developed by Xue [19] for the discrete
memoryless relay channel cannot be extended to the Gaussian
case, as it relies on a counting argument that is valid only when
the output alphabet is finite.3 To develop an upper bound on
the capacity of the primitive relay channel in the Gaussian
case, this paper develops a new argument for translating
geometric relations between typical sets of random variables

1A similar observation was pointed out in [14].
2For a more detailed discussions regarding concentration of measure, and the

blowing-up lemma along with its earlier applications in network information
theory, see the comprehensive monograph by Raginsky and Sason [34]. In this
context, it is also worth mentioning that tools related to Gaussian concentration
and Marton’s transportation-cost inequalities have also been invoked in a
recent work by Polyanskiy and Wu [33] to solve the “missing corner point”
problem for the two-user Gaussian interference channel.

3Note that this issue cannot be resolved by the standard discretization
procedure that is typically used for extending an achievability theorem for
a discrete memoryless channel to a continuous channel, because as the
quantization interval goes to zero the upper bound in [19] obtained by a
counting argument becomes arbitrarily large.

into relations between their entropies. We also construct a
series of typical sets for a mixed set of discrete and continuous
random variables that enjoy some properties of strong typical
sets.

A. Organization of the Paper

The remainder of the paper is organized as follows. First
Section II introduces the channel model and reviews the clas-
sical cut-set bound on the capacity of the Gaussian primitive
relay channel. Then Section III presents our new upper bound
and discusses its implication on the capacity approximation
problem for Gaussian relay networks, followed by the proof
of our bound in Sections IV and V. Finally in Section VI,
we provide another bound which sharpens our main result
for certain regimes of the channel parameters. We include this
result as to illustrate that there may be significant potential for
improving our results by refining our method and arguments.

II. PRELIMINARIES

A. Channel Model

Consider a Gaussian primitive relay channel as depicted
in Fig. 1, where X ∈ R denotes the source signal which is
constrained to average power P , and Z ∈ R and Y ∈ R denote
the received signals of the relay and the destination. We have{

Z = X + W1

Y = X + W2

where W1 and W2 are Gaussian noises that are independent of
each other and X , and have zero mean and variances N1 and
N2 respectively. The relay can communicate to the destination
via an error-free digital link of rate R0.

For this channel, a code of rate R and blocklength n,
denoted by

(C(n,R), fn(zn), gn(yn, fn(zn))), or simply, (C(n,R), fn, gn),

consists of the following:
1) A codebook at the source X ,

C(n,R) = {xn (m), m ∈ {1, 2, . . . , 2nR}}
where

1

n

n∑
i=1

x2
i (m) ≤ P, ∀m ∈ {1, 2, . . . , 2nR};

2) An encoding function at the relay Z ,

fn : R
n → {1, 2, . . . , 2nR0};

3) A decoding function at the destination Y ,

gn : R
n × {1, 2, . . . , 2nR0 } → {1, 2, . . . , 2nR}.

The average probability of error of the code is defined as

P(n)
e = Pr(gn(Y

n, fn(Zn)) �= M),

where the message M is assumed to be uniformly drawn
from the message set {1, 2, . . . , 2nR}. A rate R is said to be
achievable if there exists a sequence of codes

{(C(n,R), fn, gn)}∞n=1
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such that the average probability of error P(n)
e → 0 as n → ∞.

The capacity of the primitive relay channel is the supremum
of all achievable rates, denoted by C(R0).

B. The Cut-Set Bound

For the Gaussian primitive relay channel, the cut-set bound
can be stated as follows.

Proposition 1 (Cut-Set Bound): For the Gaussian primitive
relay channel, if a rate R is achievable, then there exists a
random variable X satisfying E[X2] ≤ P such that{

R ≤ I (X; Y, Z) (1)

R ≤ I (X; Y ) + R0. (2)

Note that constraints (1) and (2) correspond to the broadcast
channel X-Y Z and multiple-access channel X Z -Y , and hence
are generally known as the broadcast and multiple-access
constraints, respectively. Also it can be easily shown that both
I (X; Y, Z) and I (X; Y ) in Proposition 1 are maximized when
X ∼ N (0, P), which leads us to the following corollary.

Corollary 2: For the Gaussian primitive relay channel, if a
rate R is achievable, then⎧⎪⎪⎨

⎪⎪⎩
R ≤ 1

2
log

(
1 + P

N1
+ P

N2

)
(3)

R ≤ 1

2
log

(
1 + P

N2

)
+ R0. (4)

III. MAIN RESULT

Our main result in this paper is the following theorem,
which provides a new upper bound on the capacity of the
Gaussian primitive relay channel that is tighter than the cut-
set bound. The proof of this theorem is given in Section IV.

Theorem 3: For the Gaussian primitive relay channel, if a
rate R is achievable, then there exists a random variable X
satisfying E[X2] ≤ P and some a ∈ [0, R0] such that⎧⎨
⎩

R ≤ I (X; Y, Z) (5)

R ≤ I (X; Y ) + R0 − a (6)

R ≤ max{I (X; Y ), I (X; Z)} + a + √
2a ln 2 log e. (7)

As in the cut-set bound, all the mutual information terms
I (X; Y, Z), I (X; Y ) and I (X; Z) in the above theorem are
maximized when X ∼ N (0, P), and therefore our bound
can be re-stated more explicitly in terms of the logarithmic
function as follows.

Corollary 4: For the Gaussian primitive relay channel, if a
rate R is achievable, then there exists some a ∈ [0, R0] such
that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R ≤ 1

2
log

(
1 + P

N1
+ P

N2

)
(8)

R ≤ 1

2
log

(
1 + P

N2

)
+ R0 − a (9)

R ≤ 1

2
log

(
1 + max

{
P

N1
,

P

N2

})

+a + √
2a ln 2 log e. (10)

Since a ≥ 0 in the above, our bound is in general tighter
than the cut-set bound in Corollary 2. In fact, our bound can

be strictly tighter than the cut-set bound when the multiple-
access constraint (4) is active in the cut-set bound. To see this,
first consider the symmetric case when N1 = N2 =: N . For
this case, the cut-set bound in Corollary 2 says that if a rate R
is achievable, then⎧⎪⎪⎨

⎪⎪⎩
R ≤ 1

2
log

(
1 + 2P

N

)
(11)

R ≤ 1

2
log

(
1 + P

N

)
+ R0, (12)

while our bound in Corollary 4 asserts that any achievable
rate R must satisfy⎧⎪⎪⎨

⎪⎪⎩
R ≤ 1

2
log

(
1 + 2P

N

)
(13)

R ≤ 1

2
log

(
1 + P

N

)
+ R0 − a∗, (14)

where a∗ is the solution to the following equation:

R0 = 2a∗ + √
2a∗ ln 2 log e, (15)

which is obtained by equating the R.H.S. of constraints (9)
and (10). Obviously, if R0 > 0, then a∗ > 0 and (14) is tighter
than (12). Therefore, when constraint (12) is more stringent
between (11) and (12), our bound is strictly tighter than the
cut-set bound. The same argument and conclusion also apply
when N1 ≥ N2, in which case our bound reduces to⎧⎪⎪⎨

⎪⎪⎩
R ≤ 1

2
log

(
1 + P

N1
+ P

N2

)
(16)

R ≤ 1

2
log

(
1 + P

N2

)
+ R0 − a∗, (17)

where a∗ is similarly defined as in (15). Finally it can be easily
checked that when N1 ≤ N2, our bound is also strictly tighter
than the cut-set bound as long as

1

2
log

(
1 + P

N1

)
≤ 1

2
log

(
1 + P

N2

)
+ R0.

Note that both the cut-set bound and our bound depend on
the channel parameters through P

N1
, P

N2
and R0. It is interesting

to evaluate the largest gap between these two bounds over all
parameter values ( P

N1
, P

N2
, R0). For this we show in Appen-

dix A the following proposition, which says that the largest
gap occurs in the symmetric case when P

N1
= P

N2
→ ∞ and

R0 = 0.5.
Proposition 5: Let �

(
P

N1
, P

N2
, R0

)
denote the gap between

our bound and the cut-set bound, and �∗ be its largest possible
value over all Gaussian primitive relay channels, i.e.,

�∗ := sup
P

N1
, P

N2
,R0

�

(
P

N1
,

P

N2
, R0

)
.

