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ABSTRACT
The Convolutional Neural Networks (CNNs) architecture is one
of the most widely used deep learning tools. The execution time
of CNNs is dominated by the time spent on the convolution steps.
Most CNNs implementations adopt an approach that lowers the
convolution into a matrix-based operation through the im2col (im-
age to column) process. The transformed convolution then can be
easily parallelized with highly efficient BLAS libraries. The contri-
bution of this paper is that we observe significant but intricately
patterned data redundancy in this matrix representation of convo-
lution. This redundancy has not been exploited before to improve
the performance of CNNs. In this paper, we analyze the origin
of the redundancy generated by the im2col process, and reveal a
new data pattern to more mathematically concisely describe the
matrix representation for convolution. Based on this redundancy-
minimized matrix representation, we implement a FFT-based con-
volution with finer FFT granularity. It achieves on average 23% and
maximum 50% speedup over the regular FFT convolution, and on
average 93% and maximum 286% speedup over the Im2col+GEMM
method from NVIDIA’s cuDNN library, one of the most widely used
CNNs libraries. Moreover, by replacing existing methods with our
new convolution method in a popular deep-learning programming
framework Caffe, we observe on average 74% speedup for multiple
synthetic CNNs in closer-to-real-world application scenarios and
25% speedup for a variant of the VGG network.
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• Computing methodologies → Neural networks; • Theory
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1 INTRODUCTION
Deep convolutional neural networks (CNNs) have become one of
the most successful deep learning tools in recent years. One of the
first successful CNN models can be traced back to [25] and later im-
proved in [26]. As Krizhevsky et.al. made significant breakthrough
in vision recognition with CNNs [21] in 2012, deeper and more
complicated network structures are proposed to increase CNN ex-
pressiveness [34] [35] [37] [15]. ResNet [15] is 20 times deeper and
8 times deeper than AlexNet [21] and VGGNet [35], respectively.
As the complexity of CNNs increase, their computation complex-
ity increases exponentially. Furthermore, for real-time interactive
applications where the CNN is deployed, e.g., autonomous driv-
ing [3][5] and video surveillance systems [9], long latency is not
acceptable. Thus, the computation efficiency of CNN becomes an
essential factor in its research and application.

A typical convolutional neural network consists of many dif-
ferent layers. Among these layers, the bulk of the computation is
performed on convolutional (CONV) layers [14] [8] [31] [38] [18]
[28][33]. It is reported in [18] that the convolution layer accounts
for 92% of the execution time of forward pass on a Nvidia GPU for
the AlexNet model. The backward pass has similar breakdown of
computation time. It is also shown in [28] that convolutional layer
consumes 86%, 89%, 90% and 94% of the total execution time for
GooleNet, VGG, OverFeat and AlexNet CNN models respectively
in one forward and one backward propagation. Convolution layer
requires a substantial amount of computation resources, especially
for modern advanced CNN models with deeper and complicated
architecture. Naturally, prior research on CNNs’ performance has
been focused on optimizing the convolution process.

One of the most widely adopted approaches is to exploit GPU’s
massive parallel computing capability to accelerate CNNs. Among
many GPU-based CNN implementations, Nvidia has developed a
highly efficient drop-in deep learning acceleration library cuDNN
[6] with optimized routines on GPUs. Most deep learning frame-
works support GPU by default [19] [40] [1] [2] [7].

Another line of work is to optimize the backend implementa-
tion of convolution. There are two representative approaches: (1)
Use FFT to carry out convolutions in the Fourier domain [30] [4]
[23]. Experimental results [38] have shown that larger convolution
kernels yield more performance gain. As CovNets utilized smaller
kernels [35] [17], Winograd algorithm has been proposed to reduce
the amount of multiplication at cost of performing more additions.
For large kernels, however, the saving on multiplication may not
be enough to compensate the extra additions. (2) Use matrix-matrix
multiplication to directly calculate convolution. The approach [4]
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is representative as it transforms convolution into matrix multipli-
cation, and then highly tuned GEMM libraries can be invoked to
compute matrix multiplication.

This paper presents our work on optimizing CNN’s convolution
process at the backend-implementation level. Our key insight, and
also the main contribution of this paper is that we observe signifi-
cant yet intricate-patterned redundancy hidden in the matrix-based
representation of CNN’s convolution process. This redundancy has
been largely overlooked in prior work, but can be transformed to
reduce the computational complexity, and therefore to improve
the performance of CNN’s convolution. We present a systematic
study of the redundancy and reveal a doubly block Hankel matrix
data pattern for an unrolled input feature map. Based on this data
pattern, contrary to the regular FFT convolutions that take 2D FFT
over the entire feature map, we implement a new FFT-based con-
volution with finer granularity, which yields notable performance
improvements compared to existing state-of-the-art implementa-
tions.We conduct various comparisons of these two algorithms. The
experimental results suggest that the fine-grained FFT approach
outperforms the regular FFT method for both synthetic and real-
world benchmarks.

2 OVERVIEW AND BACKGROUND
In this section, we present an overview of CNN from the point-of-
view of computation complexity and performance with a particular
highlight on CNN’s most time-consuming step—convolution. Then
we briefly discuss im2col+MM convolution and FFT-based convo-
lution to which our proposed method is closely related. To help
relate to other work, the deep-learning domain notations used in
this paper are summarized in Table 1.

