
Software-based Branch Predication for AMD GPUs

Ryan Taylor
University of Delaware

Newark, DE 19716
rtaylore@udel.edu

Xiaoming Li
University of Delaware

Newark, DE 19716
xli@udel.edu

ABSTRACT
Branch predication is a program transformation technique
that combines instructions of multiple branches of an if state-
ment into a straight-line sequence and associates each in-
struction of the sequence with a predicate. The branch pred-
ication improves the execution of branch statements on pro-
cessors that support predicated execution of instruction, e.g.,
Intel IA-64, because such transformation improves the in-
struction scheduling and might help cache performance. This
paper proposes a novel software-based branch predication
technique for GPU. The main motivation is that branch in-
structions can easily become a performance bottleneck for
a GPU program because of the cost of branch instructions
compared to ALU instructions and the possibility of low
ALU utilization due to separation of ALU instructions within
control flow blocks. Due to the SIMD nature and massive
multi-threading architecture of the GPU, branching can be
costly if more than one path is taken by a set of concurrent
threads in a kernel. In this paper we reveal that branch pred-
ication can enable instruction packing, a VLIW-like GPU
feature that is designed to increase the parallel execution of
independent instructions, and can also decrease the number
of control flow instructions thereby improving the perfor-
mance of GPU kernels with both single and multiple branch
paths. The key of our novel branch predication technique
is a set of transformation rules that takes into considera-
tion the specialties of the GPU architecture and implements
software-based predicated execution of instruction on the
GPU with little to no overhead. Furthermore, we identify
architectural and program factors that affect the effective-
ness of our technique and build a benefit analysis model for
the transformation. The implementation of our technique on
synthetic benchmarks and real-world application proves its
effectiveness.

1. INTRODUCTION
The Graphic Processing Unit (GPU) has became a major

force in the high performance computing area. Its rapid in-
crease in popularity as the platform for computing intensive
applications can be generally attributed to its massive par-
allel processing architecture and the introduction of general
purpose program frameworks for the GPU. Currently there
are two major GPU vendors, NVIDIA and AMD, that both
have GPU chips supporting general purpose programming.
On the architecture side, NVIDIA’s latest GTX 200 series
GPU has up to 240 cores per chip, and AMD’s current Rae-
don 5000 series provides up to 1600 cores per chip. The
huge number of processing cores is the source for the im-

pressive raw performance. Although NVIDIA and AMD
have developed two very different approaches for general
purpose computing on their GPU’s, their programming frame-
works still share similarities in the organization and the ex-
ecution model of threads. Programs written for one kind of
GPU cannot directly run on the other kind, however, the op-
timizations of program for the two architectures frequently
follow similar guidelines. This paper focuses on the program
optimization technique for AMD’s GPU.

GPU hardware provides great potential performance. How-
ever, realizing the full performance potential of a GPU pro-
gram is a real challenge. The main difficulty comes from that
the GPU architecture has very different memory organiza-
tions and the execution of threads on the GPU is controlled
by program control structure in a different way than how
multi-thread programs run on CPU. For the first, the GPU
has a memory organization that cannot find an easy map-
ping from the traditional CPU memory hierarchy based on
cache/memory concepts. Both NVIDIA’s and AMD’s GPU
has a global memory that is not cached and slow, and a sep-
arate faster memory that is software controlled. A GPU pro-
gram must employ explicit memory management to achieve
efficient usage of GPU memory. For the second factor, both
GPU families organize and execute threads of a program in
Single-Instruction-Multiple-Thread (SIMT) style. SIMT is
similar to SIMD in that a bunch of threads must execute
the same instruction at the same time. When the bunch of
threads hit a control statement such as the if statement, the
threads can diverge, though threads that do not take a branch
must still step through instructions of the branch taken by
other threads. Such a bunch of threads is called a thread
block for NVIDIA GPU and a wavefront for AMD GPU.
From a very high-level point of view, to optimize a program
for the SIMT thread execution model, the unnecessary over-
head of thread divergence must be minimized.

