
Automatic Program Segment Similarity Detection in Targeted Program
Performance Improvement

Haiping Wu1, Eunjung Park1, Mihailo Kaplarevic1, Yingping Zhang2

Murat Bolat1, Xiaoming Li1, Guang R. Gao1

1University of Delaware 2Intel Cooperation
Dept. of Electrical and Computer Engineering Digital Enterprise Group

Newark, DE 19716 USA Chandler, AZ 85226 USA
{hwu, epark, kaplar, murat, xli, ggao}@ece.udel.edu ying.m.zhang@intel.com

Abstract

Targeted optimization of program segments can provide
an additional program speedup over the highest default op-
timization level, such as -O3 in GCC. The key challenge is
how to automatically search for performance sensitive pro-
gram segments in a given code, to which a customized set
of optimization compiler options could be applied.

In this paper we propose a method for automatic detec-
tion of performance sensitive program segments based on
program segment similarity. First we create a proxy seg-
ment template database trained over a set of random in-
put programs. The compiler identifies program segments by
correlating them to the pre-build proxy segment templates
using the syntax structure and architecture-dependent be-
havior similarity. We argue that the identified program seg-
ments can be custom optimized to improve the overall pro-
gram performance.

The method is evaluated on the Intel XScale PXA255
platform using randomly selected benchmarks. The experi-
mental results show that our method can provide additional
speedups over the highest optimization level in GCC 3.3 (-
O3) for an arbitrary set of applications.

1 Introduction

The highest default optimization level, such as -O3 in
GCC, does not necessarily produce the best performance
speedup for all application [2, 8, 10, 12, 14]. Further perfor-
mance improvement could be achieved by carefully choos-
ing optimization options customized to performance sensi-
tive program segments [3, 6].

1-4244-0910-1/07/$20.00 c©2007 IEEE.

The key challenge is how to automatically identify per-
formance sensitive program segments to which customized
set of optimization options could be applied. To address this
challenge we propose a machine learning method for auto-
mated detection of performance sensitive program segments
based on program segment similarity.

The strategy behind our method is to pre-build a database
of proxy program segments trained over a randomly se-
lected set of programs to find their optimized set of opti-
mizations (OSO)1. A compiler divides the input program
into segments and correlate them with the proxy program
segments based on the similarity between the processed
program segments and the proxy program segments. The
processed program segments are then compiled using the
OSOs of their corresponding proxy program segments.

The kernel of our method is the similarity analysis of the
processed program segments and the pre-build proxy pro-
gram segments. In this paper, we define two types of pro-
gram segment similarity: syntax structure similarity, and
architecture-dependent behavior similarity. Only the pro-
gram segments that have both types of similarity to the pre-
build proxy program segments are identified and custom op-
timized.

The paper is organized as follows: In Section 2, we
present the method for creating proxy segment templates;
Section 3 discusses identification of optimization sensitive
program segments; Section 4 presents the experimental re-
sults; Section 5 describes related work. Finally, the conclu-
sion and the future work are described in Section 6.

1Compiled with an optimized set of optimization options (OSO), a
program can have an additional performance speedup over the highest de-
fault optimization level of a compiler

2 Proxy Segment Template Creation

This section describes the creation of proxy segment
template.

A proxy segment template consists of those program
segments which have similar syntax structures and share a
unique OSO.

2.1 Program Segment Data Structure

The proposed method completely relies on a static anal-
ysis of an input program. More precisely, we only consider
statement syntax structures and the number of operations
(operands and operators). The data structure used for rep-
resenting program statements and the corresponding opera-
tions is shown in Figure 1.

Figure 1. Data Structure used for Representing Program
Segments

A double linked list with nodes is used to represent the
input code. We call this structure the program structure
stream representation (PSS) of an input program. The
nodes have the following properties:

• Each node can represent either just one program seg-
ment, or two or more different program segments that
share the same program structure.

• Each node is accompanied by a data structure used
for storing the information on the represented program
segment.

2.2 Syntax Structure similarity Detection

Definition 1 Two program segments S1 and S2 have sim-
ilar syntax structure if the number of nodes, node types
and the node order are the same in both program structure
stream representations.