2.1 Convolutional Neural Network
A typical CNN is composed of multiple stages [24]. Each stage
consists of a CONV layer, a non-linearity layer and a pooling layer.
Notably non-linearity is introduced into CNNs using non-linearity
layers and pooling layers to help the output feature map to be ro-
bust and invariant to small shifts and distortions in the previous
layer [27]. Convolutional Networks (ConvNets) consists of multi-
ple convolutional (CONV) layers to extract features from the input.
They act as a feature extractor that extract feature maps by different
convolutional kernels. Each kernel extracts a feature from input
images, and a convolutional layer typically uses multiple kernels
to extract multiple feature maps. Low-level features extracted at
lower convolutional layers are combined to more abstract features
at higher layers. In CNNs, the input and output to the convolutional
layers are often referred to as feature maps. Each neuron at the
current convolutional layer is connected to a local region of the
previous layer with the full depth dimension, which is referred as
local receptive field. It results in a reduced number of connections
between layers by only connecting to the local receptive field of pre-
vious layers. The property associated with the sparsely connected
layers is called sparse connectivity [10]. Another key idea of CNNs
is parameter sharing [10]. It is accomplished by applying the same
weights over the input feature maps at all positions to extract the
output feature maps. It further reduces the storage requirement
for the parameters. The output feature maps represent a particular
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Figure 1: Illustration of im2col+MM convolution, which
transforms a convolution into a matrix multiplication. Re-
fer to Table 1 for notations.

feature extracted from the input. Convolutional layer produces a
feature map for each filter, thus the number of output feature maps
depends on the number of filters. The last layer of CNNs is a fully-
connected (FC) layer which combines the results of convolutions
of a set of relatively high-level features for classification purpose.

A two-dimensional (2D) convolution performs the dot product
between the filter and the corresponding values in the feature map.
In fact the convolution operation in CNNs is essentially batched 2D
convolution. To convolve the multiple channels in images with the
filter, CNNs perform a 2D convolution separately in corresponding
channels and sum results across all the channels. For multiple filters,
the output can be viewed as the concatenation of the resultant
matrices generated by the input and corresponding filters.

2.2 im2col+MM Convolution
Im2col+GEMM, also known as lowering or unrolling convolution,
is a straightforward and efficient approach to compute convolu-
tion. Im2col (image to column) is the step where image patches
based on the kernel size are rearranged into columns and further
reorganized into a concatenated matrix. Im2col-based convolution
first unrolls/lowers input images to 2d matrices. Since kernels are
already stored as the kernel matrix, convolution is converted to a
general matrix multiply (GEMM). Each row of the output matrix
corresponds to an output feature map, whose width is determined
by the following formula.

Q = (W −V + 2P )/S + 1 (1)

Where Q ,W , V , P , and S are explained in Table 1. The latter three
hyper-parameters control the width of output feature map. We only
consider the width here, but it can be trivially applied to the height.
Figure 1 presents the im2col+MM version of convolution. It takes
a H ×W input feature map and K U ×V kernels. Each column in
the unrolled input matrix contains the 2D patch and each row of
the kernel matrix corresponds to aU ×V kernel. Multiplying these
two matrices results in an output matrix that each row is an output
feature map.

It is first observed in [4] that im2col-based convolution to ma-
trix multiplication has high performance in CNNs. Yanqing et al.
[19] independently found that it is efficient in Caffe deep learning
framework. By transforming a convolution into a general matrix
multiplication, it takes the advantage of highly-tuned linear algebra
libraries, e.g., cuBLAS. However, the main disadvantage is that it
causes significant memory overhead during the im2col process.
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Table 1: Summary of Notations

Name Description
N Mini-batch size
K Number of kernels
H Input height
W Input width
R Output height
Q Output width
C Input channels
U Kernel height
V Kernel width
S Stride
P Padding

2.3 FFT Convolution
FFT-based convolution [30] [38] makes use of Fast Fourier Trans-
form (FFT) to compute pointwise products in frequency domain,
which are equivalent to spatial convolutions based on the convolu-
tion theorem.

f ∗ д = F −1 (F ( f ) · F (д)) (2)
Where F and F −1 denote the Fourier Transform and inverse
Fourier Transform, and ∗, ·, and are convolution, complex point-
wise product, and complex conjugation, respectively. In this ap-
proach, the sizes of both input tensor and weight tensor have to
be equal through the padding with zeros prior the transformation.
Then they are transformed from the spatial domain to the frequency
domain with FFT. Following the FFT transformation, a pointwise
multiplication is performed between the resulting input FFT trans-
form and the complex conjugate of the filter FFT result. The last step
is to apply inverse FFT transform to return to the spatial domain.

FFT-based approach greatly reduces the algorithmic complexity
of convolution in the spatial domain. However, one major drawback
is the need for large temporary memory. First, the weight tensor
needs to be padded to the same size as input tensor. The memory
overhead is high if input tensor is much larger than weight tensor.
When the weight size is significantly smaller than the input, too
much padding to the input could occur and FFT-based convolution
is less efficient. As a consequence, a tiling strategy [38] [16] is
used to decompose a large convolution into smaller ones, which
can be used to reduce the memory overhead. Second, additional
memory is required to store the FFT coefficients. In our work, we
find the symmetry property of real inputs in the Fourier space can
reduce the storage of FFT coefficients to half. The symmetry is also
exploited to reduce the pointwise product computation cost.

