
A Code Merging Optimization Technique for GPU

Ryan Taylor and Xiaoming Li

ECE Department, University of Delaware, USA

Abstract. A GPU usually delivers the highest performance when it is fully uti-
lized, that is, programs running on it are taking full advantage of all the GPU
resources. Two main types of resources on the GPU are the compute engine, i.e.,
the ALU units, and the data mover, i.e., the memory units. This means that an
ideal program will keep both the ALU units and the memory units busy for the
duration of the runtime. The vast majority of GPU applications, however, either
utilize ALU units but leave memory units idle, which is called ALU bound, or
use the memory units but idle ALUs, which is called memory bound, and rarely
attempt to take full advantage of both at the same time.

In this paper, we propose a novel code transformation technique at a coarse
grain level to increase GPU utilization for both NVIDIA and AMD GPUs. Our
technique merges code from heuristically selected GPU kernels to increase per-
formance by improving overall GPU utilization and lowering API overhead. We
look at the resource usage of the kernels and make a decision to merge kernels
based on several key metrics such as ALU packing percentage, ALU busy per-
centage, Fetch busy percentages, Write busy percentages and local memory busy
percentages. In particular, this technique is applied at source level and does not
interfere with or exclude kernel code or memory hierarchy optimizations, which
can still be applied to the merged kernel. Notably, the proposed transformation is
not an attempt to replace concurrent kernel execution, where different kernels can
be context-switched from one to another but never really run on the same core at
the same time. Instead, our transformation allows for merged kernels to mix and
run the instructions from multiple kernels in a really concurrent way. We provide
several examples of inter-process merging describing both the advantages and
limitations. Our results show that substantial speedup can be gained by merging
kernels across processes compared to running those processes sequentially. For
AMD’s Radeon 5870 we obtained an average speedup of 1.28 and a maximum
speedup of 1.53 and for NVIDIA’s GTX280 we obtained an average speedup of
1.17 with a maximum speedup of 1.37.

1 Introduction

Today’s GPUs consist of hundreds of processing cores and can run thousands of threads
at the same time. Even though the sheer scale of parallelism may already generate good
speedups for GPU programs, crucial resources on GPUs such as ALU processing units
and memory units are frequently imbalancedly utilized, which prevents the realization
of full GPU performance. The reason is that even though many threads can run on the
GPU concurrently, the threads are identical copies of the same code. If a batch of threads
saturate the ALU units but leave the memory units idling, the imbalance and under-
utilization won’t be remedied by context switching because the next batch of threads

S. Rajopadhye and M. Mills Strout (Eds.): LCPC 2011, LNCS 7146, pp. 218–236, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Code Merging Optimization Technique for GPU 219

will use the resources in the same way. This observation is true for both NVIDIA’s and
AMD’s GPUs. Clearly, GPUs can deliver better performance if the GPU resources are
used in a more balance way.

Recently NVIDIA released a technology called concurrent kernel execution [1] that
allows different kernels (i.e., different code) to be kept active on NVIDIA Fermi GPU
and switches the execution between kernels when one kernel is stalled. While sounds
like a perfect solution for resource idling, the concurrent kernel execution in fact does
not improve the resource imbalance or resource under-utilization within a kernel be-
cause at any moment, only one kernel can run on a core of a GPU. While the resource
idling due to long latency operations is averted by context switching, the imbalance
of the kernels, utilization of the core resources is untouched. For example, assuming
that we have two kernels, one only using ALU and one only doing memory operation.
The concurrent-kernel-execution will switch back-and-forth between the two kernels
because the memory operations are slow and will stall execution. Overall, the effec-
tive memory access latency is reduced. However, at any given moment, the GPU is
either idling the ALU or idling the memory controller, because only one kernel runs
at a time. In other words, the switching from an imbalanced kernel to another imbal-
anced kernel will not help either one to get more balanced. This sub-kernel level of
resource imbalance and the consequent resource under-utilization is our key observa-
tion and is not addressed in current technology. We need a technique that works within
a thread/kernel to help achieve full utilization of each of the given resource units in
the GPU.

In this paper, we propose a novel code transformation technique that strategically
merges kernels with different resource usage patterns to improve performance of GPU
programs. This technique is applied at a coarse grain level. More specifically, this pa-
per makes three contributions. The first contribution is the identification of a group of
profiling metrics that defines how fully a resource is by a GPU kernel, i.e., the bounded-
ness of resource utilization. The level of component use is a good metric for measuring
the imbalance of resource utilization in a GPU program kernel and therefore provides
guidelines of which kernels might be good candidates for merging.

The second contribution is the kernel merging transformation that provides
multiple ways of merging GPU kernels to balance the resource usage on GPU. We
also developed several heuristics to guide the transformation to maximize benefit. The
third contribution is that the proposed transformation is, to our best knowledge, the
first cross-platform code transformation technique that addresses the resource under-
utilization problem for both AMD’s and NVIDIA’s GPGPU programming frameworks.

The rest of this paper is organized as follows. Section 2 introduces the architectural
features of AMD and NVIDIA GPUs that are relevant to the code merging transfor-
mation. Section 3 explains from a GPU architecture point-of-view why code merg-
ing might improve program performance on GPU. Section 4 describes the transfor-
mation and heuristics of how and when to apply the transformation. Then, we com-
prehensively evaluate our approach on both AMD and NVIDIA GPUs and show the
results in Section 5. Finally we conclude and suggest future directions of research in
Section 6.