The algorithm for detecting syntax structure similar pro-
gram segments initially creates a pool of similar program

segment (SPS-pool). Each element in this pool consists
of a program structure stream representation and a similar-
ity weight, which records the number of similar segments
found during the detection process. For each tested program
P , the algorithm detects similar program segments through
the following steps:

Step 1: Program P is simplified into a set of marked
program segments using the above described methods. Let
us denote the set of program segments as P = {P1, P2, ...,
Pn };

Step 2: If the SPS-pool is empty, do a self matching
check for each segment in P . If two segments are simi-
lar, randomly remove one segment from P and increase the
similarity weight of the remaining segment by 1. This step
continues until no additional similar segment can be found.
P is then stored in the SPS-pool.

Step 3: For each segment in P , check if any node se-
quence matches any element in the SPS-pool. This match-
ing only checks for the node order, number of nodes and
node type. If a match is detected, a syntax structure simi-
lar segment is found and the similarity weight value of the
matched element in the SPS-pool increments. The syntax
structure similar segment is then removed from P . This it-
erative process finishes when no additional similar segment
can be found. The remaining segments in P , if any, are self
checked and stored in the SPS-pool.

The number of elements in the SPS-pool depends on
the number of analyzed sample programs.

The SPS-pool has program segments for its elements.
These segments can not be run independently, but rather
they need to be translated into a compiler friendly version,
by adding the main function and the standard syntax gar-
nishments. This ”formalized” version is run and measured
on the underlying platform to find the OSOs.

Not every measured program has an OSO. A trial and
error process is used for each examined program in which
the number of assignment statements and the number of op-
erations (operands and operators) is adjusted in each assign-
ment statement. If a corresponding OSO is not found after
10 iterations, the program is considered to have no associ-
ated OSO.

2.3 Program Segment Template Formal-
ization

In our method, a processed program segment does not di-
rectly correlate with a proxy segment template. It correlates
with an intermediate representation using syntax structure
similarity. This intermediate representation is called pro-
gram segment template.

A program segment template consists of a ”pure” pro-
gram structure stream representation and a weight sequence
of architecture-dependent behaviors. The difference be-

2

tween the pure program structure stream representation and
the representative program segment structure stream repre-
sentation is that the former only stores the information on
node’s type.

During the program segment template formalization, we
use the syntax structure skeleton of the representative pro-
gram segment to represent all program segments that have
the same syntax structure. Each program segment template
is accompanied with a weight sequence which is defined as:

{ ω1, ω2, · · ·, ωn }
The n in the sequence represents the number of

compounded statements that appear in the template. A
compounded statement consists of a continuous assign-
ment statements. Let l be the number of non-compounded
statement structures in the pattern, n = 2 ∗ l − 1. ωi is a
pair of values.

Each pair of values describes a range of architecture-
dependent behavior value (discussed in Section 3) of the
corresponding compounded statement in a program seg-
ment represented by the template.

Definition 2 A program segment template with k ele-
ments in its weight sequence is called a k-element program
template.

Definition 3 In a k–element program segment template,
the instance for which each weight element has the mini-
mum value is called the lower bound instance of this tem-
plate; the instance for which each weight element has the
maximum value is called the upper bound instance; in-
stances for which each weight element has an arbitrary
value in the range of [minimum value, maximum value] are
called sibling instances.

In a k-element program segment template, any pro-
gram segment represented by the template can have k
compounded statements. The i−th pair of values in the
weight sequence of the template describes the minimum
value and the maximum value of the architecture-dependent
behaviors for the i−th compounded statement.

2.4 Creation of Proxy Segment Templates

A proxy segment template represents a subset of all pro-
gram segment instances represented by the corresponding
program segment template. The minimal value and the
maximal value of the architecture-dependent behavior in the
corresponding compounded statement is determined by the
corresponding pair of values in the weight sequence associ-
ated to each proxy segment template.

The differences between proxy segment templates and
program segment templates are:

• The weight sequence of a proxy segment template is
a subrange of the weight sequence of a corresponding
program segment template.

• Each proxy segment template has a unique OSO and
all instances represented by the proxy segment tem-
plate share this OSO.