2.4 Other Related Work
Besides Im2col+MM and FFT-based convolutions, some other effi-
cient convolution methods have been proposed.

Direct convolution, as the name implies, directly perform convo-
lution. However, due to its across-channel dependency, it will not
expose sufficient parallelism to fully utilize the resources on GPUs.
Cuda-convnet [20] is one of the earliest CNN frameworks with di-
rect convolution implementation. It achieves high efficiency when
batch size is large [6], but the efficiency generalizes poorly once

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9
0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0
0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0
1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

im2col

Figure 2: A 3× 3 input with zero-padding of size 1 convolves
with a 2×2 kernel (shown in blue on the left). On the right is
a larger matrix generated by the im2col process with redun-
dancy.

batch size is 64 or below. Lavin et al. [22] develop an efficient convo-
lution maxDNN based on SGEMM implementations created by an
open source assembler for NVIDIA Maxwell GPUs [12]. maxDNN
is written in low-level Maxwell assembler, and it takes advantage
of hardware specific optimizations and obtains high performance.
However the optimization technique is not portable for other archi-
tectures. Cong et.al. [8] employ the Strassen matrix multiplication
[36] to reduce the arithmetic complexity of the redefined matrix
multiplication, where each element in the matrix is a feature map,
reducing the number of operations by up to 47%. Lavin et al. [23]
introduced a fast convolutional algorithm to reduce the complexity
using Winograd’s minimal filtering algorithm [39]. However, its
number of operations grows quadratically with kernel size. Addi-
tionally, the numerical accuracy ofWinograd convolution decreases
as larger kernels are used.

3 MOTIVATION
In this section we explain how data redundancy is discovered from
the implementation details of the im2col-based convolution, and
how this novel observation motivates the proposed more efficient
implementation of convolution.

Recall that the im2col operation reshapes the input feature map
as a concatenation of columns stretched by the local patches of
the input feature map. The kernels are already stored as a kernel
matrix. Therefore, the convolution is transformed to a matrix mul-
tiplication to take advantage of highly optimized GEMM libraries.
During the im2col process, since the receptive fields overlap, the
elements in the overlapped area are duplicated into multiple dis-
tinct columns. The duplication of the overlapped elements incurs
lots of redundancy. The exact degree of redundancy is hard to pre-
dict analytically, however can be measured once all parameters
are known. In addition to the redundancy of overlapped elements,
there is another kind of redundancy due to the treatment of the
input feature map. Sometimes the convolution layer would pad the
input feature map with zero to keep the spatial size constant as well
as preserve the information at the border. Thus the im2col process
also duplicates zeros. We could skip multiplications that always
give zero in matrix multiply if we know the distribution of zero
element after the im2col operation. For example, Figure 2 shows
a 3 × 3 input with zero-padding size of 1 with respect to a 2 × 2
kernel are processed to generate an unrolled output by the im2col
operation.

To exploit the redundancies in im2col and develop more efficient
convolution algorithm, we need to answer three questions. (1) How
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im2col

Figure 3: The close look of im2col process by reshaping the
input patch overlapped with a kernel of four rows into a col-
umn.

to mathematically describe the duplication of the input feature map
in im2col? (2) How to mathematically describe the distribution
of zero elements introduced in zero-padding? And (3) Where are
the absolutely necessary elements in the resultant matrix after the
im2col step? In the remainder of this paper, we develop a recursive
data pattern to describe the redundancy we find. With the redun-
dancy pattern description, we are able to transform the convolution
algorithm to avoid computation and storage on those redundant
elements. The final product is our fine-grained FFT convolution
algorithm.

4 A NEW DATA PATTERN
In this section, we first take a close look at how im2col works for
each row of the kernel, and then show why the particular visiting
process introduces two types of redundancy when im2col’s kernels
slide on CNNs’ feature map both horizontally and vertically. We
then develop a concise mathematic presentation to describe the
redundancy mechanism. Particularly we reveal the connection be-
tween the data pattern and the doubly blockHankel matrix [32], and
present a new way to express the data pattern unique to the im2col
process. With all these, we present the theoretical foundation of
how the convolution in CNNs can be asymbolitically optimized.

4.1 im2col Process
Let us first take a closer look at the im2col operation since the new
data pattern is dependent on the im2col operation. As shown in
Figure 3, the kernel has four rows indicated by different colors, and
the im2col operation transposes and concatenates each row of the
overlapping patch in the feature map into one long column. As
the kernel slides horizontally and vertically, each row in the kernel
works independently. Alternately, we can think of this 2D filter as
a set of 1D row kernel, and the final resultant matrix generated
by im2col is the composition of results of each row kernel. As the
kernel slides horizontally, it incurs the redundancy within the row
kernel, which we name it intra-row redundancy.

0 0

Position N

Position N+1Intra-row redundancy

Figure 4: The row kernel slides on the one-row feature map,
and it incurs intra-row redundancy. The skew diagonals de-
noted by the blue arrows are constant, and blue triangles rep-
resent zero elements.