220 R. Taylor and X. Li

2 GPU Background

Modern GPUs are massively multi-threaded many-core architectures with several layers
of memory in a complex memory hierarchy scheme. One key aspect in the evaluation of
the performance of GPU programs is the bottleneck, which is the limiting factor of the
application. There are essentially two types of bottlenecks on GPUs: ALU and memory.
An ALU bound GPU kernel is a kernel in which the majority of the time executing the
kernel is spent doing ALU operations. A memory bound GPU kernel is a kernel in
which the majority of the time executing the kernel is spent doing memory operations.
The GPU achieves the greatest utilization when both ALU and memory are fully used.

The two main brand name GPU architectures share similar features but are also quite
different. The terminologies are also different on the two architectures even for features
that work in similar ways. In the following we briefly introduce the architectural fea-
tures on NVIDIA and AMD GPUs that are most relevant to the proposed code trans-
formation. We will refer the detailed introduction of GPU programming on the two
architectures to their respective programming guides.

2.1 AMD GPU

The AMD GPU consists of multiple compute units (SIMD engines) each of which
has 16 stream cores (thread processors). Each stream core itself contains processing
elements that make up a 5-wide VLIW processor. The memory hierarchy consists of
special registers, global purpose registers, L1 and L2 cache, local memory, texture and
vertex fetch and global memory. Threads are organized into work-items and then into
wavefronts. For the high end AMD compute device, a wavefront consists of 64 threads
organized into 16 2x2 quads, and wavefronts are then organized into work-groups. A
compute device has two wavefront slots, odd and even, and executes two wavefronts
simultaneously. More wavefronts can be in the work queue and can be switched with
an executing wavefront when the executing wavefront stalls. The number of wavefronts
that can exist in the queue is dependent on the number of resources available, such as
registers and local memory. This is an important feature because this wavefront switch-
ing allows for greater GPU utilization and gives the GPU the ability to hide memory
latencies. The instruction set architecture is organized into VLIW instructions or bun-
dles. These bundles are then organized into clauses, which are a group of bundles of the
same type. For example, ALU operations are grouped into an ALU clause while fetch
operations might be grouped into a TEX clause. Each clause is executed by a wavefront
until completion and cannot be switched out mid-clause.[2]

2.2 NVIDIA GPU

The NVIDIA GPU consists of multiple stream multiprocessors with 8 streaming pro-
cessors per multiprocessor. The memory hierarchy consists of registers, shared mem-
ory, texture memory, constant memory and global memory. Threads are organized into
groups of 32, called warps. Each warp is executed in SIMD fashion on a stream mul-
tiprocessor and is broken into half-warps, 16 threads, and quarter-warps, 8 threads.

A Code Merging Optimization Technique for GPU 221

Like the switching between clauses on AMD GPUs, NVIDIA GPUs also allow switch-
ing between warps when warps stall. Warps are organized into blocks which are then
organized into grids. While NVIDIA exposes PTX (an intermediate representation of
instructions) they do not currently expose their ISA directly. Since PTX is an interme-
diate representation and is not directly executed on GPU hardware, it is not able to give
the same level of detail as an instruction set architecture.[1]

3 Motivation

The main motivation behind this code merging transformation is the idea to improve
performance by balancing the utilization of GPU resources within kernels. In general,
most current GPU applications are implemented with the goal to get maximum ALU
utilization. While the ideal full ALU utilization may give the best performance for
an application, some algorithms are naturally memory bound and simply don’t allow
their GPU implementations to become ALU bound. These memory bound GPU kernels
leave many ALU resources idle. In the same notion, ALU bound GPU kernels leave
many memory resources idle. We note that GPU is an intrinsically throughput-oriented
architecture. Our proposed transformation attempts to achieve better overall GPU uti-
lization by recognizing idleness, both ALU and memory bound, and combining GPU
kernels that are on different ends of the ALU/memory usage spectrum so as to move the
point of usage of the combined code closer to neutral which implies better utilization
of GPU resources and better overall performance. Equally important is the criteria that
determines which kernels exhibit good qualities of a merging candidate. This type of
transformation would be particularly helpful for a multi-user GPU system, because the
proposed transformation can improve the overall throughput by recouping idle resource
capacity across different applications that run at the same time on such shared systems.

We want to address the relationship between the code merging transformation with
other optimization techniques on the GPU. The proposed transformation is compati-
ble with most other GPU optimizations. The transformation occurs at a coarser gran-
ularity than other known optimizations, most of which occur within the kernel itself
such as memory and register optimizations[3][4] and divergence and workload balance
optimizations[5][6]. This transformation does not interfere with these known optimiza-
tions because these optimizations can still be applied after the proposed transformation
to the merged kernels. There also exist some optimizations which require the kernel
code to be split into multiple kernels[7]. This transformation does not affect this type
of optimization either since it can still be applied to the split kernels, if there are other
kernels to merge with them. Furthermore, this transformation can also be applied with
emerging GPU technology such as concurrent kernels [1] since several kernels can be
merged into one or more kernels and can then be run concurrently under the same con-
text.

The discussion of the level of use of resource utilization provides a high-level view
of why the proposed code merging transformation works. Next we go into the design
details of NVIDIA’s and AMD’s GPU to reveal an architectural explanation of how
code merging, if done properly, leads to a better utilization of the ALU/memory units
and improves program performance on GPU.

222 R. Taylor and X. Li

Furthermore, the second major motivation behind this transformation is to merge
kernels from different processes on multi-user systems into one process. For example,
if a developer is utilizing a system for executing an ALU intense algorithm and another
developer is waiting to execute a memory intense algorithm, these two processes’ ker-
nels can be merged into one larger kernel resulting in better overall GPU utilization and
kernel speedup. Thereby, this type of transformation would be particularly helpful for a
multi-user system.

Next we discuss three architectural/program features that are not ideally handled in
current technology and can be improved by the proposed transformations.