The value range of the weight sequence of a proxy seg-
ment template is determined through clustering. For each
program segment template, the clustering algorithm groups
all program segment instances that share the same OSO.
The minimum weight value and the maximum weight value
of the grouped instances consist of the corresponding pair of
values found in the weight sequence of the proxy segment
template.

The clustering algorithm is based on the following hy-
pothesis:

Given a proxy segment template, if its lower bound in-
stance and its upper bound instance have the same OSO,
any sibling instance would have the same OSO.

Based on this hypothesis, the proposed clustering algo-
rithm divides the instance space of a program segment tem-
plate into a set of subspaces.

The set the clustering criterion so that the lower bound
instance and the upper bound instance in a subspace have
the same OSO.

We have adopted Mean Value method to cluster the in-
stance space of a program segment template to create the
proxy segment templates. The detail of our clustering
method can be referenced in [6].

3 Identifying Optimization Sensitive Pro-
gram Segments

By building a proxy segment template database, a com-
piler can automatically identify the optimization sensitive
program segments in the processed code. The identification
mechanism is based on 1) the syntax structure similarity,
and 2) the architecture-dependent behavior similarity.

The approach for detecting the syntax structure similar-
ity is presented in Section 2. In this section, we focus on
architecture-dependent behavior similarity. We first exam-
ine the correlation between architecture-dependent behav-
iors and program segments. Then we present a quantitative
approach to transform the architecture-dependent behaviors
of a program segment into a weight sequence. Finally, we
present an added compiler technique for automatic identifi-
cation of optimization sensitive program segments.

3.1 Architecture-Dependent Behaviors

In this paper we focus on the correlation between opti-
mization sensitive program segments and the architecture-
dependent behaviors. This correlation is best analyzed us-
ing a unique OSO as a criterion. Architecture-dependent

3

behaviors are solely based on the operations found in pro-
gram segments.

Given an optimization sensitive program segment Si =
{S1

i , S2
i , ..., Sm

i }, let Bi = {B1
i , B2

i , ... Bn
i } represent

the architecture-dependent behaviors of Si, and Oi repre-
sent the OSO. The OSO correlation between Si and Bi

can be expressed by function Φ in the following way:

Φ(Si, Bi) = Oi

Let us use a concrete optimization sensitive program seg-
ment to investigate the correlation between this segment and
the architecture-dependent behaviors.

Given an optimization-friendly loop segment L0 as fol-
lows (it is manually examined to find an OSO):

for (i=var1, i<=var2; i++) {
S1;
S2;
......
Sn;

}

Si(i=1,...,n) is an assignment statement. Let us assume
the OSO is O. We randomly duplicate Si in the loop body
and adjust the operands and operators (add or delete) found
in the statements one by one, so that we can experiment
when the sequence O will change during this process. We
observed that the same O will hold for several duplica-
tion/adjustion steps. This experiment disclosed that a num-
ber of different instances of the same program structure (a
loop structure in our experiment) share the same OSO.

From the beginning until the last step, for which the O is
valid in the duplication/adjustion process, the original seg-
ment L0 is transformed into a series of new segments L1,
L2, ..., Llast. Similarly, the architecture-dependent behav-
iors BL0 are transformed into a set of BL1 , BL2 , ..., BLlast

.
For these segments, the following equation holds:

Φ(Li, BLi) = Φ(Lj , BLj) (0 ≤ i, j ≤ last and i �= j)

According to Definition 1 given in Section 2.2, these seg-
ments have the same syntax structure.

Based on the experiment observations, the architecture-
dependent behavior similarity is defined as:

Definition 4 Let B1 and B2 are two set of the
architecture-dependent behaviors for program segments S1

and S2, respectively, S1 and S2 have similar architecture-
dependent behavior if:

Φ(S1, B1) = Φ(S2, B2)

The similar architecture-dependent behavior program
segments have the following features: 1) they are
optimization-friendly program segments, 2) they have sim-
ilar syntax structure, and 3) they share the same OSO.