Prior works have extensively shown how to improve the
memory performance of GPU programs. In particular global
memory coalescing and reducing shared memory bank con-
flict have been addressed in application-specific environments
such as image processing and computational flow dynamics,
and for general programs such as [6]. However, work that
addresses improving the efficiency of the SIMT execution
of threads on GPU is relatively few. [5] discusses the em-
ployment of loop-unrolling to reduce the number of branch
statements. Siegel et.al. [3] proposes a program transfor-
mation technique for NVIDIA GPU that splits GPU pro-
gram segment with branch statement into multiple kernels
for different branches so that the divergence in the execu-

ACM SIGARCH Computer Architecture News 66 Vol. 38, No. 4, September 2010

tion of multiple threads can be reduced and hence the overall
performance improved. In this paper, we identify a unique
instruction scheduling feature called “instruction packing”
on AMD GPU that can be exploited to reduce the overhead
branch statement, model the program characteristics that are
most important for the AMD GPU when considering the ef-
fects of branching and branch divergence on performance,
and develop a software-based predication technique to en-
able the generation of the “packed” instructions in an AMD
GPU program. Furthermore, this technique also reduces
control flow instructions and therefore the latency associated
with them.

Predication for a processor is not a new concept and is
a common feature found in processors such as Intel IA-64.
Predication can improve program performance because it
basically transforms control flow into data flow, and there-
fore can improve instruction scheduling, reduce control flow
instructions and possibly help the cache behavior of pro-
gram. A good overview of the architectural support of pred-
ication in IA-64 can be found in [4]. The basic principles
of compiling for the predication mechanism in IA-64 is de-
scribed in detail in [2]. Furthermore, compilation techniques
that can generate code for processors with predicated in-
struction execution have been extensively studied. As an
example, August et.al. [1] proposed the basic program op-
timizing framework that balances the control flow of a pro-
gram and the potential benefit of transforming part of the
control flow into predicated execution. Recently, Smith et.al.
[7] developed predication technology for dataflow computer
architectures. Predication, in hardware, is found both in
AMD GPUs and Nvidia GPUs; however, instructions are
predicated by the compiler, require hardware support and the
methodology is not clearly exposed. This technique requires
no hardware support for predication and allows the user di-
rect control over the instructions that are predicated.

A key insight of this paper is that by using a purely software-
based approach to the predicated execution of instructions in
branches, the special instruction scheduling and execution
feature of the AMD GPU can be exploited to greatly reduce
the adverse effect of a branch statement on the SIMT execu-
tion of a multi-thread GPU program. More specifically, this
paper presents a software based predication technique to in-
crease performance on AMD GPUs. The main contribution
of this paper is a novel technique that is designed to both
reduce control flow in a kernel, thereby reducing the num-
ber of control flow instructions and reducing the overhead
associated with clause switching, to allow for the possibility
of increased VLIW-like instruction packing. Our technique
does not have a window size and so can be applied to both
branches with a large number of instructions and to kernels
with multiple branches. Also, our technique, in some cases,
offers the possibility of reduced register pressure and can, in
some cases, offer the possibility to reduce fetches.

In the remaining part of this paper, we first describe the
background of the AMD GPU hardware and the AMD Stream
SDK and the motivation of this software based predication
technique. Next, we describe how this software based pred-
ication technique differs from the current predication tech-
niques used for the GPU, describe the source to source trans-
formation and how it effects the produced assembly and dis-
cuss the rules governing this technique. Furthermore, we
describe why this technique is independent of the API being
used (OpenCL, Brook+ or CAL/IL) and how the optimiza-

tion is embedded in the hardware and not tied to a particular
API. Finally, we show performance results for both a real
world application and synthetic benchmarks.

2. AMD GPU

2.1 Hardware
The current AMD GPUs have a large number of ALUs,

texture fetch units and a large register file. The speeds listed
in Table 1 were obtained from the information listed in AMD’s
Catalyst Control Center. For the purpose of this paper the
RV770 was tested using a 4870 video card and the RV870
was tested using a 5870 video card.