3.1 ALU Packing Percentage

Since NVIDIA GPUs do not utilize VLIW processors this metric applies only to AMD
GPUs. The ALU packing percentage is the percent of cores in the VLIW processor that
are being utilized by the GPU kernel. For example, if the ALU packing percentage is
20% then only 1 of the 5 cores are being used per VLIW instruction. There are two
major factors that affect the ALU packing percentage. The first factor is that of data
dependence. Instructions that have data dependence are not able to be scheduled to-
gether in one VLIW instruction. The second factor is that of control flow and scope.
Instructions within a control flow statement or scope are scheduled, by the compiler,
to run in separate ISA clauses. Instruction packing does not occur across clauses and
so while there may not be any data dependence between an instruction outside an if
statement and one inside an if statement, these two instructions cannot be packed. The
ALU packing percentage can be increased through this transformation because separate
GPU kernels have no data dependence and their instructions can be bundled together
within VLIW instructions. Instructions within control flow statements can only be com-
bined across GPU kernels if the control flow statements have the same conditionals or
the instructions within the control flow statements can be software predicated or the
two kernels have synchronization points which can be combined. Figure 1 and Figure
2 both have data dependence from instruction 13 to 14 in ALU clause 02 and are only
utilizing 1 of the 5 cores in each VLIW instruction. If these two kernels are merged, the
resulting code, as shown in Figure 3 now has 2 of the 5 cores in each VLIW instruction
being utilized. Basically the merged code uses the same number of cycles as either of
the pre-merge kernels, as if one is piggy-backing the other.

3.2 Idleness

There are three major GPU components which can execute in parallel: ALU compo-
nents, global memory components and local memory components. Kernel code is gen-
erally laid out in a streaming fashion: read input, work on input and write output. This
inherent layout causes dependence to occur between the components and while there
can exist some overlap in resource usage due to context switching, there still leaves
idleness in those components in which the kernel does not greatly use. For example, in
an ALU bound kernel each wavefront uses the ALU units far more than the memory
units and the time it takes to execute one wavefronts’ ALU operations can be spent

A Code Merging Optimization Technique for GPU 223

02 ALU: ADDR(5 1) CNT(1 1 7)
13 w: ADD T0 .w, T0 . y , PV12 . x
14 z : ADD T0 . z , T0 . x , PV13 .w

Fig. 1. Kernel One ISA

02 ALU: ADDR(5 1) CNT(6 3)
13 y : ADD T0 . y , T0 . w, PV12 . z
14 x : ADD T0 . x , T0 . z , PV13 . y

Fig. 2. Kernel Two ISA

02 ALU: ADDR(5 6) CNT(1 2 1)
13 x : ADD T0 . x , PV12 .w, R2 . x

z : ADD T0 . z , R0 . x , PV12 .w
14 y : ADD T0 . y , T0 . w, PV13 . z

w: ADD T0 . w, T0 . w, PV13 . x

Fig. 3. Merged Kernels ISA

fetching inputs for multiple wavefronts from memory. This leaves a gap when execut-
ing the back half of the wavefronts such that all the inputs have been fetched for all the
wavefronts but not all the ALU operations have been executed. In this case, there is an
opportunity to use the memory units that are sitting idle. In contrast, in a memory bound
kernel the memory units are used far more than the ALU operations and therefore, in
the same sense, the ALU units are not being fed fast enough and are sitting idle. There
also exists the case where local memory is being used but neither the ALU units nor the
global memory units are being used. In both types of memory, global and local, stalling
is considering as being busy since the unit is being tasked. Stalling is not the same as
idling. In this paper, these are the three major cases that motivate this kernel merging
technique.

3.3 API Overhead

Each process or application requires a certain amount of API overhead or setup time.
This not only includes the individual kernel invocation time but also count the entire
API overhead and setup time, such as the setting up of device and the creation of con-
text. For individual processes each of these steps must be done at least once and while
kernel invocation time can be reduced with a single application by queuing the kernels it
cannot be reduced when looking at kernels across processes. When kernels are merged
this overhead of setup is reduced since these calls only need to take place once. This
overhead reduction scales with the number of merged kernels across programs since the
device, context and platform setup times remains the same.

4 Transformation

Kernels from different processes are merged in two steps. The first step brings the two
separate host codes into one program and the second step is to merge the kernel codes.
The main work in the first step is to create a proper context for the kernel merging in the
second step. The context preparation involves merging the data structures, functions and
necessary code into one program. Furthermore, we also bring the two separate OpenCL

224 R. Taylor and X. Li

API calls under one ”umbrella” of OpenCL API calls, i.e., setting up the platform,
device, context and kernel for OpenCL. In addition, all of the buffer creation, buffer
reads, buffer writes and releasing objects need to be merged. The first step may appear
to involve a lot of things, however, is actually very straightforward because it’s not
important in which order these things get merged in context preparation, so long as
they stay in the proper order within the code, i.e. creating buffers before writes and
writes before kernel call and kernel call before reads and reads before releases. The
performance of the merged kernel is not affected either as long as the context is prepared
in a valid way.

Merging the kernel code in the second step is not as straightforward and the way in
which the kernel code is merged can greatly impact performance. The simplest way to
merge two kernels is to cascade the kernel codes as shown in Figure 4. However, simple
solutions like cascading do not usually give optimal performance. Here we will discuss
several key factors that are important to the decision of how to merge. Furthermore, we
describe several heuristics for choosing which kernels to merge. The heuristics are very
effective and give near optimal performance in most cases.