3.2 Quantifying the Architecture-
Dependent Behaviors

In this paper, we do not investigate how a compiler can
speedup a program segment by fully utilizing the set of the
architecture-dependent behaviors. The reason is that our
method captures program segments and relates them to a
set of proxy program segments. These proxy program seg-
ments are manually selected and examined. Indeed, we only
need to investigate the correlation between a candidate pro-
gram segment and a proxy program segment based on the
architecture-dependent behaviors. We trust the compiler to
fairly process the candidate program segment by the same
criteria used in processing proxy program segments. Sim-
ply said, a fair judge will draw a verdict guided by the same
criteria used in the previous similar cases.

We have addressed the problem of determining the syn-
tax structure similarity between program segments in Sec-
tion 2. In this section we explain how to determine that two
program segments with similar syntax structure also have
similar architecture-dependent behavior.

To simplify the analysis we will only focus on the fol-
lowing architecture-dependent behaviors:

• Instruction latency

• Memory access latency

• Register set

• Data cache and instruction cache

Each type of architecture-dependent behavior is trans-
lated into an integer value according to the architecture-
dependent characteristics. Table 1 describes the correlation
between the architecture characteristics and the quantified
values.

The analysis of program segment syntax components
can estimate the total integer value for each architecture-
dependent behavior. The translation of an architecture-
dependent behavior into an integer number involves the fol-
lowing steps:

• Estimate the total instruction latency in the program
segment. Assume each operation in the program seg-
ment is transformed into a related instruction. Sim-
ply collect and classify all operations and calculate the
total number of instructions. The total number of in-
struction latencies is calculated using the architecture
characteristics lookup table.

• Estimate the total number of memory access points in
the program segment. We only look for the load/store
operands. A variable is treated as a store operand if
it appears in the left side of an assignment statement.

4

Architecture Characteristics Quantified Value
Multiply (short) 3
Multiply (long) 6
Multiply-ADD (short) 3
Multiply-ADD (long) 6
Compare 1
Move 1
Arithmetic 1
Logical 1
Shift/rotate 1
Branch 1
Load 6
Store 6
Register Set 14
Data cache 8*1024+512(mini data cache)
Instruction cache 8*1024

Table 1. Intel XScale Architecture Characteristics and
Quantified Value

Otherwise the variable is a load operand. If a vari-
able appears in the left side of several assignment state-
ments in the program segment, it is only counted as one
store operation. Through the use of the architecture
characteristics table, we can calculate the total number
of memory access latencies for each segment.

• Estimate possible register allocation for the operands
found in the segment. Assume n to be the number
of registers. The first n load variables that appear
more times than other variables, if they do not ap-
pear in the left side of assignment statements, they are
counted as load operations - the first time they appear.
That is, these variables are assigned to the registers.
Therefore the succeeding appearances of these vari-
ables are treated as register variables. We assume there
is no latency for register variables. Other variables are
still treated as memory access operands no matter how
many times they appear in the code.

• Estimate the correlation between the total number of
operations, the data cache size, and the instruction
cache size. Since we have estimated the total num-
ber of instructions and operands in a program segment,
the number of instructions of the program segment to
the instruction cache size ratio can be calculated. The
same can be done for the number of operands to the
data cache size ratio.

Based on the above procedures, program segment
architecture-dependent behaviors have been transformed
into integer values. The architecture-dependent behavior

similarity of program segments is determined based on
these values.

3.3 Optimization Sensitive Program Seg-
ments Detection

In this section, we describe an automated compiler
technique for optimization sensitive program segments de-
tection based on the pre-build proxy segment template
database.

To support our method, the compiler’s front-end needs
to be modified so that the detection is executed in an auto-
mated fashion. An extra pass is added in the compiler to
transform the input program into program segments using
the program structure stream representation data structure.
For each program segment, the modified compiler first does
syntax structure similarity analysis to determine which pro-
gram segment template represents the current program seg-
ment. In the next step, the architecture-dependent behaviors
of this program segment are collected and translated into
integer weight values based on the weight sequence of the
matched program segment template. The modified compiler
then searches the proxy segment template database that cor-
responds to this template using a concrete weight sequence.
If the program segment weight sequence is a child of the
weight sequence of a proxy segment template, this program
segment is considered to be the match and a flag is set which
triggers the modified compiler to custom optimize this pro-
gram segment.