Then, �∗ = �(∞,∞, 0.5) = 0.0535.

A. Gaussian Relay Networks

The primitive single-relay channel we consider in this paper
can be regarded as a special case of a Gaussian relay network.
However, the upper bound we develop for this special case
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has also implications for larger Gaussian relay networks with
multiple relays. In particular, it can be used to infer how
tightly the capacity of general Gaussian relay networks can
be approximated by the cut-set bound. Consider a discrete
memoryless Gaussian relay network of N nodes, in which a
source node s aims to reliably communicate a message to a
destination node d .4 For each node i ∈ {1, 2, . . . , N} =: N ,
we let Ri and Ti denote the numbers of receive-antennas
and transmit-antennas of node i , respectively. We adopt the
usual Gaussian relay network setting, where if x j [t] ∈ R

Tj is
the signal transmitted by node j at time instant t , the signal
received at node i is given by

yi [t] =
∑
j∈N

Gij x j [t] + zi [t], (18)

where Gij ∈ R
Ri×Tj is a known Ri × Tj matrix describing

the channel gain from node j to i , zi [t] ∼ N (0, IRi ×Ri ) is
additive Gaussian noise with {z1[t], z2[t], . . . , zN [t]}t=1,2,...

being mutually independent. In this manner, a Gaussian relay
network is completely characterized by the triple (G, s, d),
where G denotes the collection of channel gain matrices
{Gij : i, j ∈ N }. For a network (G, s, d), it will be convenient
to define the quantity

κ(G, s, d) :=
∑
i∈N

max{Ti , Ri } (19)

since it will be referred to frequently. When the network
(G, s, d) under consideration is clear from context, we will
abbreviate κ ≡ κ(G, s, d). A code and an achievable rate for
a Gaussian relay network (G, s, d) and the capacity C(G, s, d)
are defined in the standard way (see for example [13]).

For a network (G, s, d), the cut-set bound [39] is given by:

C̄(G, s, d) = sup
f (x1,...,xN )

min
S:s∈S,d∈Sc

I (XS; YSc|XSc), (20)

where the supremum is over all joint distributions
f (x1, . . . , xN ) on

∏N
i=1 R

Ti satisfying the power constraints
E

[‖Xi‖2
] ≤ Ti P for i ∈ N , the minimum is over all subsets

S ⊂ N that separate s from d , and the conditional distribution
of y1, . . . , yN given x1, . . . , xN is induced by the channel
model (18).5 Initiated by the work of Avestimehr et al. [6],
there has been significant recent interest in approximating
the capacity of general Gaussian relay networks with the
cut-set bound, i.e. bounding the gap between the rates
achieved by specific schemes and the cut-set bound on
capacity. In particular, following a series of other works
(e.g., [6], [8], [11]), Lim et al. [27] have proved the following
approximation result:

Proposition 6 [27]: For any Gaussian relay network
(G, s, d),

C(G, s, d) ≥ C̄(G, s, d) − 0.5 κ(G, s, d). (21)

Since C(G, s, d) ≤ C̄(G, s, d) always, Proposition 6
establishes that the cut-set bound approximates the capacity

4We adopt the notation and formulation in [13].
5Note that to be more precise P should be included in the characterization

(G, s, d) of a network, however we avoid that to keep our notation consistent
with [13].

C(G, s, d) within a factor that is linear in the parameter κ
but independent of the channel gains G. An interesting
question is whether (21) can be substantially improved. For
example, is it possible to replace the slack term 0.5κ with 0.1κ ,
or with a sublinear term such as κ

log log κ ? This was posed
as an open question by Niesen and Diggavi in [23] and by
Avestimehr et al. in [21]. Some recent results [22]–[25]
encourage this possibility by demonstrating that a sublinear
in κ gap to the cut-set bound can be achieved when additional
constraints are imposed on the topology of the network. As a
specific example, it has been shown by Chern and Ozgur [24]
that, for the diamond network with N − 2 relays,

C(G, s, d) ≥ C̄(G, s, d) − 2 log(κ − 2) (22)

when all nodes have one antenna (i.e., κ = N).
However, more recently Courtade and Ozgur observe in [13]

that such an improvement is impossible, unless the cut-set
bound is tight for all Gaussian relay networks. Toward doing
so, they define a general template for approximating capacity
via the cut-set bound. In the spirit of the approximation
results proved in [6], [8], [11], and [22]–[27], a Gaussian
Relay Network Approximation Theorem with parameter γ
(abbreviated as γ -GRNAT) is defined to be a claim of the
following form:

Claim 7: There exists a constant γ ≥ 0 and a function
f (n) = o(n) such that, for any Gaussian relay network
(G, s, d),

C(G, s, d) ≥ C̄(G, s, d) − (γ κ + f (κ)). (23)

It should be emphasized that a γ -GRNAT makes an asser-
tion that is independent of network topology, channel SNRs,
and so forth. In particular, Proposition 6 provides a concrete
example of a 0.5-GRNAT, with the f (κ) term being zero.

The main result of [13] is to show that improving the
linear term 0.5κ in (21) to a sublinear term o(κ) is equivalent
to proving the cut-set bound is tight for all Gaussian relay
networks. This is formally stated as follows:

Proposition 8 [13]: A 0-GRNAT exists if and only if
C(G, s, d) = C̄(G, s, d) for all Gaussian relay networks
(G, s, d).

However, Courtade and Ozgur [13] also point out that they
are not aware of any results which show that the cut-set bound
is not tight for a Gaussian relay network. Combined with
the result of the current paper, which shows that the cut-set
bound is not tight for one specific Gaussian network, the above
theorem asserts that the �(κ) term in approximations of the
form (23) is fundamental. Note that the rate limited channel
from the relay to the destination in Fig. 1 can be equiva-
lently thought of as a Gaussian channel of the same capacity
(c.f. [12]) and therefore the primitive relay setting we consider
here can be thought of as one instance of a Gaussian relay
network where the destination is equipped with two receive
antennas, one directed to the source and one directed to the
relay with no interference in between.

Since Proposition 8 asserts that the �(κ) term in approxima-
tions of the form (23) is fundamental, the following definition
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is well-motivated:

γ � = inf{γ : a γ -GRNAT holds}. (24)

In words, γ � characterizes the best possible linear factor
in (23). Clearly, Propositions 6 and 8 imply that

0 < γ � ≤ 0.5. (25)

To this end, the following observation, noted in [13], implies
that an explicit gap to the cut-set bound for any specific
network with specific channel parameters and topology can
be used to obtain a lower bound on γ �:

Proposition 9 [13]: If (G, s, d) is a Gaussian relay net-
work and C(G, s, d) ≤ C̄(G, s, d) − β, then

γ � ≥ β

κ(G, s, d)
. (26)

Therefore, the gap 0.0535 in Proposition 5 for the
Gaussian primitive relay channel combined with the fact that
κ(G, s, d) = 4 for this network implies that

γ � ≥ 0.01.

In other words, the capacity of Gaussian relay networks can
not be approximated by the cut-set bound within a gap that is
smaller than (0.0535/4)κ ≈ 0.01κ . A more recent result we
prove in [28] demonstrates a gap of 0.2075 for the Gaussian
primitive relay channel and implies an improved lower bound
on γ �,

γ � ≥ 0.05.

IV. PROOF OF THEOREM 3

In this section we prove Theorem 3 for both the symmet-
ric (N1 = N2) and asymmetric (N1 �= N2) cases. The proofs
for both cases rely on the below lemma, which is the main
technical focus of this paper and whose proof is provided in
Section V. We now state this lemma and show how it leads
to the bound in Theorem 3.

Lemma 10: Consider any discrete random vector Xn ∈ R
n .