Fig. 4. Cascading Kernels

4.1 Merging Based on Resource Usage

Generally speaking, kernels that use resources in different ways can potentially benefit
from merging. There are two values which impact this decision: actual resource busy
percentages and theoretical resource busy percentages. Both of these values give an
indication of the bottleneck, the profiler giving the real bottleneck and the theoretical
values giving what ”should” be the bottleneck. The theoretical values can also be looked
at as a best case scenario (components are totally parallelized, so the execution time is
the greatest of the three components’ times) or a worst case scenario (components are
totally serialized, so the execution time is the sum of the three components’ times). In
reality, neither of the theoretical times are true since there is dependence and also some
parallelization of work. However, these values can be used as a guide when compared

A Code Merging Optimization Technique for GPU 225

Table 1. AMD OpenCL Profiler Counters

Counters Description

Time Kernel execution time not including kernel
setup

ALU Instr Number of ALU instructions
Fetch Instr Number of global read instructions
Write Instr Number of global write instructions

LDS Fetch Instr Number of LDS read instructions
LDS Write Instr Number of LDS write instructions

ALU Busy Percent of overall time ALU units are busy
Fetch Busy Percent of overall time read units are busy

(includes stalled)
Write Stalled Percent of overall time Write units are

stalled
LDS Bank Conflict Percent of overall time LDS units are

stalled by bank conflicts
Fast Path Total KBs written using the fast path

Complete Path Total KBs written using the complete path

to the profiler values as to how much serialization, parallelization or idleness is actually
occurring in a kernel. In this paper, we use these two sets of values of kernels to decide
the potential benefit for merging them.

For this transformation, the profiler counters used are described in Table 1. Some of
the counters are used to calculate the actual run times of the components and some of
the other counters are needed to calculate the theoretical values. Equations 1 and 2 refer
to the equations to calculate the theoretical time spent on each component. Equations
3, 4, 5 and 6 are the equations to calculate the actual time spent on each component.
The actual time spent on ALU and read operations is easily calculated since the pro-
filer directly reports the percent time the kernel is busy performing these operations.
The actual time spent using the LDS (local memory) and writing data to global mem-
ory is given as an estimation using some profiler counters together with the theoretical
equations since the profiler does not report direct busy percents on these operations.

Global Memory Time =
Total Bits

Bus Width × Memory Clock
(1)

LDS Time =
Threads × LDS Instr

LDS per Clock × Engine Clock
(2)

Actual ALU Time = Kernel Time × ALU Busy
100

(3)

Actual Read Time = Kernel Time × Fetch Busy
100

(4)

Est. Actual Write Time = (1) + Kernel Time × Write Stalled (5)

Est. Actual LDS Time = (2) + Kernel Time × LDS Conflict (6)

For example, given a kernel with 98% ALU Busy and 22% Fetch (read) Busy coun-
ters we can determine that there is 1) overlap in ALU workload and global memory

226 R. Taylor and X. Li

read workload (since together they are greater than 100%) and 2) 78% of the time the
memory read units are idle. Since this kernel is 98% ALU Busy this would indicate that
this kernel would not be a good candidate for merging with another ALU bound kernel
based on resource usage. This kernel is however only using the read units 22% of the
time and therefore would make a good candidate for merging with a read bound kernel
(since although adding ALU operations would increase the ALU execution time in an
already ALU bound kernel, it would hide memory latency from the second kernel). A
kernel with the opposite values, 98% Fetch Busy and 22% ALU Busy would be a good
candidate for merging with an ALU bound kernel (since the first kernel could hide some
ALU operations of the second kernel).

The resource usage of a kernel is represented as a vector of five values: an ALU
value, a global read value, a global write value, an LDS value and an overall ”overlap”
value. The vectors will be used as the decision factor for the purposes of choosing
which kernels to merge and the way of merging. The first four values represent how
much of the resource is being used by the kernel and the last value, the overlap value,
represents how much of that work is being done in parallel by the components. The
ALU value and global read value come directly from the counters ALU Busy and Fetch
Busy, respectively. The global write value and LDS value are the percents of equation 5
and equation 6 in reference to the Time counter, respectively, since the profiler does not
directly give the percent these units are busy. The overlap value is important because
it gives detail as to how much resource availability within that time exist among the
different components and how much room in each component is available for merging.
In the above example, if the overlap is 0 then the ALU is idle during the entire fetch time
and vice-versa. A kernel with a low overlap value makes for a better merge candidate
than a kernel with a higher overlap value. If a kernel is 98% ALU busy and 50% fetch
busy and has an overlap of 100% then there is only 50% of the total kernel time to do
extra fetch instructions.

The individual actual times are calculated and summed and the percent difference
is taken with regards to the Time counter. This calculation yields the overlap value
equation below:

Overlap = 1 − Kernel Time
(3) + (4) + (5) + (6)

(7)

This equation is not a direct calculation for the actual overlap since it is not currently
possible to directly extract the level of component parallelization from the profiler that
has no such counter. Unfortunately, at this time, it is not possible to tell which compo-
nents’ runtimes overlap with which other components’ runtimes, making it not possible
to give an exact formula for estimating benefit based on resource usage. Instead, this
heuristic is used to give a quantifiable estimation of the overall overlap.

Each kernel candidate’s values, the five listed above, are summed together. For ex-
ample, given two kernels with the above properties would result in an ALU value of
.98 + .98 = 1.96 and a global read value of .22 + .22 = .44, so these would not be good
merging candidates because both kernels are very ALU bound. For example, if we as-
sume that these two kernels serialize the read and ALU operations (no overlap) then
only a speedup of the time of one kernel’s read operations can be hidden. However,
given one kernel with the properties mentioned above and one with opposite properties
the ALU value would be .98 + .22 = 1.20 and a global read value of .22 + .98 = 1.20,

A Code Merging Optimization Technique for GPU 227

giving a much better balance and would hence be good merging candidates since the
fetch bound kernel could hide memory latency in the ALu bound kernel. For example,
if we again assume that these two kernels serialize the read and ALU operations then
the speedup could be .98 - .22 = .68 of the second kernels’ read time. What this means
is that if the first kernel spends 22% of it’s time reading data then 98% of it’s time
executing ALU operations, the second kernel can spend 68% of the first kernel’s time
reading data. Speedup depends on the level of overlap for each kernel, which in practice
is neither 0% or 100%, even in the first example the ALU is not busy 100% of the time.