4.2 Intra-row Redundancy
Figure 4 shows an example of taking a row from both the feature
map and the filter. The one row feature map is then padded one zero
on both sides. We assume the length of the feature map and kernel
arem, n, respectively. As the filter slides along the feature map, the
current position N + 1 and the previous position N (denoted by
black rectangular) are overlapped by n − 1 (indicated by red striped
pattern) and only the leftmost element in the previous position
and the rightmost element in the current position are distinct and
contain new information. As the filter slides horizontally, im2col
operation transposes the elements in these positions to columns and
concatenate them in a shoulder by shoulder manner. Once the row
filter finishes sliding to the rightmost, elements in each neighboring
of columns generated by im2col are overlapped by n-1 elements
and shifted up by one. Because zeros are padded symmetrically
on the border, the upper left and the lower right blue triangles are
zeros, where their length of sides along height and width directions
is equal to p (p is padding size).

4.3 Inter-row Redundancy
In the convolution process, the kernel visits the feature map start-
ing from the top left corner and moving a stride size step to the
right. In this process, rows in the kernel independently incurs the
redundancy pattern as shown in Figure 4. When the kernel reaches
the right border of feature map, it shifts one row down, where
another type of redundancy is incurred because each row-kernel
will traverse the elements the previous row-kernel just traversed.
Hence, we name it inter-row redundancy. The kernel continues to
go through the same process until it finishes at the bottom right cor-
ner of the feature map. In the example shown in Figure 5, the kernel
has four rows indicated by different colors and the feature map is
padded zeros with size one. As the kernel reaches the bottom right
corner, k1, k2, k3 and k4 independently generate rows from one to
four on the output matrix and each block has intra-redundancy.
Blocks on skew diagonals are the same, which is indicated by blue
dotted arrows. Since we only pad zeros with size one, the upper
left and lower right blocks are zero matrices.
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Figure 5: As the kernel traverses the entire feature map, the output matrix generated by im2col has inter-row redundancy
denoted by dotted blue arrows. Blue blocks are zero matrices. Each block is V ×Q with total number of U × R. Refer to table 1
for notations.

4.4 Doubly Block Hankel Matrices
With the intra-redundancy and the inter-redundancy revealed, we
can now answer the questions asked in section 3 as to how to
express and use the redundancy patterns.

The data pattern, which features both intra-row and inter-row re-
dundancy, can be qualitatively summarized as following. Each block
along skew-diagonals in Figure 5 are identical, while each block
has intra-row redundancy that elements along skew-diagonals are
constant. Let us now quantify the data pattern’s composition.

The im2col process converts the input patches to columns and
forms an unrolled matrix, which has the inter-row redundancy,
whereas each block has intra-row redundancy, as demonstrated in
figure 6. The padded zero elements are distributed in the upper-left
and lower-right blocks of the unrolled matrix. Additionally, they are
distributed within the upper-left and lower-right corners of each
non-zero blocks. Each row in the input feature map is distributed
to the first column and last row within the blocks depicted in figure
6, because a new element is shifted up in intra-row redundancy.

We now are able to track all the elements from the input feature
map and fully reveal the data pattern introduced by the im2col
process. Let us formally define it. We set the feature map and kernel
sizes to bem ×m and n × n, padding the feature map with zeros
of size p around the borders. The im2col operation rearranges the
feature map into dimensions of n2 × (m − n + 2p + 1)2, and each
block in the output matrix is n × (m − n + 2p − 1).

Ointer |intra[i][j] = Ointer |intra[i − 1][j + 1] (3)
i > 0, j > 0 and i < n, j < m − n + 2p − 1, where O denotes output
matrix. The padded zero distribution follows the equation.

Ointer |intra[i][j] = 0 (4)

such that i < p, j < p or i > n − p − 1, j > m − n + p. i and j denote
the indices for the elements and blocks in intra-row and inter-row
redundancy respectively.

We make a key finding here. The equation 3 that summarizes
the intra-row and inter-row redundancy patterns is in fact the

0 0 0 0 0 1 2 3 0 4 5 6 0 7 8 9

0 0 0 0 1 2 3 0 4 5 6 0 7 8 9 0

0 1 2 3 0 4 5 6 0 7 8 9 0 0 0 0

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

Figure 6: A new data pattern revealed in figure 2 that each
block with the same color are the same, and element along
the skew diagonals are constant. The elements bounded by
red lines correspond to individual rows from the input fea-
ture map.

definition for a Hankel matrix [32] where each value along skew-
diagonals are constant. The output matrix generated by im2col for
an input feature map is actually a doubly block Hankel matrix. Each
individual block in the matrix is a Hankel matrix, and the whole
matrix with respect to its blocks is also a Hankel one. In CNNs,
the kernel matrix has dimensions K × CUV , and the input data
with dimension NCHW is unrolled to N matrices with dimensions
CUV × RQ . Each matrix has C sub-matrices ,and each of them is a
doubly block Hankel matrix with size of UV × RQ (see table 1 for
notations).