Let Zn = Xn + W n
1 and Y n = Xn + W n

2 , where both W n
1 and

W n
2 are i.i.d. sequences of Gaussian random variables with

zero mean and variance N and they are independent of each
other and Xn . Also let In = fn(Zn) be a function of Zn which
takes value on a finite set. Then, if H (In|Xn) = nan , we have

I (Xn; In) − I (Y n; In) ≤ n(an + √
2an ln 2 log e). (27)

Note that In − Zn − Xn − Y n in the above lemma form a
Markov chain and the result of the lemma can be equivalently
regarded as fixing I (Xn; In) = H (In) − nan and controlling
the second mutual information I (Y n; In). In this sense, there
is some similarity in flavor between our result (27) and
the strong data processing inequality [35]. However, when
deriving strong data processing inequalities one is typically
interested in upper bounding I (Y n; In) while we are interested
in lower bounding it. Moreover, here we assume more specific
structure for the Markov chain In − Zn − Xn − Y n .

Equipped with the above lemma, we are now ready to prove
Theorem 3.

A. Symmetric Case (N1 = N2)

First consider the symmetric case when N1 = N2 := N .
Suppose a rate R is achievable. Then there exists a sequence
of codes

{(C(n,R), fn, gn)}∞n=1 (28)

such that the average probability of error P(n)
e → 0 as n → ∞.

For this sequence of codes, we have

n R = H (M)

= I (M; Y n, Zn) + H (M|Y n, Zn)

≤ I (Xn; Y n, Zn) + H (M|Y n, fn(Zn))

≤ I (Xn; Y n, Zn) + nμ (29)

= h(Y n, Zn) − h(Y n, Zn |Xn) + nμ

=
n∑

i=1

[h(Yi , Zi |Y i−1, Zi−1) − h(Yi , Zi |Xi )] + nμ

≤
n∑

i=1

[h(Yi , Zi ) − h(Yi , Zi |Xi )] + nμ

=
n∑

i=1

I (Xi ; Yi , Zi ) + nμ

= n(I (X Q; YQ , Z Q |Q) + μ) (30)

= n(h(YQ , Z Q |Q) − h(YQ , Z Q |Q, X Q) + μ)

≤ n(h(YQ , Z Q) − h(YQ , Z Q |X Q) + μ)

= n(I (X Q; YQ , Z Q) + μ)

i.e.,

R ≤ I (X Q; YQ, Z Q) + μ (31)

for any μ > 0 and sufficiently large n, where (29) follows from
Fano’s inequality, (30) follows by defining the time sharing
random variable Q to be uniformly distributed over [1 : n],
and

E[X2
Q] = 1

n

n∑
i=1

E[X2
i ] = 1

n
E

[
n∑

i=1

X2
i

]
≤ P. (32)

Moreover, letting In := fn(Zn), we have for any μ > 0 and
sufficiently large n,

n R = H (M)

= I (M; Y n, In) + H (M|Y n, In)

≤ I (Xn; Y n, In) + nμ (33)

= I (Xn; Y n) + I (Xn; In|Y n) + nμ

= I (Xn; Y n) + H (In|Y n) − H (In|Xn) + nμ (34)

≤ n(I (X Q; YQ) + R0 − an + μ),

i.e.,

R ≤ I (X Q; YQ) + R0 − an + μ, (35)

where an := 1
n H (In|Xn) satisfies

0 ≤ an ≤ R0. (36)

Note that in (34) we use the fact that H (In|Y n, Xn) =
H (In|Xn) due to the Markov chain In − Xn − Y n .
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Fig. 2. Jointly typical set with Xn .

So far we have made only standard information theoretic
arguments and in particular recovered the cut-set bound; note
that the fact that an ≥ 0 together with (31), (32) and (35) yields
the cut-set bound given in Proposition 1. However, instead
of simply lower bounding an by 0 in (35), in the sequel we
will apply Lemma 10 and prove a third inequality involving
an that forces an to be strictly larger than 0. Indeed, it is
intuitively easy to see that an can not be arbitrarily small.
Assume an = 1

n H (In|Xn) ≈ 0. Roughly speaking, this implies
that given the transmitted codeword Xn , there is no ambiguity
about In , i.e. In is a deterministic function of Xn . Recalling
that In is mapping of Zn to a set of integers, this means
that all the Zn sequences except on a set of zero measure,
i.e. all Zn sequences jointly typical with Xn are mapped
to a single In . See Fig. 2. However, since Y n and Zn are
statistically equivalent given Xn (they share the same typical
set given Xn) this would imply that In can be determined based
on Y n and therefore H (In|Y n) ≈ 0, which forces the rate to
be even smaller than I (X Q ; YQ) in view of (34). In general,
there is a trade-off between how close the rate can get to the
multiple-access bound I (X Q ; YQ) + R0 and how much it can
exceed the point-to-point capacity I (X Q ; YQ) of the X-Y link.
We capture this trade-off as follows.

Adding and subtracting H (In) to the R.H.S. of (34),
we have

n R ≤ I (Xn; Y n) + I (Xn; In) − I (Y n; In) + nμ. (37)

We now apply Lemma 10 to upper bound I (Xn; In) −
I (Y n; In) in the above inequality. First note that the random
variables (In, Zn, Xn, Y n) associated with our relay channel
trivially satisfy the conditions of Lemma 10. In particular,
Xn in our case is a discrete random vector whose distribution
is dictated by the uniform distribution on the set of possible
messages and the source codebook, Y n and Zn are continuous
random vectors and In is an integer valued random variable.
In light of this, Lemma 10 combined with (37) immediately
yields that

n R ≤ n(I (X Q; YQ) + an + √
2an ln 2 log e + μ),

i.e.,

R ≤ I (X Q; YQ) + an + √
2an ln 2 log e + μ. (38)

Combining (31), (35) and (38), we conclude that if a rate R
is achievable, then for any μ > 0 and sufficiently large n,⎧⎪⎨

⎪⎩
R ≤ I (X Q ; YQ, Z Q) + μ

R ≤ I (X Q ; YQ) + R0 − an + μ

R ≤ I (X Q ; YQ) + an + √
2an ln 2 log e + μ

where E[X2
Q] ≤ P and an ∈ [0, R0]. Since μ can be made

arbitrarily small, this proves Theorem 3 for the symmetric
case.

B. Asymmetric Case (N1 �= N2)

We now prove Theorem 3 for the asymmetric case when
N1 �= N2. Note that the proofs of (5)–(6) in this case follow
exactly the same lines as their proofs in the symmetric case,
i.e., by applying Fano’s inequality and letting H (In|Xn) =
nan , so in the sequel we only prove (7) for N1 �= N2.

First assume N1 < N2. In this case we can equivalently
think of Z and Y as given by{

Z = X + W1

Y = X + W21 + W22

where W1, W21 and W22 are zero-mean Gaussian random
variables with variances N1, N1 and N2 − N1 respectively,
and they are independent of each other and X . Based on this,
we write {

Zn = Xn + W n
1 (39)

Y n = Z̃ n + W n
22 (40)

where

Z̃ n := Xn + W n
21. (41)

To prove (7) for N1 < N2, we continue with (33) and modify
the proof for the symmetric case to be:

n R ≤ I (Xn; Y n, In) + nμ

≤ I (Xn; Z̃ n, In) + nμ

= I (Xn; Z̃ n) + I (Xn; In) − I (Z̃ n; In) + nμ,

where the second inequality follows from the data processing
inequality applied to the Markov chain Xn − (Z̃ n, In) −
(Y n, In). Now observe that (In, Zn, Xn , Z̃ n) satisfy the con-
ditions of Lemma 10 and therefore we have

n R ≤ nI (X Q; Z̃ Q) + n(an + √
2an ln 2 log e) + nμ

= n(I (X Q; Z Q) + an + √
2an ln 2 log e + μ),

where an = 1
n H (In|Xn). This proves constraint (7) for the

N1 < N2 case.
Now consider the case when N1 > N2. Construct an

auxiliary random variable Z̃ n as

Z̃ n := Y n + W̃ n ,
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where W̃ n is an i.i.d. sequence of Gaussian random variables
with zero mean and variance N1 − N2, and is independent
of the other random variables in the problem. Applying
Lemma 10 to (In, Zn, Xn , Z̃ n) we have

I (Xn; In) − I (Z̃ n; In) ≤ n(an + √
2an ln 2 log e),

which combined with the Markov relation In − Xn − Y n − Z̃ n

further implies that

I (Xn; In) − I (Y n; In) ≤ n(an + √
2an ln 2 log e). (42)

Combining this with inequality (37) then proves
constraint (7) for the N1 > N2 case and concludes the proof
of Theorem 3.