4.2 Merging Based on ALU Packing Percentage

Another attribute that contributes to the merging decision is the ALU packing percent-
ages. This heuristic only applies to AMD’s VLIW architecture and, unlike merging
based on resource usage, would allow two ALU bound kernels to be merged and ob-
tain speedup. When merging kernels, one kernel’s ALU instructions might fit into the
empty VLIW slots of the other kernel, thereby reducing the overall number of ALU cy-
cles needed to execute the kernel. The compiler has control of how the VLIW instruc-
tions are packed and the size of the window the compiler uses when looking at which
VLIW instructions to pack. The window for packing analysis is between the point in
which two code blocks meet. In other words, the compiler’s window for packing can
only reach so far up and down and won’t pack a merged kernels’ instructions if they
are outside of that window. Greater code motion and interleaving of code statements
between the merged kernels could lead to better packing improvements but would, in
most instances, not overcome the negative effects of the increased register usage. It is
still possible to get speedup from this feature with those constraints. For example, given
two ALU bound kernels with 500 ALU instructions and 440 instructions merged over
2048*2048 threads, a speedup of 1.13 is obtained on AMD’s Radeon 5870. The deci-
sion to merge based on ALU packing percentage should be evaluated after the kernel
candidates have failed the test based on resource usage. Specifically, the ALU packing
heuristic is based on 1) the kernel’s packing percentage (lower is better) and 2) the ker-
nel’s ALU usage (higher is better). One of the other advantages to ALU packing is that
profile feedback is not needed, ALU packing can be determined statically through the
analysis of the assembly code of the program.

4.3 General Techniques of Kernel Merging

When merging kernels there are some good practices that generally adhere to most sce-
narios. One key issue when merging kernels is the impact the extra code will have on
register pressure. Register pressure is always a performance consideration when pro-
gramming for the GPU and, generally, the lower register pressure the better since more
threads can be queued which leads to more memory latency hiding. Ideally, since the
kernels are independent pieces of code, there should be little to no added register pres-
sure. The register count used in the merged code should be no more than the highest
register count among all kernels. This is true when the kernels are simply cascaded be-
cause all the registers used by the top kernel can then be reused by the bottom kernel,
so this technique does not significantly impact register pressure. There is no need to

228 R. Taylor and X. Li

have both sets of registers reserved because registers can be reused from one kernel’s
code to the next when the kernels are merged. However, simply cascading the kernels is
not always optimal for performance. Every kernel has some output and when merging
kernels are simply cascaded the output of one kernel is put in the middle of the newly
merged kernel code. In most instances this causes the compiler to produce a wait ac-
knowledgment assembly instruction (WAITACK), which adds synchronization to the
kernel and causes slowdown because it waits for acknowledgments back from either
the read or write memory units. To remove this synchronization, the output of all the
merged kernels are moved toward the end of the kernel as shown in Figure 5. In this
way, the register pressure is not significantly affected. It’s not always possible to put
the outputs right next to each other for the kernels being merged, instead a best effort is
made while keeping register pressure as low as possible (without reducing occupancy)
and eliminating the (WAITACK) instruction. Similar to the principle of maximizing

Fig. 5. Moving Output of Merged Kernels

the grouping of outputs, every attempt should also be made to group the inputs. How-
ever, this is not due to a wait acknowledgment after a memory read but is driven by the
goal to group the memory reads in the same memory read clause, so as to reduce any
delay caused by switching between two different such clauses or any delay caused by
data dependence. Since the effect of this optimization might not be high, it is not per-
formed if the register count needs to be increased to the point of reducing the number of
wavefronts/warps. This is shown in Figure 6. For AMD GPUs, the equation to calculate
the number of simultaneous wavefronts is:

Simul WFs =
Regs per Thread − Temp Regs used

Regs Used
(8)

4.4 Fences and Barriers

There are many types of kernels which require synchronization and in these kernels
fences and barriers are used to implement this synchronization. There are two cases
to consider when merging kernels with synchronization primitives: both kernels have
synchronization or one kernel has synchronization. In the case of both kernels having

A Code Merging Optimization Technique for GPU 229

Fig. 6. Moving Input of Merged Kernels

synchronization each kernel code is broken into blocks separated by these fences or
barriers. The blocks are then merged based on their sequence according to the blocks
as shown in Figure 7. The case of merging kernels with synchronization primitives is
a good example showing that a simple merging approach such as cascading can some-
times destroy performance. If the kernels were simply cascaded the total number of
fences or barriers would be the sum of the synchronizations of all the kernels being
merged. However, merging kernels at the granularity of code blocks that are synchro-
nized allows the number of synchronizations to remain the same as the kernel with the
highest number of synchronizations because the kernels now share the same barriers,
thus eliminating the need for duplicate barriers. For example, if each kernel performs
some operations and then synchronizes, in the merged kernel they can both perform
these operations at the same time and then synchronize together.

Fig. 7. Merging Kernels with Synchronization Points

230 R. Taylor and X. Li

If only one kernel has synchronization operations, the kernel that does not have syn-
chronization is placed either before or after the synchronization operation depending
on which option gives the lowest register usage, which can be determined statically.
This technique does not exclude the other techniques mentioned above, meaning that
both moving the output and inputs is taken in to account when merging kernels with
synchronization.