GPU SPs Texture Units SIMD Engines
RV770 800 40 10
RV870 1600 80 20
GPU Core Clock Mem Clock Mem Type

RV770 750Mhz 900Mhz DDR5
RV870 850Mhz 1200Mhz DDR5

Table 1: GPU Hardware Features

The RV770 for example has 800 ALUs, 40 texture fetch
units and register file size of 16k(256x64) 128-bit wide reg-
isters. The RV770 consists of 10 SIMD engines, each having
16 * 5-wide VLIW (stream cores) stream processors and 4
texture fetch units (this is true for all of the current AMD
GPU generations listed above). There are 4 general stream
cores which can execute basic ALU operations and 1 tran-
scendental stream core which is capable of executing both
basic and transcendental operations. The texture fetch units
are capable of fetching up to 128-bits each.

The AMD GPU streaming model consists of a group of
threads called a wavefront running on a SIMD engine. The
wavefront is split into quads which are groups of 2x2 threads,
each quad executing on a thread processor. For example, the
RV770’s wavefront has 64 threads (as does the RV870) and
each quad executes on one of the 16 thread processors/SIMD
engine, refer to Figure 1. Each thread in a quad is interleaved
over the thread processor to help hide latency. Depending on
resource usage, multiple wavefronts can be running on one
SIMD in parallel, each also interleaved to help hide latency.
In addition, each thread processor has an odd and even slot
such that one wavefront is assigned to run in each slot. If
there is only one wavefront only half the thread processor is
used. If there are two wavefronts then the entire thread pro-
cessor is used. This is important because there exists "tem-
porary clause registers" which are taken from the global pur-
pose register pool for each slot (a maximum of two per slot).
ALU and texture fetch instructions are grouped into clauses
called ALU and TEX clauses respectively and the tempo-
rary clause registers are only live inside these clauses, they
do not hold their value across clauses. Wavefronts hide la-
tency by switching between these clauses when a stall oc-
curs as shown in Figure 2. In the example ISA, TEX, ALU
and EXP_DONE are all clauses. Under each clause there
are only instructions of that clause type. For example, the
TEX clause has texture sampling instructions while the ALU
clause has ALU instructions. The ALU instructions are packed
together in a VLIW instruction. In this example, this code
only used the x, y, z, and w cores; however, use of the t core

ACM SIGARCH Computer Architecture News 67 Vol. 38, No. 4, September 2010

can also be packed in with the same VLIW instruction (in-
structions scheduled to run on the cores of a thread processor
within the same cycles), also called a bundle. In this exam-
ple ISA code you can also see the use of both the clause tem-
porary registers (named T0 and T1) and the previous vector
register (named PVx). The underline means that the result
is going into the previous vector register to be used in the
following instruction. In this code there are three inputs and
one output and there are three global purpose registers used
(named Rx).

Figure 1: Thread Organization

; −−−−−−−− Disas sembly −−−−−−−−−−−−−−−−−−−−
00 TEX: ADDR(1 2 8) CNT(8) VALID_PIX

0 SAMPLE R1 , R0 . xyxx , t0 , s0
UNNORM(XYZW)

1 SAMPLE R2 , R0 . xyxx , t1 , s0
UNNORM(XYZW)

2 SAMPLE R3 , R0 . xyxx , t2 , s0
UNNORM(XYZW)
01 ALU: ADDR(3 2) CNT(8 8)

8 x : ADD ____ , R1 . w, R2 .w
y : ADD ____ , R1 . z , R2 . z
z : ADD ____ , R1 . y , R2 . y
w: ADD ____ , R1 . x , R2 . x

9 x : ADD ____ , R3 . w, PV1 . x
y : ADD ____ , R3 . z , PV1 . y
z : ADD ____ , R3 . y , PV1 . z
w: ADD ____ , R3 . x , PV1 .w

14 x : ADD T1 . x , T0 . w, PV2 . x
y : ADD T1 . y , T0 . z , PV2 . y
z : ADD T1 . z , T0 . y , PV2 . z
w: ADD T1 . w, T0 . x , PV2 .w