V. PROOF OF LEMMA 10

We now prove Lemma 10. For this, we first introduce some
auxiliary results that will be used in the proof.

A. Auxiliary Results

We begin with the following measure concentration result
which is a blowing-up lemma for general Gaussian random
variables.

Lemma 11: For any subset A ⊆ R
n , let �r (A) be its blown-

up set of radius r defined as

�r (A) := {
bn ∈ R

n : ∃ an ∈ A s.t. d(an, bn) ≤ r
}
,

where

d(an, bn) := ‖an − bn‖ (43)

denotes the Euclidean distance between the two sequences
an and bn . Let U1, U2, . . . , Un be n i.i.d. Gaussian random
variables with Ui ∼ N (0, N),∀i ∈ {1, 2, . . . , n}. Then, for
any A ⊆ R

n with Pr(Un ∈ A) ≥ 2−nan ,

Pr(Un ∈ �√
n(

√
2Nan ln 2+t)(A)) ≥ 1 − 2− nt2

2N ,∀t > 0.

Lemma 11 is essentially due to Marton [29] (see
also [30]– [31]). In Appendix B, we provide a simple proof of
Lemma 11 that extends from [32, eq. (1.6)], which is a version
of the lemma stated by Talagrand for standard Gaussian
random variables. For more discussions on the blowing-up
lemma and its applications, see the recent comprehensive
monograph by Raginsky and Sason [34].

The next lemma constructs a series of typical sets in a nested
manner (for a mixed set of continuous and discrete random
variables) which satisfy certain properties that will be used in
the proof of Lemma 10.

Lemma 12: Let X − Z − I form a Markov chain where
X and I are discrete random variables (or vectors), Z is a
continuous random variable (or vector) and I is a deterministic
function of Z . Let (X, Z, I) be a B-length sequence i.i.d.
generated from the joint distribution of (X, Z , I ), with I
being a function of Z denoted by I = f (Z). Then one can
construct a series of typical sets satisfying certain properties as
follows:

1) Let S(B)
ε (X, Z , I ) be the set of (x, z, i) sequences

defined as

S(B)
ε (X, Z , I ) = {(x, z, i) :

2−B(h(Z |X)+ε) ≤ f (z|x) ≤ 2−B(h(Z |X)−ε),

2−B(H(X |Z)+ε) ≤ p(x|z) ≤ 2−B(H(X |Z)−ε),

2−B(H(I |X)+ε) ≤ p(i|x) ≤ 2−B(H(I |X)−ε),

2−B(H(X |I )+ε) ≤ p(x|i) ≤ 2−B(H(X |I )−ε)}.
Then for any ε > 0 and B sufficiently large,

Pr((X, Z, I) ∈ S(B)
ε (X, Z , I )) ≥ 1 − ε.

2) For any z, let S(B)
ε (X |z) be the set of x sequences

defined as

S(B)
ε (X |z) = {x : (x, z, f (z)) ∈ S(B)

ε (X, Z , I )},
and let S(B)

ε (X, Z) be the set of (x, z) sequences
defined as

S(B)
ε (X, Z) = {(x, z) :
x ∈ S(B)

ε (X |z), Pr(X ∈ S(B)
ε (X |z)|Z = z) ≥ 1 − √

ε}.
Then for any ε > 0 and B sufficiently large,

Pr((X, Z) ∈ S(B)
ε (X, Z)) ≥ 1 − 2

√
ε.

3) For any (x, i), let S(B)
ε (Z |x, i) be the set of z sequences

defined as

S(B)
ε (Z |x, i) = {z : f (z) = i, (x, z) ∈ S(B)

ε (X, Z)},
and let S(B)

ε (X, I ) be the set of (x, i) sequences
defined as

S(B)
ε (X, I ) = {(x, i) :

Pr(Z ∈ S(B)
ε (Z |x, i)|X = x, I = i) ≥ 1 − 4

√
ε}.

Then for any ε > 0 and B sufficiently large,

Pr((X, I) ∈ S(B)
ε (X, I )) ≥ 1 − 2 4

√
ε.

Furthermore, for any (x, i) ∈ S(B)
ε (X, I ),

2−B(H(I |X)+ε) ≤ p(i|x) ≤ 2−B(H(I |X)−ε),

and for B sufficiently large,

Pr(Z ∈ S(B)
ε (Z |x, i)|X = x) ≥ 2−B(H(I |X)+2ε).

4) For any i, let S(B)
ε (X |i) be the set of x sequences

defined as

S(B)
ε (X |i) = {x : (x, i) ∈ S(B)

ε (X, I )},
and let S(B)

ε (I ) be the set of i sequences defined as

S(B)
ε (I ) = {i : Pr(X ∈ S(B)

ε (X |i)|I = i) ≥ 1 − 2 8
√

ε}.
Then for any ε > 0 and B sufficiently large,

Pr(I ∈ S(B)
ε (I )) ≥ 1 − 2 8

√
ε.

Note that if X, Z , I were all discrete, we could directly
use the strongly typical sets as defined in [38, Ch. 2] and
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Fig. 3. The set S(B)
ε (Zn |x, i).

all the properties above will naturally follow.6 Unfortunately,
there is no counterpart of strong typicality for continuous
random variables and if one uses weak typicality [39, Ch. 3]
instead then the above properties can not be all guaranteed.
Under this circumstance, Lemma 12 says that by its discussed
nested construction one can still have typical sets satisfying
all these properties, however the proof of this lemma is more
complex than simply invoking weak typicality and is included
in Appendix C.

B. Proof of Lemma 10

We are now ready to prove Lemma 10. For this we will
lift the random variables Xn, Y n, Zn and In to a higher
dimensional, say nB dimensional space, and invoke the typical
sets as constructed in Lemma 12. Specifically, consider the
following B-length i.i.d. sequence

{(Xn(b), Y n(b), Zn(b), In(b))}B
b=1, (44)

where for any b ∈ [1 : B], (Xn(b), Y n(b), Zn(b), In(b))
has the same distribution as (Xn, Y n, Zn, In). For nota-
tional convenience, in the sequel we write the B-length
sequence [Xn(1), Xn(2), . . . , Xn(B)] as X and similarly
define Y, Z and I; note here we have I = [ fn(Zn(1)),
fn(Zn(2)), . . . , fn(Zn(B))] =: f (Z). Since the random vari-
ables (Xn, Zn, In) under consideration satisfy the condition of
Lemma 12, i.e. Xn − Zn − In form a Markov chain where Xn

and In are discrete, Zn is continuous and In is a deterministic
function of Zn , we have the series of typical sets for (X, Z, I)
as described in Lemma 12. Our proof in the sequel will
build on these typical sets and their properties, as well as the
blowing-up lemma for Gaussian measure stated in Lemma 11.

In particular, from Lemma 12-3), for any (x, i) ∈
S(B)(Xn, In) and B sufficiently large,

Pr(Z ∈ S(B)
ε (Zn |x, i)|X = x) ≥ 2−B(H(In |Xn)+2ε)

= 2−nB(an+2ε), (45)

where an := 1
n H (In|Xn). See Fig. 3. We now blow up the

set S(B)
ε (Zn|x, i) and use Lemma 11 to show that if the

blowing-up radius is about
√

nB
√

2Nan ln 2, then the resultant
blown-up set has probability nearly 1. In particular, noting that
Z is Gaussian given X and using Lemma 11, we have

6Indeed, in our parallel paper [17] which considers improving on the cut-
set for discrete memoryless relay channels, we directly resort to the notion of
strong typicality instead of using the typicality sets as discussed in Lemma 12.

Fig. 4. Blow up the set S(B)
ε (Zn |x, i).