4.5 Limiting Factors

The proposed kernel merging technique cannot be employed freely. There are a few
other limiting factors that should be considered when deciding whether to apply this
transformation or not. One limitation is caused by the possible changes of the dimen-
sions of a GPU kernel when it is merged with another kernel, and the consequent
changes in its memory access patterns. For example, changing the local dimension from
1D to 2D, or vice versa, could cause global memory conflicts or contention. Kernels
work best when they execute over the dimensions, both global and local, for which
they were coded. For some applications a specific local thread size and/or dimension
are needed for correct results, particularly for problems that utilize a certain block size
for local memory calculations. For example, matrix operations often fall into this cate-
gory. There are also applications that may have their performance effected by the local
dimension size when going from one dimension to larger dimensions due to a change
in memory access size based on the algorithm. For example, image filters often look
at the surrounding pixels and the size of the reads can change depending on the local
dimension, whether they are just looking forward and backward or forward, backward,
side to side and diagonally.

Our heuristic considers both local memory usage and local thread size. If a kernel
has a two dimension local thread size (block size) it will not be reduced when merging.
What this means is that if this kernel is merged with a one dimension local thread size
kernel, that kernel’s local thread size is changed to two dimensions, unless changing
the local thread size effects the fetch size performance (architecture dependent). Our
heuristic checks to make sure that the combined local memory usage does not exceed
the local memory available for the architecture, if it does then those kernels are not
merged.

5 Evaluation

We evaluate our code merging transformation technique on both AMD and NVIDIA
GPUs. All of the results presented in this paper were taken with maximum global size
and maximum memory usage allowed for the given problem, thereby imitating a large
data inter-process environment. The host-to-device transfer will not be addressed in our
evaluation since it does not impact the effectiveness of the proposed transformation in
one way or the other. The AMD GPU used was the 5870 which has the RV870 chip
and 1GB of memory. The NVIDIA GPU used was the GTX280 which has the GT200
chip and 1GB of memory. The specifications of both GPU architectures are mentioned
in the GPU Background section of this paper. The latest drivers and SDKs were used

A Code Merging Optimization Technique for GPU 231

at the time of this writing, which was the AMD Stream SDK 2.2 and NVIDIA’s CU-
DA/OpenCL 3.1 Toolkit. All profiling information listed was obtained using the AMD
OpenCL profiler.

The benchmarks used for evaluation were taken from the AMD Stream SDK 2.2
OpenCL samples. The code is compatible with but might not be tuned for NVIDIA
hardware. However, since we use the same compiler options before and after our trans-
formation, the speedup validly reflect the effectiveness of our approach. The runtimes
are taken directly from these samples, unaltered for either GPU architecture. The merged
kernels were merged without modifying any kernel code other than the transformation
techniques outlined in the Transformation section of this paper. All of the speedups
shown were compared to the combined single benchmark times using the same global
size with an optimal local size. The benchmarks are one-dimension BlackScholes,
Mersenne Twister, SobelFilter and SimpleConvolution, as well as two-dimension DCT
and MatrixTranspose. The six benchmarks can be combined into 15 different pairs (C2

6),
and we tested all combinations that passed the heuristic tests.

The results for both the AMD 5870 and the NVIDIA GTX280 are listed in Figures
8 and 9, respectively. All the timing results were obtained using the respective profil-
ers: AMD’s Stream OpenCL profiler and NVIDIA’s OpenCL profiler. The AMD GPU
shows the most significant performance gain with an average speedup of 1.28 and a
maximum speedup of 1.53. Good speedups were also obtained for the GTX280 (aver-
age speedup 1.17 and max 1.37).

5.1 Effects of Resource Usage

Barring any of the mentioned limiting factors, the best performance results come from
the merging of ALU bound kernels with memory bound kernels. This conforms to our
transformation heuristics and allows for the greatest increase in overlap. For our bench-
marks, the DCT, MatrixTranspose and SimpleConvolution all had relatively low ALU
values and overlap values while the BlackScholes, SobelFilter and MersenneTwister
samples had relatively high ALU and overlap values, as can be seen in Table 2.

Table 2. Profiled Resource Utilization of Single Benchmark

Kernel ALU Read Write LDS Overlap

DCT 0.381 0.224 0.016 0.429 0.049
Black Scholes 0.997 0.222 0.110 0 0.241

Mersenne Twister 0.956 0.086 0.130 0.280 0.311
MaxTrans 0.025 0.006 0.010 0.057 -9.06

Simple Conv 0.434 0.334 0.026 0 -0.25
Sobel Filter 0.960 0.231 0.035 0 0.184

In Table 2 the kernels with a high ALU value also have a high overlap value since
these kernels are ALU bound and, combined with context switching, allows for a high
amount of memory latency hiding. This means that these kernels will merge well. The
DCT sample is LDS bound and therefore has little overlap and will merge well with a

232 R. Taylor and X. Li

kernel that has either a high ALU value, a high read value or a high write value. Both
the Matrix Transpose and the Simple Convolution benchmarks show a negative overlap,
however. The profiler does not give the information about all aspects of execution that
might impact performance, such as unreported bank conflicts, LDS stalls, synchroniza-
tion stalls, and context switching latency. However, for the purpose of merging, since
we know the negative overlap is not caused by the ALU or read values, the negative
value itself indicates that there is heavy idleness.

The values are added to predict which kernels are good merge candidates. For exam-
ple, if two kernels are to be merged the speedup gained is going to decrease as any value
approaches 2. For example, for any combination of Black Scholes, Mersenne Twister
or Sobel Filter on NVIDIA 280 GTX, the sum of their ALU values readily approaches
the threshold and so the speedup is nominal. The ALU value for Matrix Transpose and
Black Scholes is just over 1, meaning that most of the other operations can be hidden
by ALU operations while being just slightly more ALU bound. This method is done for
each of the first four values with the same concept. For example, if two kernels had read
values of .99 then they wouldn’t be good merge candidates. The best merge candidates
are going to stress different components of the GPU, ideally a perfectly merged kernel
with have values of 1. This can be extended to multiple kernels (more than two) since
there are more than two components that work in parallel and most kernels won’t use
close to 100% of any of those components. For example, a high ALU value kernel could
be very well merged with a high read value kernel and a high LDS value kernel. This
can be extended to as many kernels as the heuristic will predict speedup.