The modified compiler identifies optimization sensitive
program segments in two stages:

• Stage 1: Syntax Structure Matching and Weight Se-
quence Creation

• Step 2: Proxy Segment Template Matching

We use two strategies to check for the match between
an identified program segment and the proxy segment tem-
plate using a weight sequence: 1) an precise-match, and 2)
a fuzzy-match.

In the precise-match strategy, the inherent architecture-
dependent behaviors in each segment’s statement are used
in the similarity comparison. The fuzzy-match approach
uses the inherent architecture-dependent behaviors of the
whole program segment in the similarity comparison.

In the precise-match strategy, each element of the pro-
gram segment weight sequence must be in the range of the
corresponding proxy template’s weight sequence. This is a
very strict condition. The advantage of the precise-match
strategy is that it can find a true proxy segment template if
the match is successful. The shortcoming of this strategy
is that it needs a large proxy segment template database in
order to cover majority of the weight values combinations.

5

The fuzzy-match strategy adds all elements of the weight
sequence into a weight value and determines if this value is
in the range of the weight value of a proxy segment tem-
plate. Obviously, the prerequisite is that, when creating a
proxy segment template, the weight sequence of this proxy
segment template deteriorates to a single element.

No matter how many optimization sensitive segments
can be recognized in the input code, the amplitude of the
performance improvement depends on the following three
factors:

• A similar segment recognition procedure must be ap-
plied after all program transformations are done, such
as function inline, loop transformation, etc.

• A compiler supports ”region-based” optimization
mechanism. That is, a compiler repartitions compi-
lation function into more optimization and scheduling
friendly compilation units.

• The optimization sensitive segments are targeted ”hot-
spots”.

4 Experiment

Our method is applicable to any platform, and should
provide improved performance for a randomly chosen input
C program. In this section, we evaluate the method on the
Intel embedded XScale PXA255 architecture. The creation
of the proxy template database is architecture dependent but
it is done only once.

To config the experimental platform, we first create a
proxy segment template database using 20 randomly se-
lected sample programs that feature large fraction of loop
structures. The reason for selecting this type of cases is that
the current program segment templates are created from the
loop segments. Then we integrate this database into GCC
3.3 compiler, modify the front-end of GCC 3.3 to identify
and record program segments that match the proxy seg-
ment template database, modify the back-end of GCC 3.3
to dynamic adjust the optimization options to the program
segments. Finally, we use 30 programs from 4 benchmark
packages (CommBench, DSP kernel suite, Mediabench and
Mibench) to evaluate the similarity match rates, perfor-
mance speedup and compilation overhead.

4.1 Proxy Segment Template Database

Table 2 shows the results after the creation of the pro-
gram segment templates from the set of sample programs.
Using the program segment template formalization algo-
rithm, 17 different templates are created. After analyzing
11 most frequently recognized templates, we found that: 1)
11 program segment templates appeared 847 times in the

Nc: Number of used cases
Np: Number of template found

Nc Np
Characteristics of 11 templates

All Min Max Frequency

20 17 847 1 182
<528,135,108,29,
10,1,18,10,6,1,1>

Table 2. Program Segment Templates in the Experiment

Program
Segment
Template
Index

Number of
Creating
Templates

Performance
Speedup(%)
Min Max

1 4 2 25
2 2 4 24
3 2 10 14
4 2 7 13
5 2 3 25
6 2 9 22
7 2 7 13
8 2 3 15
9 2 9 17
10 3 1 15
11 2 1 15

Table 3. Characteristics of Pre-Build Proxy Segment
Templates

set of sample programs; 2) the minimum number of recog-
nized program segment templates in the sample programs
is 1; and 3) the maximum number of recognized templates
is 182. The frequency field stores the number of appear-
ances for each of the 11 program segment templates in the
set of sample programs.

Based on the 11 program segment templates, we cre-
ate 25 proxy segment templates. Table 3 gives the fea-
tures of the proxy segment templates derived from the cor-
responding program segment template by the applied mean
value clustering algorithm. This table shows the number of
proxy segment templates derived from each program seg-
ment template. The performance improvement field gives
the minimal and the maximal performance speedup over the
GCC -O3 among the proxy segment templates in each pro-
gram segment template.