02 EXP_DONE: PIX0 , R0
END_OF_PROGRAM

Figure 2: Example ISA

3. SOFTWARE-BASED PREDICATION
This software based branch predication technique requires

a source to source transformation changing the code from
control flow to data flow. The transformation takes advan-
tage of the AMD GPU’s high FLOPs performance to re-

duce the amount of control flow, changing control flow state-
ments into ALU operations. Figure 3 shows the transforma-
tion for this technique which can be applied uncondition-
ally to any type of branch, including nested brances with the
addition of more predicated variables. This method takes
advantage of the conditional set operations included in the
AMD GPU ISA. The StreamSDK compiler turns the pre-
transformed code into several clauses and tries to use hard-
ware predication to optimize performance. On the other
hand, the StreamSDK compiler turns the transformed code
into ALU instructions since the conditional blocks have only
one assignment statement, and can be done within one bun-
dle, there is no need for the compiler to create additional
clauses and use it’s hardware predication. Furthermore, since
the conditional blocks are not broken up into separate clauses
(as in the pre-transformed code) the compiler is free to try
and optimize the bundles (instruction packing). This trans-
formation also allows for packing between the conditional
block(s) and any code that is part of the kernel but is not in-
cluded in the conditional block(s).
This transformation works for multiple branch paths in the
same manner. The overhead associated with this method
are the possible extra ALU operations required for setting
the predicate variables (assuming they don’t get packed in),
adding two multiplies and an add and the register space needed
to hold the predicate values (assuming new registers are needed).
The technique does not significantly increase register pres-
sure since registers are allocated per wavefront regardless of
divergence. Like all ALU operations, the compiler attempts
to pack the overhead ALU operations into stream cores in
bundles not currently being used, as it does with the case of
the synthetic benchmarks, thus hiding the associated over-
head of the transformation. Since all the operations are being
executed in the transformed code, the conditional set oper-
ation that sets the predicate values can occur anywhere in
the code prior to setting the output, this allows for the reuse
of the registers holding the predicate values in the case of
multiple outputs. These factors show that there is very little
direct overhead associated with this transformation.

This transformation uses software predication to reduce/e-
liminate control flow and therefore increase VLIW instruc-
tion packing and is most beneficial when the packing per-
centage of a kernel is low. This transformation can cause
degradation when performed on a kernel with branches that
already have a high ALU packing percentage and whose di-
vergence is low.

3.1 Synthetic Benchmarks
The synthetic benchmarks attempt to express and isolate

the use of the software-based branch predication technique
for the explicit purpose of enabling instruction packing (in-
creasing the number of operations in each VLIW instruc-
tion). All the operations in the benchmarks are vector-wide
which depends on the float vector size being used. For each
benchmark, different float vector sizes are used: float, float2,
float3 and float4 to give the impact of the technique on per-
formance for varying packing percentages. The data de-
pendency between instructions within a control block also
allows the synthetic benchmarks to show varying cases of
possible instruction packing. For example, the float data
type has a packing percentage of 20%, float2 40%, float3
60% and float4 80%. The high number of ALU operations
used in each conditional block of the benchmarks insures

ACM SIGARCH Computer Architecture News 68 Vol. 38, No. 4, September 2010

i f (cond)
ALU_OPs1 ;
o u t p u t = ALU_OPs1 ;

e l s e
ALU_OPs2 ;
o u t p u t = ALU_OPS2 ;

(a) Before Transformation

pred1 = 0 , p red2 = 0 ;
i f (cond)

p red1 = 1 ;
e l s e

pred2 = 1 ;
ALU_OPS1 ;
temp = ALU_OPS1 ;
ALU_OPS2 ;
o u t p u t = temp∗ pred1 +ALU_OPS2∗ pred2 ;