Looking at Table 3, we can see that the Matrix Transpose kernel merges well with
almost every other kernel since it’s values are so small and it’s overlap is deeply nega-
tive, there’s plenty of opportunity for other kernels to do work during it’s runtime. This
is expressed in Table 3 by the improvement in the overlap value.

Table 3. Heuristics values for kernel combinations

Merged Kernel ALU Read Write LDS Overlap

DCT+Twister 0.770 0.141 0.104 0.370 0.278
DCT+Scholes 0.803 0.258 0.085 0.240 0.278

Scholes+MaxTrans 0.810 0.185 0.114 0.071 0.153
Scholes+Twister 0.978 0.139 0.144 0.206 0.318

Twister+MaxTrans 0.765 0.072 0.125 0.297 0.206
DCT+MaxTrans 0.219 0.128 0.018 0.294 -0.514
Scholes+Simple 0.854 0.263 0.098 0 0.177
Twister+Simple 0.836 0.138 0.122 0.248 0.257
DCT+Simple 0.351 0.217 0.018 0.233 -0.217

Simple+MaxTrans 0.122 0.077 0.013 0.037 -2.98
Scholes+Sobel 0.998 0.223 0.109 0 0.249
Twister+Sobel 0.940 0.106 0.131 0.266 0.308
DCT+Sobel 0.442 0.182 0.021 0.279 -0.079

Simple+Sobel 0.683 0.297 0.042 0 0.0227
Sobel+MaxTrans 0.131 0.029 0.013 0.038 -3.68

A Code Merging Optimization Technique for GPU 233

5.2 The Effects of Barriers

Of the 6 benchmarks only the DCT and MatrixTranspose have barriers. Each of the
two has one barrier. These two kernels are merged according to the Fences and Barriers
subsection of the Transformation section. That is, the code segments that are separated
by barriers are interleaved in the merged kernel. When merging the DCT and Matrix-
Transpose, the code sections on each side of the barrier were put on the proper side of
the barrier in the merged kernels, so no extra barriers were needed. Despite the need for
synchronization, these samples give good performance on the AMD GPU when merged
with BlackScholes and MersenneTwister, both of whom are ALU bound. DCT and Ma-
trixTranspose also show speedup when merged together, both due to Matrix Transpose’s
low overlap value and interleaving the barriers.

5.3 Candidate Elimination

Table 3 shows all of the values for all possible combinations and indicates which com-
binations are good candidates for merging based on our heuristics. Both the Sobel Fil-
ter and Simple Convolution cause an increase in fetch size when going from a local
thread dimension size of one to two on AMD’s Radeon 5870 and the Sobel Filter on the
GTX280. The increase in runtime is greater than the expected benefit from the transfor-
mation so the kernels aren’t merged when it requires that they be transformed into two
dimensional problems. Additionally for the NVIDIA GPU, the combinations that were
eliminated were Scholes Twister, Scholes Sobel and Sobel Twister. All of these kernels
have high ALU values and since the NVIDIA GPU doesn’t use the VLIW architecture
there is no possible gain from ALU packing. This causes their runtimes to be serialized
and no improvement can be made. These three kernels might also be eliminated from
the AMD GPU if not for the possible gain in performance from an increase in ALU
packing. The advantage of ALU packing does not need to be profiled and can be at-
tained statically through the compiled ISA. The speedups from these combinations of
ALU bound kernels on the AMD GPU comes from ALU packing. The number of ALU
cycles saved in the Scholes Twister sample was about double that of the Sobel Twister
and Sobel Scholes samples. Figures 8 and 9 show the results of all the combinations that
pass the heuristics and are actually merged. The left column in all the figures shows the
execution time of kernels executed separately, and the right column shows the execution
time of the corresponding merged kernel.

Just for the purpose to show the effectiveness of our heuristics, Figure 10 shows all
of the results for the combinations of benchmarks that did not pass our heuristics. The
combinations in this figure have almost the same execution time for the merged kernel
as the combined execution time of the individual kernels. On the other hand, it also
shows that our transformation is “safe” in the sense that even if two wrong kernels are
merged, the performance will only marginally decrease.

234 R. Taylor and X. Li

 0

 10

 20

 30

 40

 50

 60

 70

DCT+Twister (2k)

DCT+Scholes (2k)

Scholes+MaxTrans (2k)

Scholes+Twister (2k)

Twister+MaxTrans (2k)

DCT+MaxTrans (4k)

Scholes+SimpleConv (2k)

Twister+SimpleConv (2k)

Scholes+Sobel (2k)

Twister+Sobel (2k)

SimpleConv+Sobel (4k)

 E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

d)

 left column: performance of kernels executed separately
right column: performance of merged kernel

Fig. 8. AMD 5870 Results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

DCT+Twister

DCT+Scholes

Scholes+MaxTrans

Twister+MaxTrans

DCT+MaxTrans

Scholes+SimpleConv

Twister+SimpleConv

DCT+SimpleConv

SimpleConv+MaxTrans

DCT+Sobel

SimpleConv+Sobel

Sobel+MaxTrans

 E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

d)