Fig. 5. Lower bound the conditional density f (y|i).

for B sufficiently large,

Pr(Z ∈ �√
nB(

√
2Nan ln 2+3

√
Nε)(S(B)

ε (Zn |x, i))|X = x)

≥ Pr(Z∈�√
nB(

√
2Nan ln 2+4Nε ln 2+√

Nε)(S(B)
ε (Zn |x, i))|X=x)

≥ 1 − 2− nBε
2

≥ 1 − ε.

See Fig. 4. Since Y and Z are identically distributed given X,
we also have

Pr(Y ∈ �√
nB(

√
2Nan ln 2+3

√
Nε)(S(B)

ε (Zn |x, i))|X = x)

≥ 1 − ε. (46)

We next lower bound the conditional density f (y|i)
for each y ∈ �√

nB(
√

2Nan ln 2+3
√

Nε)(S(B)
ε (Zn |x, i)). The

approach is geometric and the readers may facilitate
their understanding by referring to Fig. 5. First, note
that for each y ∈ �√

nB(
√

2Nan ln 2+3
√

Nε)(S(B)
ε (Zn|x, i)),

there exists (at least) one z ∈ S(B)
ε (Zn|x, i) such that

d (y, z) ≤ √
nB(

√
2Nan ln 2+3

√
Nε). By the construction of

S(B)
ε (Zn|x, i) as in Lemma 12-3), for this z ∈ S(B)

ε (Zn |x, i),
we have f (z) = i and (x, z) ∈ S(B)

ε (Xn, Zn). Using the
definition of S(B)

ε (Xn, Zn) in Lemma 12-2), we further have

Pr(X ∈ S(B)
ε (Xn |z)|Z = z) ≥ 1 − √

ε,

where, by Lemma 12-1) and 2), S(B)
ε (Xn |z) consists of all x

satisfying the following properties:

2−B(h(Zn|Xn)+ε) ≤ f (z|x) ≤ 2−B(h(Zn|Xn )−ε), (47)

2−B(H(Xn|Zn)+ε) ≤ p(x|z) ≤ 2−B(H(Xn|Zn)−ε), (48)

2−B(H(In |Xn)+ε) ≤ p(i|x) ≤ 2−B(H(In |Xn)−ε), (49)

2−B(H(Xn|In )+ε) ≤ p(x|i) ≤ 2−B(H(Xn|In )−ε). (50)
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Note that since by assumption Zn is Gaussian given Xn ,
we have h(Zn|Xn) = n

2 log 2πeN and

f (z|x) = 1

(2π N)
nB
2

e− ‖y−x‖2

2N ,

and therefore property (47) can be shown to imply that

d(x, z) ∈ [√nB N(1 − 2ε),
√

nB N(1 + 2ε)]. (51)

Moreover, with property (48) we can lower bound the size of
S(B)
ε (Xn |z) by considering the following:

1 − √
ε ≤ Pr(X ∈ S(B)

ε (Xn |z)|Z = z)

=
∑

x∈S(B)
ε (Xn |z)

p(x|z)

≤ 2−B(H(X |Z)−ε)
∣∣∣S(B)

ε (Xn |z)
∣∣∣ ,

i.e., ∣∣∣S(B)
ε (Xn |z)

∣∣∣ ≥ (1 − √
ε)2B(H(Xn|Zn)−ε). (52)

Based on (50), (51) and (52), we now lower bound f (y|i)
for each y ∈ �√

nB(
√

2Nan ln 2+3
√

Nε)(S(B)
ε (Zn |x, i)). In partic-

ular, we have for B sufficiently large,

f (y|i) =
∑

x

f (y|x)p(x|i)

≥
∑

x∈S(B)
ε (Xn |z)

f (y|x)p(x|i)

≥ 2−B(H(Xn|In )+ε)
∑

x∈S(B)
ε (Xn |z)

f (y|x) (53)

≥ 2−B(H(Xn|In )+ε)
∣∣S(B)

ε (Xn |z)∣∣ min
x∈S(B)

ε (Xn |z)
f (y|x)

≥ (1 − √
ε)2−B(H(Xn|In )+ε)

×2B(H(Xn|Zn)−ε) min
x∈S(B)

ε (Xn |z)
f (y|x), (54)

where the z throughout the above is the z ∈ S(B)
ε (Zn|x, i) such

that d (y, z) ≤ √
nB(

√
2Nan ln 2+3

√
Nε), (53) follows from

(50), and (54) follows from (52). To lower bound the last term
in (54), note that for any x ∈ S(B)

ε (Xn |z), we have due to (51)
that

d(x, y) ≤ d(x, z) + d(z, y)

≤ √
nB(

√
N(1 + 2ε) + √

2Nan ln 2 + 3
√

Nε)

= : √
nB(

√
N + √

2Nan ln 2 + ε1)

and thus,

f (y|x) = 1

(2π N)
nB
2

e− ‖y−x‖2

2N

≥ 2− nB(
√

N+√
2Nan ln 2+ε1)2

2N log e− nB
2 log 2π N

= 2
−nB

(
(
√

N+√
2Nan ln 2+ε1)2

2N log e+ 1
2 log 2π N

)

= : 2
−nB

(
1
2 log 2πeN+an+√

2an ln 2 log e+ε2

)

where ε1, ε2 → 0 as ε → 0. Plugging this into (54) yields
that

f (y|i)
≥ (1 − √

ε)2−B(H(Xn|In )+ε)2B(H(Xn|Zn)−ε)

×2
−nB

(
1
2 log 2πeN+an+√

2an ln 2 log e+ε2

)

≥ 2
−B

[
H(Xn |In )−H(Xn|Zn)+n( 1

2 log 2πeN+an+√
2an ln 2 log e+ε3)

]

(55)

for any y ∈ �√
nB(

√
2Nan ln 2+3

√
Nε)(S(B)

ε (Zn |x, i)) and B
sufficiently large, where ε3 → 0 as ε → 0.

For any i ∈ S(B)
ε (In), let Yi be a set of y sequences defined

as

Yi :=
⋃

x∈S(B)
ε (Xn |i)

�√
nB(

√
2Nan ln 2+3

√
Nε)(S(B)

ε (Zn |x, i)).

Then for each y ∈ Yi, there exists some x ∈ S(B)
ε (Xn |i) such

that y ∈ �√
nB(

√
2Nan ln 2+3

√
Nε)(S(B)

ε (Zn |x, i)), and by (55) it
follows that for B sufficiently large,

f (y|i)
≥ 2

−B
[

H(Xn |In )−H(Xn|Zn)+n( 1
2 log 2πeN+an +√

2an ln 2 log e+ε3)
]
.

Moreover, for any i ∈ S(B)
ε (In), we have for B sufficiently

large,

Pr(Y ∈ Yi|I = i)

=
∑

x

Pr(Y ∈ Yi|X = x)p(x|i)

≥
∑

x∈S(B)
ε (Xn |i)

Pr(Y ∈ Yi|X = x)p(x|i)

≥
∑

x∈S(B)
ε (Xn |i)

Pr(Y ∈ �√
nB(

√
2Nan ln 2+3

√
Nε)

×(S(B)
ε (Zn|x, i))|X = x)p(x|i)

≥ (1 − ε)Pr(X ∈ S(B)
ε (Xn |i)|I = i) (56)

≥ (1 − ε)(1 − 2 8
√

ε) (57)

≥ 1 − 3 8
√

ε,

where (56) follows from (46) and (57) follows from
Lemma 12-4). Finally, recalling from Lemma 12-4) that

Pr(I ∈ S(B)
ε (I )) ≥ 1 − 2 8

√
ε

and choosing δ to be max{3 8
√

ε, ε3}, we arrive at the following
proposition.

Proposition 13: For any δ > 0 and sufficiently large B ,
there exists a set I of i such that

Pr(I ∈ I) ≥ 1 − δ,

and for any i ∈ I, there exists a set Yi of y satisfying

Pr(Y ∈ Yi|I = i) ≥ 1 − δ,

and for any y ∈ Yi

f (y|i)
≥ 2−B(H(Xn|In )−H(Xn |Zn)+ n

2 log 2πeN+nan+n
√

2an ln 2 log e+nδ).
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We now use Proposition 13 to prove Lemma 10. For this,
first consider h(Y|i) for any i ∈ I. We have

h(Y|i) ≤ h(Y|i) + 1 − I (Y; I(Y ∈ Yi)|i) (58)

= 1 + h(Y|I(Y ∈ Yi), i)

= 1 + Pr(Y ∈ Yi|I = i)h(Y|i, Y ∈ Yi)

+ Pr(Y /∈ Yi|I = i)h(Y|i, Y /∈ Yi), (59)

where I(A) is the indicator function defined as 1 if A holds
and 0 otherwise, and (58) follows since

I (Y; I(Y ∈ Yi)|i) ≤ H (I(Y ∈ Yi)|i) ≤ 1.