Using the doubly block Hankel matrix to represent the feature
map matrix generated by the im2col, the convolution actually be-
come the multiplication between Hankel matrix and vector. Due
to the intrinsic data redundancy in Hankel matrices, such Hankel-
matrix-vector multiplication has theoretically lower computational
complexity than a generic matrix-vector multiplication. We use
the Fast Fourier Transform (FFT) to asymbolitically optimize the
Hankel-matrix-vector multiplication and therefore improve the per-
formance of the convolution in CNNs. In the next section, we will
present our proposed fine-grained FFT-based convolution in details.
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5 FINE-GRAIN-FFT-BASED CONVOLUTION
ALGORITHM

We have shown that im2col-based convolution unrolls each input
feature map to a doubly block Hankel matrix, and the convolution
is transformed to a matrix multiplication between the kernel matrix
and doubly block Hankel matrices. Disregarding such redundancy,
existing implementations of the im2col+MM convolution approach
such as that in cuDNN all directly compute the kernel and unrolled
input matrices multiplication using BLAS libraries such as cuBLAS.
In this section, we show how the Hankel matrix data pattern en-
ables the use of FFT to more efficiently compute the specific matrix
multiplication. We then introduce the complete FFT Hankel matrix
vector multiplication algorithm in the context of convolution. At
last, we demonstrate analytically that our fine-grain FFT based con-
volution algorithm not only reduces the computational complexity
by FFT, but also reduces the memory overhead because it eliminates
the needs to fully unroll the input data and replaces unrolling with
the implicit element-wise matrix multiplication.

5.1 Hankel Matrix Vector Multiplication
Recall that for N H ×W C-channel input images, im2col transforms
them to NC doubly block Hankel matrices of size UV × RQ with
Hankel blocks of size V ×Q . The corresponding dimensions of the
kernel matrix are K ×UVC for K kernels with spatial dimensions
U × V since it is required that the input tensor and the set of K
kernels have the same depth size C in a CNN convolution layer.
Here we first show a fast multiplication to multiply a vector v of
size 1 ×V from the kernel matrix with the Hankel blockH of size
V ×Q , and then in section 5.2 extend it to the doubly block Hankel
matrix method.

Hankel matrices are referred as structured matrices, which can
be described without loss of information much more concisely than
the n2 elements in n ×n matrices. The immediate benefit is that the
storage complexity can be significantly reduced. More importantly
for the convolution algorithm, much lower computational complex-
ity for structured matrix-vector product can be obtained via fast
matrix-vector products by FFTs. The Hankel blockH can be em-
bedded into a 2Q × 2Q circulant matrix X , and the multiplication by
the kernel vector v can be achieved by FFTs. The circulant matrix
X can be completely specified with only the first row, which is also
known as the generating vector x. Each subsequent row is obtained
by doing a right-shift of the previous row by one, wrapping around
at the edges. It is diagonalized by the Discrete Fourier Transform
(DFT) matrix regardless of vector x [11]. It can be expressed as

X = F△F−1

where F is the DFT matrix and △ is a diagonal matrix containing the
eigenvalues of X such that ∆ = diag (Fx ). Therefore, multiplying
the circulant matrix X with the kernel vector v is as follows.

Xv̂ = F△F−1v̂ = F(Fx ◦ F−1v̂ )

where ◦ denotes the Hadamard element-wise vector multiplication
and v̂ = (vV ,vV−1, . . . ,v1, 0, . . . , 0). It first computes a DFT Fx and
an IDFT F−1v̂ and then a final DFT F(Fx ◦F−1v̂ ). These three DFTs
can be computed efficiently by applying FFTs. Their computational

complexity is O (2Q log 2Q ), thus our fine-grained FFT algorithm
works at O (2Q log 2Q ) granularity.

5.2 Implicit Element-Wise Matrix
Multiplication

The previous section explains the transformation of the unrolled
input feature map into a doubly block Hankel matrix data pattern
and the use of FFT to optimize the Hankel matrix vector multipli-
cation. In this section we develop an efficient implementation of
the Hankel block matrix multiplication. In particular, we present
a unique optimization technique that is derived from the linearity
of the DFT. Because DFT is a linear transformation, the linearity
allows the sum of the element-wise product directly in the Fourier
domain, which leads to considerable savings of FFT time.

We first briefly overview the existing techniques used in the
implementation of the im2col-based convolution. Caffe’s default
implementation calls matrix multiplication iteratively for each im-
age in the mini-batch. In contrast, Gu et al [13] have showed a
performance boost of around 4-5 times is obtained by using batched
im2col over multiple images. The batched scheme increases data
parallelism and moves the unrolled matrix size to a more favorable
region in BLAS. Hadjis et.al. [14] demonstrated that batching up
multiple input images against the same kernel matrix once can im-
prove the performance. In this work we adopt the batched scheme
that the kernel matrix multiply all the input feature maps in a batch
in the Fourier domain.

Comparing to the batching mode, a more important performance
issue is the handling of the data redundancy and its derivative
memory/computation overhead. All prior work requires unrolling
the feature map completely or partially. In our work, we find that
the redundant data pattern make it possible to not unroll the input
matrix at all for the computing of convolution. It is because a doubly
block Hankel matrix can be fully specified by only the distinct
elements, e.g., elements bounded by red lines are distinct elements
in Figure 6. The key insight is that the Hankel block matrix has
an interesting property that the generating vector for the circulant
matrix happens to contain all the distinct elements, and the rest
elements are padded. This interesting structure of the circulant
matrix makes it possible to compute the matrix vector product
by only using the generating vector. Furthermore, these distinct
elements are extracted by the im2col process from each individual
row of the original feature map, as demonstrated by the red lines
in Figure 6 and the original feature map in Figure 2. Therefore we
don’t need the completely unrolled input matrix, as required in
existing approaches, for the computing of convolution. All these
reduce not only the memory foot-print but also the computational
complexity of the proposed convolution method.