4.2 Template Match Rate Evaluation

Based on the pre-build proxy segment template database,
we derive the match rates for the candidate program seg-
ments (matches to the program segment templates and
matches to the proxy segment templates). Table 4 indicates
the results of this analysis. The total of 3514 candidate pro-
gram segments were detected, where 594 of them match
program segment templates. The match rate is 16.9%.
Among these matched segments, 441 and 546 segments are

6

Template Number of Program Proxy
Matching Candidate Segment Segments
Strategy Segments Template Matched

Precise-match 3514 594 441
Fuzzy-match 3514 594 516

Table 4. Proxy Segment Template Matched Rate

proxy segment template matched when using the precise-
match strategy and the fuzzy-match strategy, respectively.
The proxy segment template match rates are 74% and 87%,
respectively.

4.3 Performance Speedup Evaluation

Among 30 tested cases originating from 4 benchmarks,
there are 9 cases that show performance speedups over -O3
when either strategy is applied (the precise-match strategy
and the fuzzy-match strategy). Figure 2 gives the perfor-
mance speedups and the compilation overheads over the
default -O3 option among 9 programs using the precise-
match strategy and the fuzzy-match strategy, respectively.
The average performance speedup is 1.13% and 2.31% for
the precise-match strategy and the fuzzy-match strategy, re-
spectively. Correspondingly, the average compilation over-
head is 7.9% and 5.07% for the precise-match strategy and
the fuzzy-match strategy, respectively. Consider the other
21 cases which show no performance speedup, they still
consume extra compilation time over -O3. The average
compilation overhead for all the 30 testing cases is 6.21%
and 4.34% for the precise-match strategy and the fuzzy-
match strategy, respectively (do not show in the figure).

Figure 2. Performance Speedup & Compilation Over-
head over GCC -O3

4.4 Analysis and Estimation

Based on the experimental results, the fuzzy-match strat-
egy shows better performance speedup than the precise-

match strategy, as well as a higher proxy segment template
matching rate. This means that the detection of program
segment similarity is better if program segments coarse-
grain architecture behaviors are observed, instead of the
fine-grain.

On the other hand, there is no significant performance
speedup observed for randomly selected programs. Besides
the fact that the small fraction of segments are identified
based on our experimental proxy segment template database
(not enough proxy templates are created), we have to ignore
certain optimization opportunities in the GCC compiler. We
are continuously working on resolving these problems and
hope to improve the results by enlarging the proxy segment
template database.

5 Related Work

Wu et al. [3] proposed a technique for an automated
search for optimization options. It creates a database for
each application domain by turning a set of kernel programs
from this domain. The optimized sets of optimization op-
tions are used to compile the other domain-specific match-
ing programs. Cavazos and O’Boyle [4] presented another
method for an automated search for optimization options.
It focuses on method (function) level instead of the whole
program. The matching strategy is based on the similarity
of pure method features. What makes our method differ-
ent is that we focus on a fine-grain level program analysis
through program segments. We narrow down the similar-
ity of program segments to the syntax structure and further
more we correlate the segment features to the underlying
architecture behaviors.

Annavaram [11] and Lau et al. [7] discuss the correla-
tion between program source code and performance. They
examined the use of code signatures obtained through pe-
riodic sampling to predict performance for database ap-
plications and SPEC2000. Hoste et al. [1, 9] propose a
methodology to predict program performance on any archi-
tecture. They measure the architecture-independent charac-
teristics of programs and then relate measured information
to pre-profiled benchmarks. In contrast to these studies, our
method employs a different criteria to determine program
similarity. Furthermore, our method can be used not only to
identify similar program segments, but also to direct com-
piler to generate a custom highly optimized sequence of op-
timization options, which best fits each detected program
segment.

6 Conclusion and Future Work

We propose an automated method for performance sen-
sitive program segments detection based on similarity be-

7

tween identified program segments and the records stored
in a pre-build proxy segment template database.