(b) After Transformation
Figure 3: Transformation

that the kernels are ALU bound. The synthetic benchmarks
are intended to show the performance increase of different
percentages of ALU packing between two or more condi-
tional blocks. For example, each synthetic benchmark is an
attempt to mimic a real world kernel that utilizes the same
packing percentage as the non-predicated synthetic bench-
mark (it is not an attempt to actually mimic a real world al-
gorithm), thus showing the percent improvement that can be
gained through this software based branch predication tech-
nique. The data dependency of the real world application is
irrelevant compared to the packing percentage (low packing
can be attributable to effects other than data dependency), it
is used in the synthetic benchmarks only to gain control over
the packing percentages.
Figures 4b and 4a show the code used for the benchmarks.
The first two instructions depend on the inputs and every
instruction after that is dependent on the previous two calcu-
lations, creating a high data dependency within each condi-
tional block, giving a controlled test kernel. Figure 4 shows
the resulting assembly code for the pre-transformed code
and the transformed code for the float data type on the Radeon
4870. The pre-transformed assembly in Figure 4c uses hard-
ware predication but does not effectively pack the instruc-
tions between the two conditional blocks. Instead, it creates
two separate clauses, one for each conditional block thus not
allowing for any instruction packing to occur. The trans-
formed assembly in Figure 4d does not use the hardware
predication, hides the overhead associated with the technique
inside the first few bundles and then merges the second con-
ditional block in with the first conditional block.
3.2 Lattice Boltzmann Method

The Lattice Boltzmann Method code for the AMD GPU
was adapted from a C++ version written for a sequential pro-
cessor. The code was then optimized for parallelism and for
the AMD GPU architecture and StreamSDK. The code was
optimized over several different versions to obtain very good
performance results using several different methods such as:
vectorization, register reduction, minimizing fetches through
calculation, combining several functions to minimize kernel
overhead and other small optimizations. The GPU code still
used branching similar to the C++ code for large conditional
blocks. There are four kernels being called in the LBM code
and each kernel has some form of branching; however, not
each kernel’s conditional statement is based on the same
parameters. For example, the mcollid and stream kernels’
branching is based on the shape of the solid (the geometry)
while adv2 and adv3 is based on the shape of the boundary,
so more performance was gained from mcollid and stream
then the adv2 and adv3 kernels.

4. EVALUATION
In this section we show the performance improvements

for both our synthetic benchmarks and the real world appli-
cation, the Lattice Boltzmann Method along with some other
preliminary results. In particular, we present timing analy-
sis, produced instruction types for both the non-predicated
code and the predicated code and improvement percentage.

4.1 Synthetic Benchmarks
The synthetic benchmarks were ran over several thread di-

vergences and for varying packing percentages, as shown in
Figures 5 and 6. The divergence shown indicates how many
threads divergerge on average based on a random distribu-
tion. The divergence is how many threads take the else path
instead of the if path. The ’Packing Percent’ shown in Table
2 is the pre-transformed packing percentages, this is also the
case for all following tables and figures. Since the synthetic
benchmark only utilizes two conditional blocks (if and else),
the highest performance possible for both 20% and 40% is
100%. For example, if there was a similar benchmark with
the same data dependency that had an if-else if-else code
segment and each conditional block had the same depen-
dency as the synthetic benchmarks and the float vector size
was used, then optimally we could expect a near 400% in-
crease in VLIW packing, from utilizing one stream core to
utilizing four stream cores (the same number of conditional
blocks). Theoretically, the maximum speedup for instruction
packing is 5x, going from utilizing one stream core to utiliz-
ing all five stream cores. Conversely, if for the same example
float4 was used instead of float, then the maximum speedup
that could be obtained would be 20% because four of the
five stream cores would be utilized in the non-predicated
code, leaving only one stream core available for packing pur-
poses. The CF instructions have also been reduced, thereby
reducing any latency that exists from branching and switch-
ing clauses. The percent performance increases are given in
Table 3.
Figure 4 shows the beginning assembly in both the pred-
icated and non-predicated versions. In the non-predicated
version the compiler attempts to use hardware predication
to help reduce the branching effects; however, the hardware
predication does not increase instruction packing and does
not fully reduce the CF instructions. The software predicated
version does not use the hardware predication and manages
to both reduce the CF instructions and optimally utilize the
ALU bundles.
Figures 5 and 6 show the run times of the varying benchmark
tests. The run times for the non-predicated benchmarks for
no divergence do not change because the number of ALU
operations remains constant for each data type. The non-
predicated branch divergence stays the same from 1/2 to 1/8
and then slowly begins to decrease from 1/16 to 1/128 and
so the run times begin to decrease as the divergence reaches
zero. The predicated times remain the same over the thread