Specifically in implementation, we develop an implicit element-
wise matrix multiplication strategy in the Fourier domain. It uses an
indexing arithmetic to load the corresponding Fourier coefficients
from input feature maps without unrolling them. Accordingly, our
approach avoids the FFT computations of redundant Hankel blocks,
which in turn reduces the storage of the Fourier coefficients for the
redundant Hankel blocks. Compared with a fully unrolled input
feature map with size ofH ×W , it requiresU ×R FFT computations
of Hankel blocks, whereas our approach only needs U + R − 1.
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5.3 FFT Hermitian Symmetry
We take advantage of another property of FFT to further optimize
both the memory storage and the operation complexity of our
convolution method. The Fourier transform of a real-valued in-
put is Hermitian symmetric (conjugate complex symmetry). The
symmetry allows us to store roughly half Fourier representations
to carry out the complete FFT. For even N real-valued input xi ,
i ∈ {0, . . . ,N − 1}, the Fourier representations of X0 and XN /2 are
real-valued, and X1 through XN /2−1 are the complex conjugates
of XN /2+1 through XN−1. Thus, we only need to store N /2 + 1
complex numbers. Furthermore, we can use the symmetry property
to reduce the number of products in element-wise multiplication by
almost half. Specifically, the second half of element-wise multiplica-
tion can be constructed by simply taking the complex conjugate of
the first half. Each element-wise product in Fourier domain requires
four multiplications for two complex numbers. Using Gauss’ multi-
plication algorithm [29], the number of multiplications is reduced
from four to three. For two complex numbers a+ib and c+id , it first
computes t1 = c ∗ (a+b), t2 = a ∗ (d −c ) and t3 = b ∗ (c +d ), and the
real and imaginary parts of the result can be computed as t1−t3 and
t1 + t2, respectively. Similarly, each element-wise multiplication of
complex numbers is replaced by three element-wise multiplication
of real numbers.

5.4 Overall Working Flow
Overall the proposed convolution method is implemented in four
steps:
Step 1 Input transform. Since the generating vector of circulant
matrix is already contained in each row of input feature maps, we
apply 1D FFTs to each row to transform the input. For the best
performance in cuFFT, it is worth noting that cuFFT performance is
sensitive to FFT size. Very often slight changes in size result in large
performance differences due to different implementations used in
cuFFT. Therefore we use input padding to find the best cuFFT case
for our particular FFT problem instances.
Step 2 Kernel transform. To transform the kernel into Fourier
domain, we decompose the kernel matrix into K ·U ·C tiles, and
perform K ·U ·C 1D FFTs using the batch mode provided by cuFFT.
Step 3 Element-wise computation. For this step, where blockmatrix
multiplication with element-wise product is performed since the
doubly Hankel matrix is already partitioned into Hankel blocks.
Within each block, we perform element-wise product.
Step 4 Inverse transform. Lastly, inverse FFT transform is per-
formed on the output matrix from Step 3. Only 1 ×Q element in
the 1 × 2Q output is valid for the 1 ×V vector and V ×Q Hankel
matrix multiplication, the rest is discarded.

5.5 Arithmetic Complexity Analysis
Next we compare the computation complexity of the proposed fine-
grained FFT based convolution against the existing regular FFT
based approach.

Both regular and fine-grained FFT approaches perform con-
volutions in four basic steps: input transform, kernel transform,
element-wise multiplication, and inverse transform. It worth not-
ing that the element-wise multiplication step in the fine-grained
FFT approach is in fact matrix multiplication with element-wise

product. As a point of comparison, we could treat it as the element-
wise multiplication. The first two steps transform inputs and ker-
nels from a spatial domain to Fourier domain. The third step can
be converted to a batched complex general matrix multiplication
(Cgemm) for the regular FFT approach. The inverse transform step
converts the results back to the spatial domain. Assume we have
(N ,C,H ,W ) inputs and (K ,C,U ,V ) kernels, the RegularFFT ap-
proach needs 2W 2 · logW · K · C to perform the most expensive
Kernel Transform step, and the fine-grained FFT approach needs
only 2W · log 2W · K ·C ·V operations, a reduction by a factor of
W /V . Notably, the complexity of the regular FFT convolution does
not depend on the kernel size. It is expected that the regular FFT
approach performs the same regardless of the kernel size since it
zero-pads the kernel to be the same size as the input image before
applying the FFT. On the other hand, the complexity of our method
depends on the kernel size.

5.6 Autotuning
We apply a simple autotuning strategy to tune our implementation
on GPU. Basically our autotuning selects the best configuration
of CUDA thread and block parameters for given constraints of
input settings and hardware resources. The result of the autotuning
can be stored locally and re-used when a similar configuration of
inputs passed to the implementation. More specifically, the fine-
grained FFT consists of four major steps, and each step can have
different values for the CUDA thread and block parameters. As an
example, we autotune the point-wise multiplication step to find
the optimal combination of CUDA parameters, BLOCK_SIZE and
NUM_BLOCKS, which represent the thread block size and the
number of thread blocks, respectively. The autotuning strategy
explore different BLOCK_SIZE and NUM_BLOCKS combinations,
where BLOCK_SIZE ∈ [32, r ], where r is NextPowerTwo(2Q)/2+1
and NextPowerTwo is a function to find the next power of two
number. NUM_BLOCKS’s range is defined as [1,N × K × R]. Thus
we execute and measure only reasonable parameter combinations
to avoid the exhaustive coverage of the search space. As a result, the
time spent on autotuning is reduced. Overall autotuning gives us
the speedup of about 5% compared with our pre-autotuned version.