To bound h(Y|i, Y ∈ Yi), we have by Proposition 13 that,

h(Y|i, Y ∈ Yi)

= −
∫

y∈Yi

f (y|i, Y ∈ Yi) log f (y|i, Y ∈ Yi)dy

≤ −
∫

y∈Yi

f (y|i, Y ∈ Yi) log f (y|i)dy

≤ B
(

H (Xn|In) − H (Xn|Zn) + n

2
log 2πeN + nan

+n
√

2an ln 2 log e + nδ
)

·
∫

y∈Yi

f (y|i, Y ∈ Yi)dy

= B
(

H (Xn|In) − H (Xn|Zn) + n

2
log 2πeN + nan

+ n
√

2an ln 2 log e + nδ
)
. (60)

Now consider E[‖Y‖2|i] for any i. We have

E[‖Y‖2|i] = E[‖X‖2|i] + E[‖W2‖2|i] ≤ nB(P + N),

where the equality follows from the independence between X
and W2 even conditioned on i. Therefore,

E[‖Y‖2|i, Y /∈ Yi] ≤ E[‖Y‖2|i]
Pr(Y /∈ Yi|i) ≤ nB(P + N)

Pr(Y /∈ Yi|i) ,

and

Pr(Y /∈ Yi|I = i)h(Y|i, Y /∈ Yi)

≤ nB

2
Pr(Y /∈ Yi|I = i) log 2πe

P + N

Pr(Y /∈ Yi|I = i)

≤ nBδ1, (61)

for some δ1 → 0 as δ → 0.
Plugging (60) and (61) into (59), we have for any i ∈ I and

sufficiently large B ,

h(Y|i) ≤ Pr(Y ∈ Yi|I = i)B
(

H (Xn|In) − H (Xn|Zn)

+ n

2
log 2πeN + nan + n

√
2an ln 2 log e + nδ

)

+ 1 + nBδ1

≤ B
(

H (Xn|In) − H (Xn|Zn) + n

2
log 2πeN

+ nan + n
√

2an ln 2 log e + nδ2 + 1/B
)

(62)

for some δ2 → 0 as δ → 0. Therefore, for sufficiently large B ,

h(Y|I) =
∑

i

p(i)h(Y|i)

=
∑
i∈I

p(i)h(Y|i) +
∑
i �∈I

p(i)h(Y|i)

≤
∑
i∈I

p(i)B
(

H (Xn|In) − H (Xn|Zn) + n

2
log 2πeN

+ nan + n
√

2an ln 2 log e + nδ2 + 1/B
)

+
∑
i �∈I

p(i)
nB

2
log 2πe(P + N)

≤ B
(

H (Xn|In) − H (Xn|Zn) + n

2
log 2πeN

+ nan + n
√

2an ln 2 log e + nδ3 + 1/B
)

(63)

for some δ3 → 0 as δ → 0. Observing that

h(Y|I) =
B∑

b=1

h(Y n(b)|In(b)) = Bh(Y n|In)

and noting that both δ3 and 1/B in (63) can be made arbitrarily
small by choosing B sufficiently large, we obtain

h(Y n|In) ≤ H (Xn|In) − H (Xn|Zn) + n

2
log 2πeN

+ nan + n
√

2an ln 2 log e. (64)

Finally, using the relation (64), we have

I (Xn; In) − I (Y n; In)

= H (Xn) − H (Xn|In) − h(Y n) + h(Y n |In)

≤ H (Xn) − H (Xn|In) − h(Y n) + H (Xn|In)

− H (Xn|Zn) + n

2
log 2πeN + nan + n

√
2an ln 2 log e

= I (Xn; Zn) − [h(Y n) − n

2
log 2πeN]

+ nan + n
√

2an ln 2 log e

= I (Xn; Zn) − I (Xn; Y n) + nan + n
√

2an ln 2 log e

= nan + n
√

2an ln 2 log (65)

where the last step follows because Zn and Y n are condition-
ally i.i.d. given Xn , i.e. I (Xn; Zn) = I (Xn; Y n). This finishes
the proof of Lemma 10.

VI. FURTHER IMPROVEMENT

In this section we show that in the case of N1 ≤ N2,
our bound in Theorem 3 can be further sharpened for certain
regimes of channel parameters. In particular, we will prove
the following proposition.

Proposition 14: For a Gaussian primitive relay channel
with N1 ≤ N2, if a rate R is achievable, then there exists
some a ∈ [0, R0] such that (8), (9) and the following
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two constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R ≤ 1

2
log

(
1 + P

N1

)
+ a + √

2a ln 2 log e (66)

R ≤ 1

2
log

(
1 + P

N1

)
+ N1

N2
a

+
√

N1

N2

(
N1

N2
2a ln 2 + 1 − N1

N2

)
log e (67)

are simultaneously satisfied.
Proposition 14 improves upon Theorem 3 for the N1 ≤ N2

case by introducing a new constraint (67) that is structurally
similar to (66). Note that neither constraint (66) nor (67) is
dominating the other and which one is tighter depends on the
channel parameter. This makes the bound in Proposition 14
in general tighter than that in Theorem 3 for the N1 ≤ N2
case. Nevertheless, in Appendix D we show that the largest
gap between the bound in Proposition 14 and the cut-set
bound remains to be 0.0535, which is still attained when
P

N1
= P

N2
→ ∞ and R0 = 0.5.

To show Proposition 14, we only need to show the new
constraint (67), which follows immediately from the following
lemma.

Lemma 15: Consider any discrete random vector Xn ∈ R
n .

Let Zn = Xn+W n
1 and Y n = Xn+W n

2 , where W n
1 and W n

2 are
i.i.d. sequences of Gaussian random variables with zero mean
and variance N1 and N2 respectively, and they are independent
of each other and Xn . Also let In = fn(Zn) be a function of
Zn which takes value on a finite set. Then, if N1 ≤ N2 and
H (In|Xn) = nan , we have

I (Xn; In) − I (Y n; In) ≤ I (Xn; Zn) − I (Xn; Y n)

+ n

(
N1

N2
an +

√
N1

N2

(
N1

N2
2an ln 2 + 1 − N1

N2

)
log e

)
.

(68)

Note that Lemma 15 provides a new bound (68) on
the difference I (Xn; In) − I (Y n; In) under the assumption
of N1 ≤ N2. Since the random variables (Xn, Y n, Zn, In)
associated with the relay channel for the N1 ≤ N2 case
trivially satisfies the condition of Lemma 15, one can
combine (68) with (37), which immediately yields the
new constraint (67). In the sequel we focus on proving
Lemma 15.

A. Proof of Lemma 15

Without of loss of generality, write Zn and Y n as{
Zn = Xn + W n

1

Y n = Z̃ n + W n
22

with

Z̃ n := Xn + W n
21,

where W n
1 , W n

21 and W n
22 are i.i.d. sequences of Gaussian

random variables with zero mean and variance N1, N1 and
N2 − N1 respectively, and they are independent of each other
and Xn .