ACM SIGARCH Computer Architecture News 69 Vol. 38, No. 4, September 2010

k e r n e l void s t e p 1 (f l o a t a < > , f l o a t b < > , i n t cf < > , o u t f l o a t e < >)
{

f l o a t t0 , t1 , t2 , end ;
i f (c f == 0)
{

t 0 = a + b ;
t 1 = t 0 + a ;
t 2 = t 1 + t 0 ;
. . .
. . .
t 0 = t 2 + t 1 ;
t 1 = t 0 + t 2 ;
end = t 1 + t 0 ;

}
e l s e
{

t 0 = a − b ;
t 1 = t 0 − a ;
. . .
. . .
t 0 = t 2 − t 1 ;
t 1 = t 0 − t 2 ;
end = t 1 − t 0 ;

}
e = end ;

}

(a) Pre-Transformed Synthetic Benchmark

k e r n e l void s t e p 2 (f l o a t a < > , f l o a t b < > , i n t cf < > , o u t f l o a t e < >)
{

f l o a t t0 , t1 , t2 , end , pred1 , p red2 ;
t 0 = a + b ;
t 1 = t 0 + a ;
t 2 = t 1 + t 0 ;
. . .
. . .
t 0 = t 2 + t 1 ;
t 1 = t 0 + t 2 ;
end = t 1 + t 0 ;

t 0 = a − b ;
t 1 = t 0 − a ;
t 2 = t 1 − t 0 ;
. . .
. . .
t 0 = t 2 − t 1 ;
t 1 = t 0 − t 2 ;
i f (c f == 0)

p red1 = 1 . 0 f ;
e l s e

pred2 = 1 . 0 f ;
e = (t1−t 0)∗ pred2 + end∗pred1 ;

}

(b) Transformed Synthetic Benchmark
; −−−−−−−− Disas sembly −−−−−−−−−−−−−−−−−−−−
00 TEX: ADDR(1 7 6) CNT(3) VALID_PIX

0 SAMPLE R1 . x___ , R0 . xyxx , t2 , s0 UNNORM(XYZW)
1 SAMPLE R2 . x___ , R0 . xyxx , t0 , s0 UNNORM(XYZW)
2 SAMPLE R0 . x___ , R0 . xyxx , t1 , s0 UNNORM(XYZW)

01 ALU_PUSH_BEFORE : ADDR(3 2) CNT(2)
3 x : SETE_INT R1 . x , R1 . x , 0 . 0 f
4 x : PREDNE_INT ____ , R1 . x , 0 . 0 f UPDATE_PRED

02 ALU_ELSE_AFTER : ADDR(3 4) CNT(6 6)
5 y : ADD T0 . y , R2 . x , R0 . x
6 x : ADD T0 . x , R2 . x , PV5 . y
7 w: ADD T0 . w, T0 . y , PV6 . x
8 z : ADD T0 . z , T0 . x , PV7 .w

.

.
03 ALU_POP_AFTER : ADDR(1 0 0) CNT(6 6)

71 y : ADD T0 . y , R2 . x , −R0 . x
72 x : ADD T0 . x , −R2 . x , PV71 . y
73 w: ADD T0 . w, −T0 . y , PV72 . x
74 z : ADD T0 . z , −T0 . x , PV73 .w
75 y : ADD T0 . y , −T0 . w, PV74 . z

. . .

. . .