6 EVALUATION AND PERFORMANCE
ANALYSIS

We evaluate the proposed convolution method from four aspects:
(1) accuracy of result, (2) kernel-level performance comparison with
NVIDIA’s cuDNN library [6], (3) application-scenario performance
with networks developed in Caffe[19], a leading deep learning
programming framework, by replacing Caffe’s own convolution
method, and (4) performance profiling to analyze and understand
the source of performance improvement.

Each performance point is the average of five runs. Since the
performance of convolution is independent to input values, we
randomly generate inputs and use the same input for each data
point. The versions of cuDNN and Caffe are 7.1 and 1.0, respectively.
Hardware-wise, all the experiments are performed on Nvidia Titan
XP GPU. In our experiments, CPU only serves as the command
processor and has a negligible impact on performance.
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6.1 Accuracy:
We first measure the accuracy of our method by comparing the
results of our convolution with those computed by the im2col+MM
approach. Table 2 shows the numeric accuracy of fine-grained
FFT convolution using the convolution configurations listed in
the top row. The error is in the order of 10−11, which means that
our optimization technique maintains the numerical integrity of
convolution.

(U ,K , S, P ) (3, 10, 1, 2) (5, 32, 1, 2) (4, 10, 1, 2)
Error 4.73E − 11 3.00E − 11 2.38E − 11

Table 2: FineGrainedFFT convolution absolute element er-
ror. Ground truth is computed by cuDNN’s im2col+MM
method.

6.2 Kernel Performance Comparison:
We measure the pure GPU kernel execution times in order to com-
pare head-to-head how our method performs in terms of the kernel-
level performance against the FFT-based convolution methods in
cuDNN. cuDNN is generally considered as a library that is deeply
optimized by NVIDIA and provide some state-of-the-art and fastest
convolution implementations. We vary kernel sizes, and batch sizes
to analyze strengths and weaknesses for these algorithms in the
parameter space. We organize these parameters into a 2-tuple (U ,
N ), and we assign a set of values to the other parameters (K , C , H )
that is commonly used in benchmarking convolution performance.
The experiment is then categorized into two groups. Each group
fixes the value of one parameter and varies the other one. Thus, we
can study how this parameter impact the overall performance of
the algorithm. Please note that the performance of our method is
dependent on the parameters of convolution. However it is insensi-
tive to the value of inputs and weights. Due to the performance’s
insensitivity to input, the performance we observe at the kernel
level is going to be consistent with that with real-world data.

In Figure 7, we compare the fine-grained FFT algorithm with
the regular FFT algorithm from cuDNN on a synthetic benchmark
and the 2017 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) object localization benchmark. We use random input
data and kernels from [−1, 1] for the synthetic benchmark. The
execution time of regular FFT convolution tends to be constant and
insensitive to the kernel size, because it zero-pads the kernel to be
the same size as the input image and kernel size has nearly no effect
on the performance. In contrast, the performance of our method
decreases with the kernel size since our algorithm is based on the
padded matrix. Although the matrix is not unrolled, the algorithmic
complexity is still dependent on the kernel size. Figures 7a and 7b
have similar trend. Our fine-grained FFT convolution maintains its
high performance when the kernel size is small. It is shown that
our algorithm is insensitive to the value of inputs and kernels.

In Figure 8, we also compare the fine-grained FFT algorithm
against the im2col+GEMM algorithm from cuDNN. Although the
execution time for both approaches increases as the kernel size
increases from 5 to 30, the im2col+GEMM approach increases more
rapidly. Our approach outperforms the im2col+GEMM method

Conv. Layers L1 L2 L3 L4 L5
Network1 (3, 10) (3, 5) (3, 8) (3, 7) (3, 10)
Network2 (3, 5) (4, 10) (3, 5) (5, 5) (3, 5)
Network3 (3, 10) (3, 8) (5, 5) (3, 10) (3, 5)

Table 3: Layer configurations for the three synthetic CNNs.
Their performance evaluation is shown in Figure 9. Each el-
ement in the table indicates (U ,K ).

mainly because the im2col+GEMM method fully unroll matrices,
and the matrix sizes grow quadratically with the kernel size. In
contrast, our approach does not fully unroll the input. In addition,
the kernel and input matrix multiplication performed by FFTs has
lower algorithmic complexity. Compared with the im2col+GEMM
algorithm, our method has better performance when the kernel size
is large. However, when the kernel size is small, im2col+GEMM
has better performance, because the unrolled matrix is small and
the high performance of matrix multiplication routine in cuDNN
outweighs the saving of algorithmic complexity in the fine-grained
FFT method.

6.3 Performance in Applications:
Caffe is one of the most popular frameworks that people use to
develop deep-learning applications. In this experiment, we replace
the convolution implementation in Caffe with our method, compose
several CNNs with Caffe, and compare the performance before/after
the replacement.