Consider the B-length i.i.d. extensions of the above random
variables. By applying the typicality argument and blowing-
up lemma along the same lines as in the proof of Lemma 10,
we have for any (x, i) ∈ S(B)(Xn, In) and B sufficiently large,

Pr(Z ∈ �√
nB(

√
2Nan ln 2+3

√
N1ε)(S(B)

ε (Zn|x, i))|X = x)

≥ 1 − ε. (69)

Since Z̃ and Z are identically distributed given X, (69) also
holds with Z replaced by Z̃. In other words, we have for any
(x, i) ∈ S(B)(Xn, In) and B sufficiently large,

Pr(∃ z ∈ S(B)
ε (Zn |x, i) s.t.

d (Z̃, z)≤√
nB(

√
2N1an ln 2+3

√
N1ε)|X=x) ≥ 1−ε.(70)

Consider any specific pair of (z̃, z) with d (z̃, z) ≤√
nB(

√
2N1an ln 2+3

√
N1ε) and recall Y = z̃+W22. We have

d2(Y, z) = ‖Y − z‖2

= ‖W22 + z̃ − z‖2

= [W22 + (z̃ − z)]T [W22 + (z̃ − z)]
= ‖W22‖2 + 2WT

22(z̃ − z) + ‖(z̃ − z)‖2

= ‖W22‖2 + 2WT
22(z̃ − z) + d2(z̃, z).

From the weak law of large numbers, for any ε > 0 and
sufficiently large B , we have

Pr(‖W22‖2 ∈ [nB(N2 − N1 − ε/2), nB(N2 − N1 + ε/2)])
≥ 1 − ε/2

and

Pr(2WT
22(z̃ − z) ∈ [−nBε/2, nBε/2]) ≥ 1 − ε/2.

Therefore, by the union bound, for any ε > 0 and sufficiently
large B ,

1 − ε ≤ Pr(d2(Y, z) ≤ nB(N2 − N1 + ε) + d2(z̃, z))
≤ Pr(d2(Y, z) ≤ nB(N2 − N1 + ε)

+ nB(
√

2N1an ln 2 + 3
√

N1ε)
2)

= Pr(d(Y, z) ≤ √
nB

√
(N2 + N1(2an ln 2 − 1) + ε1)),

(71)

where ε1 is defined such that

(N2 − N1 + ε) + (
√

2N1an ln 2 + 3
√

N1ε)
2

= N2 + N1(2an ln 2 − 1) + ε1

and ε1 → 0 as ε → 0. In light of (70) and (71), we have (72),
as shown at the top of the next page, for any (x, i) ∈
S(B)(Xn, In) and B sufficiently large.

Now along the similar lines as in the proof of
Lemma 10, we can lower bound the conditional density
f (y|i) for any y ∈ �√

nB
√

N2+N1(2an ln 2−1)+ε1
(S(B)

ε (Zn |x, i)),
(x, i) ∈ S(B)(Xn , In). In particular, consider a specific
z ∈ S(B)

ε (Zn|x, i) such that

d (y, z) ≤ √
nB

√
N2 + N1(2an ln 2 − 1) + ε1. (73)

For any x ∈ S(B)
ε (Xn |z) where z is the one as described in (73),

we have by (51) that

d(x, z) ≤ √
nB N1(1 + 2ε),
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Pr(Y ∈ �√
nB

√
N2+N1(2an ln 2−1)+ε1

(S(B)
ε (Zn|x, i))|X = x)

= Pr(∃ z ∈ S(B)
ε (Zn |x, i) s.t. d (Y, z) ≤ √

nB
√

N2 + N1(2an ln 2 − 1) + ε1
∣∣X = x)

≥ Pr(∃ z ∈ S(B)
ε (Zn |x, i) s.t. d (Z̃, z) ≤ √

nB(
√

2N1an ln 2 + 3
√

N1ε)
∣∣X = x)

×Pr(∃ z ∈ S(B)
ε (Zn |x, i) s.t. d (Y, z) ≤ √

nB
√

N2 + N1(2an ln 2 − 1) + ε1∣∣X = x, ∃ z ∈ S(B)
ε (Zn|x, i) s.t. d (Z̃, z) ≤ √

nB(
√

2N1an ln 2 + 3
√

N1ε))

≥ (1 − ε)2 (72)

and therefore by the triangle inequality,

d(x, y) ≤ √
nB N1(1 + 2ε)

+ √
nB

√
N2 + N1(2an ln 2 − 1) + ε1,

which leads to the following lower bound on f (y|x),

f (y|x) ≥ 2
−nB

(
1
2 log 2πeN2+ N1

N2
an+

√
N1
N2

(
N1
N2

2an ln 2+1− N1
N2

)
log e+ε2

)

where ε2 → 0 as ε → 0. Plugging this into (54) yields that

f (y|i) ≥ 2−B(H(Xn|In )−H(Xn |Zn)+ n
2 log 2πeN2)

·2−B

(
n

(
N1
N2

an+
√

N1
N2

(
N1
N2

2an ln 2+1− N1
N2

)
log e

)
+nε3

)

(74)

for any y ∈ �√
nB

√
N2+N1(2an ln 2−1)+ε1

(S(B)
ε (Zn |x, i)), (x, i) ∈

S(B)(Xn, In), where ε3 → 0 as ε → 0. Finally, following the
same procedure as in the proof of Lemma 10 to translate (74)
to the upper bound on h(Y n |In), we have

h(Y n|In) ≤ H (Xn|In) − H (Xn|Zn) + n

2
log 2πeN2

+ n

(
N1

N2
an +

√
N1

N2

(
N1

N2
2an ln 2 + 1 − N1

N2

)
log e

)
,

which combined with (65) immediately yields the new
bound (68) on the difference I (Xn; In) − I (Y n; In). This
concludes the proof of Lemma 15.

VII. CONCLUSION

We consider the Gaussian primitive relay channel, and
establish a new upper bound on its capacity that is tighter
than the cut-set bound. Combined with a tensorization argu-
ment [13], this result also implies that the current capacity
approximations for Gaussian relay networks, which have linear
gap to the cut-set bound in the number of nodes, are order-
optimal and leads to a lower bound on the pre-constant.

The proof of our bound involves quantitively characterizing
the tensions between the n-dimensional information measures
involved in the problem. The main idea is to use measure con-
centration to study the geometric relations that are satisfied by
typical realizations of the n-letter random variables associated
with the problem, and then translate these geometric relations
into new and surprising relations between the entropies of the
corresponding n-letter random variables. In our forthcoming
work [28], we further strengthen this geometric approach and
develop a tighter upper bound on the capacity of the Gaussian

primitive relay channel, which directly leads to a solution
of a long-standing open question posed by Cover [9] in the
Gaussian case.

APPENDIX A
PROOF OF PROPOSITION 5

First rewrite our new bound in Corollary 4 as⎧⎪⎪⎨
⎪⎪⎩

R ≤ 1

2
log

(
1 + P

N1
+ P

N2

)
(75)

R ≤ 1

2
log

(
1 + P

N2

)
+ R0 − a∗ (76)

where a∗ is the solution to the following equation:

1

2
log

(
1 + P

N2

)
+ R0 − 1

2
log

(
1 + max

{
P

N1
,

P

N2

})

= 2a∗ + √
2a∗ ln 2 log e. (77)

Observe that the gap �( P
N1

, P
N2

, R0) between our new bound
and the cut-set bound is positive only if the channel parameters
( P

N1
, P

N2
, R0) are such that between (75) and (76) of our bound,

constraint (76) is active. This is because if in our bound
constraint (75) is active, then for the cut-set bound also (3)
is active and these two bounds become the same.

Thus to find the largest gap, one can without loss of
generality assume constraint (76) is active for our bound.
We now argue that the largest gap happens only when (4) is
active for the cut-set bound. Suppose this is not true, i.e., when
the largest gap happens constraint (3) instead of (4) is active.
Then this implies that the R.H.S. of (3) is strictly less than that
of (4) and thus one can reduce R0 to further increase the gap,
which contradicts with the largest gap assumption. Therefore,
only when (76) and (4) are active, the gap attains the largest
value that is given by the solution a∗ to equation (77). The
largest value that the L.H.S. of (77) can take while still
maintaining (76) and (4) are active is 0.5, in which case
the channel parameter ( P

N1
, P

N2
, R0) has to be (∞,∞, 0.5).

Solving equation (77) with L.H.S. = 0.5, we obtain
�∗ = �(∞,∞, 0.5) = 0.0535.