(c) Pre-Transformed Synthetic Benchmark As-
sembly

; −−−−−−−− Disas sembly −−−−−−−−−−−−−−−−−−−−
00 TEX: ADDR(1 7 6) CNT(3) VALID_PIX

0 SAMPLE R2 . x___ , R0 . xyxx , t0 , s0 UNNORM(XYZW)
1 SAMPLE R1 . x___ , R0 . xyxx , t1 , s0 UNNORM(XYZW)
2 SAMPLE R0 . x___ , R0 . xyxx , t2 , s0 UNNORM(XYZW)

01 ALU: ADDR(3 2) CNT(1 2 1)
3 y : ADD T0 . y , R2 . x , −R1 . x

z : SETE_INT ____ , R0 . x , 0 . 0 f VEC_201
w: ADD T0 . w, R2 . x , R1 . x
t : MOV R3 . y , 0 . 0 f

4 x : ADD T0 . x , −R2 . x , PV3 . y
y : CNDE_INT R1 . y , PV3 . z , (0 x3F800000 , 1 . 0 f) . x , 0 . 0 f
z : ADD T0 . z , R2 . x , PV3 .w
w: CNDE_INT R1 . w, PV3 . z , 0 . 0 f , (0 x3F800000 , 1 . 0 f) . x

5 y : ADD T0 . y , T0 . w, PV4 . z
w: ADD T0 . w, −T0 . y , PV4 . x

6 x : ADD T0 . x , T0 . z , PV5 . y
z : ADD T0 . z , −T0 . x , PV5 .w

7 y : ADD T0 . y , −T0 . w, PV6 . z
w: ADD T0 . w, T0 . y , PV6 . x

.

(d) Transformed Synthetic Benchmark Assembly

Figure 4: Synthetic Benchmark Code and Assembly Code

divergence (but vary from 20% to 80% for the same reason
as above) because of the elimination of branch instructions.

Instruction Type and Number
Packing Percent ALU TEX CF

20 135/68 3 6/4
40 135/68 3 8/5
60 135/83 3 8/6
80 134/109 3 9/7

Table 2: Non-Predicated/Predicated Instruction Count

Packing Percent
Divergence 20 40 60 80

No Divg 0/0 0/0 0/0 -22.5/-6.5
1/2 Threads 93.5/89.6 92/85 55.7/26.9 57.7/20.3
1/4 Threads 93.5/89.6 92/85 55.7/26.9 57.7/20.3
1/8 Threads 93.5/89.6 92/85 55.7/26.9 57.7/20.3
1/16 Threads 92.6/88.9 90.9/88.3 55/26.5 21.7/15
1/64 Threads 61.9/61 59.5/58 31/9.5 2.4/3.7
1/128 Threads 39.4/36.6 39.1/37.3 13.8/.3 -11/-6.5

Table 3: Synthetic Benchmark Performance Increase
4870/5870

4.2 Lattice Boltzmann Method
A two dimensional LBM solution was ported from CPU

code to GPU code. The domain sizes listed are squared, so

Figure 5: Synthetic Benchmark Run Time 4870

2048 = 2048x2048. The LBM code was executed for very
course grain (water running over a perfectly square rock, low
divergence) and for very fine grain (water running through
sand, high divergence). The LBM GPU code consists of
four kernels, each kernel has one if statement with no ac-
companying else statement (one conditional block). The
transformation was applied to each if statement. Two of the
four kernels did not benefit much from the transformation
because the conditionals for those kernels are the boundary

ACM SIGARCH Computer Architecture News 70 Vol. 38, No. 4, September 2010

Figure 6: Synthetic Benchmark Run Time 5870

conditions. The other two kernels had good improvement af-
ter the transformation was applied; however, better improve-
ment would be expected from a multiple path branch, since
that would allow for a greater increase in instruction pack-
ing.
The Table 4 shows the percent increase in performance for
each geometry over the given domain sizes for each GPU
and Figures 7 and 8 show the execution times for the given
domain sizes. In both kernels that saw a performance im-
provement there was an increase in instruction packing (ap-
prox. 10%), a decrease in control flow and a slight de-
crease in fetches. These last two improvements contribute
to the increasing performance improvement with increasing
thread count. Cache hit percentage is unknown for the ker-
nels but could also contribute to the increase in performance
improvement with the increasing thread count.