We compose three CNNs by five convolutional layers with pa-
rameter configurations listed in Table 3. The CNNs are inserted
pooling and rectified linear units layers, and the last layer is a fully
connected layer for prediction with 10 outputs. The inputs to these
CNNs are 128× 128× 3, 254× 254× 3 and 254× 254× 3 images with
batch sizes of 5, 10 and 1, respectively. As it is shown in Figure 9,
our fine-grained-FFT convolution outperforms the RegularFFT one
in all configurations for one iteration of CNN inference. Specifically,
it achieves speedups of 2.12×, 1.19× and 1.92× over the RegularFFT
convolution, respectively. Additionally, our method perform faster
for the layer-wise comparison, except for L2 in Network2.

VGG-16 Benchmark:
We also evaluate the effectiveness of our method on a variant of

VGG-16 [35]. VGG is frequently used as a CNNs benchmark because
it makes improvement over prior-art configurations of CNNs by
having 13 convolution layers of 3x3 filter. In our evaluation, we
measure the performance of VGG-16 with on our FineGrainedFFT
based convolution and that with the RegularFFT based convolution.
We choose the width of convolution layers (the number of kernels)
to be 38 and the batch size is set to 3. The FineGrainedFFT version
takes 65.96 ms to run a forward-only inference, and the RegularFFT
convolution based version takes 82.76 ms, a speedup of 1.25X.

To analyze the source of speedup in VGG-16, we conduct a layer-
wise performance comparison of FineGrainedFFT vs. cuDNN’s Reg-
ularFFT for the seven most time-consuming layers in VGG-16. The
seven layers together account for about 60% of VGG-16’s execution
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Figure 7: RegularFFT and FineGrainedFFT performance comparison as the kernel size varies from 3 to 8.
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Figure 8: Im2col+GEMM and FineGrainedFFT performance
comparison.

time. The layer-wise comparison is shown in Figure 10. Layer-by-
layer benchmarked, FineGrainedFFT outperforms RegularFFT by
the average speedup of 1.7 and the maximum speedup of 2.86.

6.4 Performance Analysis:
In order to empirically explain the performance gain of our algo-
rithm, we use nvprof to profile the GPU kernels and compare the
FFTs and element-wise multiplication execution time for each algo-
rithm side by side in Table 4. This performance profiling provides a
detailed performance breakdown and enable us to see which steps
contribute most to the performance gain.

The FFTr and MMr stages have almost constant performance
as kernel size increases because the kernel zero-pads to be the

KernelSize FFTr FFTf MMr MMf Speedup

3 0.732 0.784 3.272 1.510 1.74×
4 0.730 0.681 3.267 1.812 1.60×
5 0.725 0.770 3.271 2.200 1.34×
6 0.732 0.772 3.283 2.599 1.19×
7 0.728 0.648 3.267 2.848 1.14×
8 0.724 0.787 3.257 3.085 1.02×
9 0.691 0.764 3.249 3.307 0.96×

Table 4: Profiling results with varying kernel size. A sub-
script of r, f indicates RegularFFT and FineGrainedFFT con-
volutions. FFT andMMrepresent the FFTs and element-wise
multiplication execution time. (unit ms)

same size as the input feature maps, thus the amount of computa-
tions does not change. In contrast, the element-wise multiplication
for the fine-grained-FFT convolution MMf grows as the kernel
size increases because our method is dependent on the im2col pro-
cess; as kernel size increases the unrolled matrix becomes larger.
FFTf also tends to be a constant since the FFTs size is a power of
two depending on the input size. In this case, it is 512. The matrix
multiplicationMMr implementation is in fact batched matrix multi-
plications and perform transpositions to prepare tensors for matrix
multiplications, which incurs extra operations. ThusMMr is larger
thanMMf except the last row in the table. Additionally, FFTr and
FFTf almost have the same values. For 3 × 3 kernel, the speedup is
1.74×, which also means fine grained FFT convolution is 33% faster
than the regular FFT one.

7 CONCLUSIONS
In this paper, we have thoroughly analyzed how data redundancy
is incurred in the im2col operation that is the foundation of today’s
high performance implementation of convolution. Our observation
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Figure 10: Layer-wise comparison of FineGrainedFFT vs.
RegularFFT with the seven most time consuming layers in
VGG-16.

and analysis lead to two novel discoveries: the intra-row redun-
dancy and the inter-row redundancy in the matrix-based represen-
tation of convolution.

These discoveries motivate us to develop a more mathematically
concise description of the data layout in convolution. We develop a
doubly block Hankel matrix data pattern description. This unique
data pattern enables us to design and implement a new fine-grained
FFT-based convolution. This paper presents the theoretical arith-
metic complexity analysis for both our fine-grained FFT convolution
and the regular FFT convolution from NVIDIA’s cuDNN library.
The empirical results are consistent with the theoretical analysis.

This fine-grained FFT convolution outperforms the regular FFT
one in terms of speed in most parts of the parameter space of the
convolutions. More specifically, compared with NVIDIA’s cuDNN
library, our method achieves on average 23% and maximum 50%
speedup over its regular FFT convolution method, and on average
93% and maximum 286% speedup over its Im2col+GEMM method.

Our efforts add to a wide spectrum of convolution approaches in
CNNs. Moreover, since there is no one "one-size-fits-all" convolu-
tion implementation across all the parameter space, our work raises
the overall performance pareto-curve of convolution. One possible
future work is to develop heuristics to select the fine-grained FFT
convolution when the parameters, i.e., kernel sizes and batch sizes,
are favorable.
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