APPENDIX B
PROOF OF LEMMA 11

Given A ⊆ R
n , let B := {bn ∈ R

n : √
Nbn ∈ A} and

Vi = Ui√
N

,∀i ∈ {1, 2, . . . , n}. Then V1, V2, . . . , Vn are n
i.i.d. standard Gaussian random variables with Vi ∼ N (0, 1),
∀i ∈ {1, 2, . . . , n}, and

Pr(V n ∈ B) = Pr(
√

N V n ∈ A) = Pr(Un ∈ A) ≥ 2−nan .
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We next invoke Gaussian measure concentration as stated
in (1.6) of [32]: for any B ⊆ R

n and

r ≥ √−2 ln Pr(V n ∈ B),

we have

Pr(V n ∈ �r (B)) ≥ 1 − e− 1
2 (r−√−2 ln Pr(V n∈B))

2
.

Thus, for any t > 0,

Pr(V n ∈ �√
n(

√
2an ln 2+ t√

N
)(B))

≥ Pr(V n ∈ �√−2 ln Pr(V n∈B)+√
n
N t (B))

≥ 1 − 2− nt2
2N .

Noting that

�√
n(

√
2Nan ln 2+t)(A)

=
{√

Nbn : bn ∈ �√
n(

√
2an ln 2+ r√

N
)(B)

}
,

we have

Pr(Un ∈ �√
n(

√
2Nan ln 2+t)(A))

= Pr(
√

N V n ∈ �√
n(

√
2Nan ln 2+t)(A))

= Pr(V n ∈ �√
n(

√
2an ln 2+ t√

N
)(B))

≥ 1 − 2− nt2
2N .

APPENDIX C
PROOF OF LEMMA 12

Lemma 12-1) is a simple consequence of the law of large
numbers. To prove Lemma 12-2)–4), we will repeatedly use
the following lemma, which has been proved in [18].

Lemma 16: Let A ⊆ C × D. For x ∈ C , use A|x to denote
the set

A|x = {y ∈ D : (x, y) ∈ A}.
If Pr(A) ≥ 1 − ε, then Pr(B) ≥ 1 − √

ε, where

B := {x ∈ C : Pr(A|x |x) ≥ 1 − √
ε}.

A. Proof of Lemma 12-2)

Consider B sufficiently large. Due to Lemma 16 and the
fact that

Pr((X, Z, I) ∈ S(B)
ε (X, Z , I )) ≥ 1 − ε,

we have

Pr{(x, z) : Pr((X, z, f (z)) ∈ S(B)
ε (X, Z , I )|Z = z)

≥ 1 − √
ε} ≥ 1 − √

ε,

i.e.,

Pr{(x, z) : Pr(X ∈ S(B)
ε (X |z)|Z = z) ≥ 1 − √

ε} ≥ 1 − √
ε.

Then by the definition of S(B)
ε (X, Z),

Pr((X, Z) /∈ S(B)
ε (X, Z))

≤ Pr(X /∈ S(B)
ε (X |Z))

+ Pr{(x, z) : Pr(X ∈ S(B)
ε (X |z)|Z = z) < 1 − √

ε}
≤ ε + √

ε

≤ 2
√

ε,

and thus Pr(S(B)
ε (X, Z)) ≥ 1 − 2

√
ε.

B. Proof of Lemma 12-3)

Consider B sufficiently large. We have

Pr(Z /∈ S(B)
ε (Z |x, I))

= Pr( f (Z) = I, (X, Z) /∈ S(B)
ε (X, Z))

≤ 2
√

ε.

On the other hand,

Pr(Z /∈ S(B)
ε (Z |x, I))

=
∑

(x,i)∈S(B)
ε (X,I )

Pr(Z /∈ S(B)
ε (Z |x, I)|X = x, I = i)p(x, i)

+
∑

(x,i)/∈S(B)
ε (X,I )

Pr(Z /∈ S(B)
ε (Z |x, I)|X = x, I = i)p(x, i)

≥ 4
√

ε · Pr((X, I) /∈ S(B)
ε (X, I )).

Therefore, Pr((X, I) /∈ S(B)
ε (X, I )) ≤ 2

√
ε/ 4

√
ε = 2 4

√
ε, and

Pr((X, I) ∈ S(B)
ε (X, I )) ≥ 1 − 2 4

√
ε.

Consider any (x, i) ∈ S(B)
ε (X, I ). From the definition of

S(B)
ε (X, I ),

Pr(Z ∈ S(B)
ε (Z |x, i)|X = x, I = i) ≥ 1 − 4

√
ε.

Therefore, S(B)
ε (Z |x, i) must be nonempty, i.e., there exists

at least one z ∈ S(B)
ε (Z |x, i). Pick up any z ∈ S(B)

ε (Z |x, i).
By the definition of S(B)

ε (Z |x, i), we have i) f (z) = i and ii)
(x, z) ∈ S(B)

ε (X, Z) such that (x, z, i) ∈ S(B)
ε (X, Z , I ). Then,

it follows from the definition of S(B)
ε (X, Z , I ) that

2−nB(an+ε) ≤ p(i|x) ≤ 2−nB(an−ε).

Furthermore,

Pr(Z ∈ S(B)
ε (Z |x, i)|X = x)

= Pr( f (Z) = i|X = x)Pr(Z ∈ S(B)
ε (Z |x, i)|X = x, f (Z) = i)

Pr( f (Z) = i|Z ∈ S(B)
ε (Z |x, i), X = x)

= p(i|x)Pr(S(B)
ε (Z |x, i)|X = x, I = i)

≥ 2−nB(an+ε)(1 − 4
√

ε)

≥ 2−nB(an+2ε)

for sufficiently large B .

C. Proof of Lemma 12-4)

For B sufficiently large,

Pr(I ∈ S(B)
ε (I ))

≥ Pr

{
i : Pr(X ∈ S(B)

ε (X |i)|I = i) ≥ 1 −
√

2 4
√

ε

}

≥ 1 −
√

2 4
√

ε

≥ 1 − 2 8
√

ε.
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a∗ =
( x2

x1
+ 1) ln(1 + x2

1+x1
) + 2

x2
2

x2
1

2( x2
x1

+ 1)2 ln 2
−

√
(( x2

x1
+ 1) ln(1 + x2

1+x1
) + 2

x2
2

x2
1
)2 − ( x2

x1
+ 1)2[ln2(1 + x2

1+x1
) + x2

x1
( x2

x1
− 1)]

2( x2
x1

+ 1)2 ln 2
(81)

APPENDIX D

Consider the following upper bound jointly imposed
by (8)–(9) and (67),

⎧⎪⎪⎨
⎪⎪⎩

R ≤ 1

2
log

(
1 + P

N1
+ P

N2

)
(78)

R ≤ 1

2
log

(
1 + P

N2

)
+ R0 − a∗ (79)

where a∗ is the solution to the equation

1

2
log

(
1 + P

N2

)
+ R0 − 1

2
log

(
1 + P

N1

)

=
(

N1

N2
+ 1

)
a∗ +

√
N1

N2

(
N1

N2
2a∗ ln 2 + 1 − N1

N2

)
log e.

(80)

To show that the largest gap between our bound in
Proposition 14 and the cut-set bound in (3)–(4) remains to
be �∗ = 0.0535, it suffices to show that the above bound and
the cut-set bound differ from each other at most 0.0535.

Similarly as in Appendix A, one can argue that the largest
gap between the above bound and the cut-set bound happens
only when (79) and (4) are active respectively, in which case
the gap is given by the a∗ satisfying (80). Note that for (4) to
be active in the cut-set bound, one must have

1

2
log

(
1 + P

N2

)
+ R0 ≤ 1

2
log

(
1 + P

N1
+ P

N2

)
.

Then to find the largest a∗ we impose the following relation:

1

2
log

(
1 + P

N1
+ P

N2

)
− 1

2
log

(
1 + P

N1

)

=
(

N1

N2
+ 1

)
a∗ +

√
N1

N2

(
N1

N2
2a∗ ln 2 + 1 − N1

N2

)
log e.

Letting xi = P
Ni

for i ∈ {1, 2} and solving the above
equation, we have (81), as shown at the top of this page,
where the maximum value a∗ = 0.0535 is attained when
x1 = x2 = ∞. This shows that the largest gap between
our bound in Proposition 14 and the cut-set bound remains to
be 0.0535.
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