Figure 7: LBM Problem Size Run Time 4870

4.3 Other Results - Preliminary
This transformation was also performed on some OpenCL

applications using both the OpenCL profiler and StreamK-
ernelAnalzyer to collect the data. The first application was
an OpenCL N-Queen solver with dimensions of 17x17 uti-
lizing 32k threads. The N-Queen solver source code was
non-vectorized and the transformation was only applied to

Figure 8: LBM Problem Size Run Time 5870

GPU 256 512 1024 2048 3072
Course Grain 4870 3.2 3.3 3.3 3.3 3.6

Fine Grain 4870 7.3 7.3 7.3 7.5 14.2
Course Grain 5870 2.4 3.4 3.3 3.3 5.3

Fine Grain 5870 2.6 7.9 11.3 11.9 18

Table 4: Performance Increase for All Solid and Fine
Grain Geometries (in Percent)

one of the two application kernels. The packing percent-
age for that kernel went from 35.2% to 52% while the CF
instruction count went from 22 to 9. The kernel execution
time reduced from 74.3ms to 47.2ms, a substantial decrease
in time.
The other applications include the DwtHaar1D, Eigenvalue
and Bitonic Sort from the AMD OpenCL SDK samples. The
DwtHaar1D saw an increase in packing percentage from 42.6%
to 52.44% while both the Eigenvalue and Bitonic Sort sam-
ples saw a reduction in the number of average global writes
per wavefront, the Eigenvalue went from 6 to 2 and the Bitonic
Sort went from 4 to 2. These two latter examples show that
the benefit from this transformation can also impact memory
operations as well as increase packing percentage.

5. CONCLUSION
In this paper we describe a novel software-based branch

predication technique for AMD GPUs. The main novelty of
our approach is that it reveals several unique architectural
features of GPU that can be enabled by “simulating” the
predicated execution of branches, thereby improving pro-
gram performance. In particular, this technique maximizes
the 5-wide VLIW thread processor of the AMD GPU while
reducing control flow instructions by combining branches
through software based branch predication allowing for op-
timal utilization of the stream cores while also possibly re-
ducing memory operations. We show synthetic benchmarks
to prove the possible performance improvements from this
technique. We also show performance improvement in a real
world application, the Lattice Boltzmann Method along with
several other sample kernels. This paper explains both the
advantages and disadvantages of this technique as well as
when and how to apply it, allowing for the possibility of this
technique to be auto-generated.

ACM SIGARCH Computer Architecture News 71 Vol. 38, No. 4, September 2010

6. REFERENCES
[1] D. I. August, W.-m. W. Hwu, and S. A. Mahlke. A

framework for balancing control flow and predication.
In MICRO 30: Proceedings of the 30th annual
ACM/IEEE international symposium on
Microarchitecture, pages 92–103, Washington, DC,
USA, 1997. IEEE Computer Society.

[2] J. Bharadwaj, W. Y. Chen, W. Chuang, G. Hoflehner,
K. Menezes, K. Muthukumar, and J. Pierce. The intel
ia-64 compiler code generator. IEEE Micro,
20(5):44–53, 2000.

[3] S. Carrillo, J. Siegel, and X. Li. A control-structure
splitting optimization for gpgpu. In CF ’09:
Proceedings of the 6th ACM conference on Computing
frontiers, pages 147–150, New York, NY, USA, 2009.
ACM.

[4] C. Dulong. The ia-64 architecture at work. Computer,
31(7):24–32, 1998.

[5] S. Ryoo, C. Rodrigues, S. Baghsorkhi, S. Stone,
D. Kirk, and W. W en mei. Optimization principles and
application performance evaluation of a multithreaded
GPU using CUDA. Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, pages 73–82, 2008.

[6] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi,
S.-Z. Ueng, J. A. Stratton, and W.-m. W. Hwu. Program
optimization space pruning for a multithreaded gpu. In
CGO ’08: Proceedings of the sixth annual IEEE/ACM
international symposium on Code generation and
optimization, pages 195–204, New York, NY, USA,
2008. ACM.

[7] A. Smith, R. Nagarajan, K. Sankaralingam,
R. McDonald, D. Burger, S. W. Keckler, and K. S.
McKinley. Dataflow predication. In MICRO 39:
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
89–102, Washington, DC, USA, 2006. IEEE Computer
Society.

ACM SIGARCH Computer Architecture News 72 Vol. 38, No. 4, September 2010