We present a mechanism for a compiler automatically
to capture the performance-sensitive program segments in
arbitrary input programs by the use of syntax structure and
architecture-dependent behavior similarity analysis.

We evaluate the applicability and performance of our
method on Intel XScale PXA255 platform by integrating it
into GCC 3.3 compiler. The experimental results show that
our method can provide additional performance improve-
ment over the highest optimization level in GCC 3.3 (-O3)
for an arbitrary set of applications.

Several research topics are raised based on the observa-
tions and the analysis of the experimental results. We focus
our ongoing work on some of those observations:

• Build a practical proxy segment template database.

• Develop a more accurate proxy segment template clus-
tering algorithm.

• Revise compiler so that it can fully support our
method.

• Test our approach over a larger set of randomly chosen
applications.

Acknowledgments

We wish to acknowledge our sponsors from DOD,
DOE(Award No. DE-FC02-01ER25503), and NSF(Award
No. CCF-0541002 and CNS-0509332). Thanks to the
anonymous reviewers for their helpful comments on draft
of this paper.

References

[1] A. Phansalkar, A. Joshi, L. Eeckhout and L. K. John.
Measuring program similarity: Experiments with spec
cpu benchmark suites. In Performance Analysis of
Systems and Software, 2005.

[2] K. D. Cooper, P. J. Schielke, and D. Subramanian. Op-
timizing for reduced code space using genetic algo-
rithms. In Workshop on Languages, Compilers, and
Tools for Embedded Systems, May 1999.

[3] Hai P. Wu, L. Chen, J. Cuvillo and G. R. Gao. A
user-friendly methodology for automatic exploration
of compiler options. In The 2006 International Con-
ference on Programming Languages and Compilers,
Las Vegas, US, June 2006.

[4] John Cavazos and M.F.P. O’Boyle. Method-specific
Dynamic Compilation using Logistic Regression. In
OOPSLA’06, Portland OR, US, Oct. 2006.

[5] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G.
Fursin, M.F.P. O’Boyle, J. Thomson, M. Toussaint and
C.K.I. Williams. Using Machine Learning to Focus It-
erative Optimization. In CGO’06, New York NY, US,
March. 2006.

[6] Hai P. Wu, E. Park, Murat Bolat, Mihailo Kaplarevic,
Ying P. Zhang, Xiao M. Li and Guang R. Gao . An
Automatic Methodology for Program Segment-based
Compiler Optimization Search, Technical Memo071,
CAPSL, Unive. of Delaware, Nov. 2006.

[7] J. Lau, J. Sampson, E. Perelman, G. Hamerly and B.
Calder. The strong correlation between code signa-
tures and performance. In IEEE International sym-
posium on Performance analysis of systems and Soft-
ware, 2005.

[8] K. Chow and Y. Wu. Feedback-directed selection and
characterization of compiler optimizations. In 2nd
ACM Workshop on Feedback-Directed Optimization
(FDO), Haifa, Israel, November 1999.

[9] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L.
K. John and K. D. Bosschere. Performance prediction
based on inherent program similarity. In Proceedings
of PACT2006, 2006.

[10] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S.
W. Reeves, D. Subramanian, L. Torczon, and T. Water-
man. Finding effective compilation sequences. In Pro-
ceedings of the 2004 ACM SIGPLAN/SIGBED confer-
ence on Languages, compilers, and tools for embed-
ded systems, pages 231–239, 2004.

[11] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R.
Hankins and B. Davis. The fuzzy correlation between
code and performance predictability. In Proceedings
of the 37th International Symposium on Microarchi-
tecture (MICRO-37), 2004.

[12] M. Haneda, P.M.W. Knijnenburg and H.A.G. Wi-
jshoff. Optimizing general purpose compiler opti-
mization. In CF’05, Ishia, Italy, May 2005.

[13] Yoon-Ju Lee and Mary Hall. A code isolator: Isolating
code fragments from large programs. In Proceedings
of the LCPC’04, Sept. 2004.

[14] Z. Pan and R. Eigenmann. Fast and effective orches-
tration of compiler optimizations for automatic per-
formance tuning. In Proceedings of the International
Symposium on Code Generation and Optimization,
2006.

8