Fig. 9. NVIDIA GTX280 Results

A Code Merging Optimization Technique for GPU 235

 0

 10

 20

 30

 40

 50

 60

 70

Scholes+Twister_280

Scholes+Sobel_280

Twister+Sobel_280

DCT+SimpleConv_5870

DCT+Sobel_5870

SimpleConv+MaxTrans_5870

Sobel+MaxTrans_5870

 E
xe

cu
tio

n
tim

e
(m

ill
is

ec
on

d)

Fig. 10. Results of Poor Merging Candidates

6 Related Work and Conclusion

The performance effect of resource sharing and competition has been studied before in
the context of multi-threaded CPU programs. Resources in a CPU including cache, off-
chip bandwidth and memory are shared among many multi-tasked threads. A preview
of the phenomena of inter-thread conflict and thrashing is already observed in multi-
threaded machines such as the Intel Pentium 4 that supports hyperthreading [8,9], even
though there are only two threads that share a processor and other resources. [10,11,12]
explores the possibility of optimizing multiple programs that will run simultaneously on
multi-processors. Generally, the previous approaches are designed for multi-threaded
programs with a small number of threads and cannot be easily scaled up to hundreds
of threads that run in parallel on a GPU. Intra-thread optimizations for GPU have been
long studied. There are many well documented optimizations for GPU programs that are
applied at the thread or wavefront/warp level to improve the usage of GPU resources.
A recent example is a systematic framework to optimize for GPU memory hierarchy
that is proposed in [13]. A good overview of intra-thread optimizations can be found in
[14]. On the other hand, however, little is known about optimizations for resources at a
higher level such as at the kernel level.

In this paper we present a novel transformation that merges inter-process kernels
to improve program performance on the GPU. The proposed transformation is moti-
vated by the fact that while there are many techniques that optimize GPU kernels at
the thread level there are no techniques that help to increase resource utilization below
the kernel level. Concurrent kernels, while improving overall GPU usage by utilizing
more resource units at one time, does not help to improve individual resource units’
usage within the GPU. We discuss how the code merging transformation has minimal
effect on optimizations done at a finer granularity and can help increase performance
when combined with other optimizations. We give a set of heuristics for selecting which

236 R. Taylor and X. Li

kernels to merge and how to merge them along with real world application results from
both major GPU vendors for a wide array of benchmarks.

In the future, we would like to extend this work to include larger benchmark appli-
cations that contain multiple kernels. We would also like to extend this work to include
results for Fermi machines and for the new 4-wide VLIW AMD machines, for both
the set of benchmarks presented and the planned future larger benchmark applications.
A comparison between the speedups of this technique and the speedups from using
concurrent kernel execution will also be included.

References

1. Nvidia OpenCL Programming Guide (May 2010)
2. AMD OpenCL Programming Guide (June 2010)
3. Ryoo, S., Rodrigues, C., Baghsorkhi, S., Stone, S., Kirk, D., Hwu, W.: Optimization prin-

ciples and application performance evaluation of a multithreaded GPU using CUDA. In:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 73–82. ACM (2008)

4. Ueng, S.-Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.-M.W.: CUDA-Lite: Reducing GPU
Programming Complexity. In: Amaral, J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 1–15.
Springer, Heidelberg (2008)

5. Zhang, E., Jiang, Y., Guo, Z., Shen, X.: Streamlining GPU applications on the fly. In: Pro-
ceedings of the 24th ACM International Conference on Supercomputing, pp. 115–126. ACM
(2010)

6. Chen, L., Villa, O., Krishnamoorthy, S., Ga, G.: Dynamic load balancing on single- and
multi-GPU systems. In: 2010 IEEE International Symposium on Parallel and Distributed
Processing, pp. 1–12. IEEE (2010)

7. Carrillo, S., Siegel, J., Li, X.: A control-structure splitting optimization for GPGPU. In: Pro-
ceedings of the 6th ACM Conference on Computing Frontiers, pp. 147–150. ACM (2009)

8. Hily, S., Seznec, A.: Contention on 2nd Level Cache May Limit the Effectiveness of Simul-
taneous Multithreading. Technical Report PI-1086 (1997)

9. Leng, T., Ali, R., Hsieh, J., Mashayekhi, V., Rooholamini, R.: A Study of Hyper-threading in
High-performance Computing Clusters. In: Dell Power Solutions HPC Cluster Environment,
pp. 33–36 (2002)

10. Kandemir, M.: Compiler-Directed Collective-I/O. IEEE Trans. Parallel Distrib. Syst. 12(12),
1318–1331 (2001)

11. Hom, J., Kremer, U.: Inter-program Optimizations for Conserving Disk Energy. In: ISLPED
2005: Proceedings of the 2005 International Symposium on Low Power Electronics and De-
sign, pp. 335–338. ACM Press, New York (2005)

12. Ozturk, O., Chen, G., Kandemir, M.: Multi-compilation: Capturing Interactions Among
Concurrently-executing Applications. In: CF 2006: Proceedings of the 3rd Conference on
Computing Frontiers, pp. 157–170. ACM Press, New York (2006)

13. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory optimization and
parallelism management. In: Proceedings of the 2010 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pp. 86–97. ACM (2010)

14. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S., Hwu,
W.W.: Program optimization carving for GPU computing. Journal of Parallel and Distributed
Computing 68(10), 1389–1401 (2008)

	A Code Merging Optimization Technique for GPU
	Introduction
	GPU Background
	AMD GPU
	NVIDIA GPU

	Motivation
	ALU Packing Percentage
	Idleness
	API Overhead

	Transformation
	Merging Based on Resource Usage
	Merging Based on ALU Packing Percentage
	General Techniques of Kernel Merging
	Fences and Barriers
	Limiting Factors

	Evaluation
	Effects of Resource Usage
	The Effects of Barriers
	Candidate Elimination

	Related Work and Conclusion
	References

