
A Micro-benchmark Suite for AMD GPUs
Ryan Taylor Xiaoming Li

Department of Electrical and Computer Engineering

University of Delaware

Newark, DE 19716

Abstract—Optimizing programs for Graphic Processing Unit
(GPU) requires thorough knowledge about the values of archi-
tectural features for the new computing platform. However, this
knowledge is frequently unavailable, e.g., due to insufficient doc-
umentation, which is probably a result of the infancy of general
purpose computing on the GPU. What makes the modeling of
program performance on GPU even more difficult is that the
exact value of some “architectural” parameters on the GPU
depends on how a GPU program interacts with those features.
For example, AMD GPUs show different memory latencies when
the memory is accessed with address sequences that have different
patterns. Current micro-benchmark suites such as X-Ray are
powerless for characterizing the GPU. Clearly, a preliminary for
efficient code optimization and automatic tuning on the GPU is
a systematic method to measure the architectural features and
identify the most basic program characteristics that determine
the performance of a program on the new GPU architectures. In
this paper, we present a micro-benchmark suite for AMD GPUs
that supports the AMD StreamSDK. Our model identifies and
measures a series of architectural features and basic program
characteristics that are most important and most predictive
for program performance on the platform. The features and
characteristics include vectorization, burst write latency, texture
fetch latency, global read and write latency, ALU/Fetch operation
ratio, domain size and register usage for both AMD’s pixel shader
and compute shader modes. Our performance model not only
generates correct values for those parameters, but also provides
a clear picture of program performance on the GPU.

I. INTRODUCTION

There are two general purpose programming frameworks

for the GPU: NVIDIA’s CUDA framework and AMD’s

StreamSDK. Between the two, the StreamSDK adopts a non-

conventional programming model, the streaming model. No

matter which framework to use, a preliminary for efficient

programming and code optimization on GPU is the under-

standing of architectural features and program characteristics

that determine the program performance on GPUs. To the

best of our knowledge, such micro-benchmarking work does

not exist on AMD GPUs. In this paper, we present our

research that aims at identifying and accurately measuring the

architectural factors and the program characteristics that are

most important for the program performance on AMD GPUs.
A frequently used method to measure processor features is

benchmarking using micro-benchmarks or application bench-

marks. Well-known benchmarking work includes the classical

micro-benchmarking algorithm for CPU memory hierarchy to

more advanced suites such as Saavedra [8], LMbench [7], X-

Ray [10] and P-Ray [4]. In addition, library generators such

as FFTW [5], ATLAS [9], and Sparsity [6] frequently use

customized models to measure the parameters of a specific

architectural feature such as SIMD instruction extensions, and

the performance characteristics of program segments such as

codelets in FFTW. On the other hand, prior GPU benchmarks

such as GPUBench [3] are generally considered outdated,

because they are ignorant to some important hardware features

of the modern GPU.

Identifying all architectural features and program charac-

teristics, i.e., building a micro-benchmark suite, for modern

GPUs is hard. Firstly, the architectural features are occa-

sionally undocumented or inaccurately described in even the

official documentation. They are the reflection of the infancy

of general computing on the GPU and the proprietary nature

of modern GPUs. In addition, GPU hardware is exposed to

programs exclusively through the GPU programming frame-

works. Therefore, measurement about the architectural features

are prone to the distortion caused by the processing in the

programming framework. Secondly, the GPU is a massively

parallel architecture, i.e., concurrently running hundreds of

threads. Any measurement of architectural features and pro-

gram characteristics represents a collective interaction between

hundreds of threads. P-Ray [4] represents a first effort to

micro-benchmark multi-core processors. However, some GPU

architectural features simply cannot find a counterpart in the

CPU, and the level of parallelism is at least a magnitude

higher. No prior micro-benchmarking techniques for the CPU

can be easily ported to the GPU. Lastly, many GPU architec-

tural features behave differently for different program patterns.

For example, the global memory in AMD GPUs show different

latency for different memory access patterns. Benchmarking

such software-dependent architectural features on AMD GPUs

must deal with that complexity by identifying and enumerating

all program characteristics that lead to different behaviors of

GPU architectural features.

This paper presents a systematic study of benchmarking

program performance on AMD GPUs. The key in our work is a

suite of micro-benchmarks that measures hidden architectural

features and others that perform differently for different pro-

gram characteristics. The main contribution of this paper is a

series of novel algorithms that are designed to accurately mea-

sure several important and predictive architectural features of

the GPU and micro-scale program characteristics. Our micro-

benchmark suite not only accurately measures the values for

those factors, but also identifies a number of performance bot-

tlenecks that need to be considered in any code optimization

across several generations of AMD GPUs. The performance

models described in this paper can be used to determine the

type of optimizations and help the selection of optimization

parameters. In the remaining part of this paper, we first

describe the background of the AMD GPU hardware and its

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.59

392

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.59

387

StreamSDK in Section II. Section III discusses the factors

that are addressed by our suite including their performance

impact and the code patterns used to measure their parameters.

Section IV shows the results of the model and how they effect

performance.

II. AMD GPGPU COMPUTING

A. Hardware

The current AMD GPUs have a large number of ALUs,

texture fetch units and a large register file. The speeds listed

in Table I were obtained from the information listed in AMD’s

Catalyst Control Center. There have been three generations of

AMD GPU’s that support the StreamSDK, the RV670, RV770

and RV870. These GPUs are offered in many different cards.

The RV670 does not support OpenCL. For the purpose of

this paper the RV670 was tested using a 3870 video card, the

RV770 was tested using a 4870 video card and the RV870

was tested using a 5870 video card.

GPU ALUs Texture Units SIMD Engines

RV670 320 16 4

RV770 800 40 10

RV870 1600 80 20

GPU Core Clock Mem Clock Mem Type

RV670 750Mhz 1000Mhz DDR4

RV770 750Mhz 900Mhz DDR5

RV870 850Mhz 1200Mhz DDR5

TABLE I: GPU Hardware Features

The RV770 for example has 800 ALUs, 40 texture fetch

units and register file size of 16k * 128-bit wide. The GPU

consists of 10 SIMD engines, each having 16 * 5-wide VLIW

(stream cores) stream processors and 4 texture fetch units (this

is true for all of the current AMD GPU generations listed

above). There are 4 general stream cores which can execute

basic ALU operations and 1 transcendental stream core which

is capable of executing both basic and transcendental oper-

ations. The texture fetch units are capable of fetching up to

128-bits each. There are three main metrics for determining

kernel performance: ALU utilization, texture fetch latency and

memory access latency (including global memory). Each of

the metrics correspond to a dedicated hardware and all the

dedicated hardware can run in parallel [1].

A program on the AMD GPU usually performs to the

limit of one of those metrics. For example, if a kernel is

memory bound performance cannot be increased by applying

optimizations that reduce the number of ALU instructions.

That’s why we use the term bottleneck to describe the limits

of the three metrics. The ability to have a set of micro-

benchmarks to identify one of the three possible bottlenecks

is one of our most important goals.

The AMD GPU streaming model consists of a group of

threads called a wavefront running on a SIMD engine. The

wavefront is split into quads which are groups of 2x2 threads,

each quad executing on a thread processor. For example, the

RV770’s wavefront has 64 threads and each quad executes

on one of the 16 thread processors/SIMD engine, refer to

Figure 1. Each thread in a quad is interleaved over the thread

processor to help hide latency. Depending on resource usage,

multiple wavefronts can be running on one SIMD in parallel,

each also interleaved to help hide latency. In addition, each

thread processor has an odd and even slot such that one

wavefront is assigned to run in each slot. If there is only one

wavefront only half the thread processor is used. If there are

two wavefronts then the entire thread processor is used. This

is important because there exists ”temporary clause registers”

which are taken from the global purpose register pool for

each slot (a maximum of two per slot). ALU and texture

fetch instructions are grouped into clauses called ALU and

TEX clauses respectively and the temporary clause registers

are only live inside these clauses, they do not hold their

value across clauses. Wavefronts hide latency by switching

between these clauses when a stall occurs, see Figure 2[1].

In the example ISA, TEX, ALU and EXP DONE are all

clauses. Under each clause there are only instructions of that

clause type. For example, the TEX clause has texture sampling

instructions while the ALU clause has ALU instructions. The

ALU instructions are packed together in a VLIW instruction.

In this example, this code only used the x, y, z, and w cores;

however, use of the t core can also be packed in with the same

VLIW instruction (instructions scheduled to run on the cores

of a thread processor within the same cycles), also called a

bundle. In this example pixel shader ISA code you can also

see the use of both the clause temporary registers (named

T0 and T1) and the previous vector register (named PVx).

The underline means that the result is going into the previous

vector register to be used in the following instruction. In this

code there are three inputs and one output and there are three

global purpose registers used (named Rx).

�������	���

��������������������

� �

�

�

� ��

�

���������

����� ����

��!���������

� �� � ��

� ��

���������

����� ����

��!���������

� �� � ��

� ��

�����

����������

�����

Fig. 1: Thread Organization

B. Performance Factors

The ALU:Fetch ratio, memory latency and register usage

are important factors for determining performance of a kernel.

Ideally, the number of ALU instructions to texture fetch

instructions should be the same ratio as the number of thread

processors to texture fetch units/SIMD engine. This number is

393388

; −−−−−−−− Disas sembly −−−−−−−−−−−−−−−−−−−−
00 TEX: ADDR(1 2 8) CNT(8) VALID PIX

0 SAMPLE R1 , R0 . xyxx , t0 , s0 UNNORM(XYZW)
1 SAMPLE R2 , R0 . xyxx , t1 , s0 UNNORM(XYZW)
2 SAMPLE R3 , R0 . xyxx , t2 , s0 UNNORM(XYZW)

01 ALU: ADDR(3 2) CNT(8 8)
8 x : ADD , R1 . w, R2 .w

y : ADD , R1 . z , R2 . z
z : ADD , R1 . y , R2 . y
w: ADD , R1 . x , R2 . x

9 x : ADD , R3 . w, PV1 . x
y : ADD , R3 . z , PV1 . y
z : ADD , R3 . y , PV1 . z
w: ADD , R3 . x , PV1 .w

14 x : ADD T1 . x , T0 . w, PV2 . x
y : ADD T1 . y , T0 . z , PV2 . y
z : ADD T1 . z , T0 . y , PV2 . z
w: ADD T1 . w, T0 . x , PV2 .w

02 EXP DONE: PIX0 , R0
END OF PROGRAM

Fig. 2: Example ISA

not well explained and it is not clear whether this value takes

into account vectorization or not. The ALU:Fetch ratio that

is reported in the SKA as 1.0 is because it already takes this

4:1 ratio into account. For example, if the kernel has 48 ALU

instructions and 12 TEX instructions, then the SKA will report

an ALU:Fetch ratio of 1.0. We will use the same method in

this paper, reporting a 1.0 ALU:Fetch ratio for a 4 to 1 ALU

to TEX instruction ratio.

The number of wavefronts that can be run simultaneously

on a SIMD is determined by the number of global purpose

registers used. For the RV770 there exists a 160k * 128-

bit wide register file and 10 SIMD engines, that yields 16k

* 128-bit wide registers/SIMD engine. There are 64 threads

per wavefront so there are 16kB/64 threads = 256 global

purpose registers available per thread in a wavefront. So, for

example, if the kernel uses 5 registers then it is possible to have

256/5 = 51 wavefronts scheduled, though two wavefronts run

concurrently on a SIMD in the odd and even slots. The number

of wavefronts can effect ALU utilization through hiding fetch

latency and effecting the cache hit rate. The AMD GPUs

allow for burst writing if the writing is done to consecutive

memory locations; however, latencies of the output are not

clearly specified. Though texture fetches can be issued in one

cycle it is not guaranteed that the fetch will be completed in

that same cycle.[2][1]

III. CODE PATTERNS AND KERNEL GENERATION

This micro-benchmark suite consists of testing major pa-

rameters in kernel execution which include: ALU:Fetch ratio,

the number of inputs, the number of outputs and the number of

registers used. The implementation of this micro-benchmark

suite is programmed in AMD’s Compute Abstraction Layer

(CAL) and uses AMD’s Intermediate Language (IL). Using the

IL, instead of ISA, allows for portability to future AMD GPU

generations and allows for greater control when compared to

higher level options. The drawback in using IL versus ISA

is losing some control to the CAL compiler. In each micro-

benchmark, every attempt was made to isolate all other factors.

Each micro-benchmark uses the same type of computation,

which can be seen in Figure 3. The high data dependency

provides the ability to control the number of global purpose

registers by either the number of inputs or the number of

outputs. Special ”previous” registers allow data dependency

between alu operations without having to occupy a global

purpose register. These special registers handle all data depen-

dencies across ALU instructions and global purpose registers

are re-used for data dependency across clauses; however, this

never exceeds the number of registers used for either the

inputs or outputs, so this doesn’t effect performance. The data

dependency does not allow for VLIW packing and so the

number of ALU instructions is not dependent on data type.

This is important because it allows control of the number

of clock cycles and gives the ability to control the exact

ALU:Fetch ratio. Figure 2 shows the texture fetch latency

micro-benchmark with eight inputs and shows how the inputs

are used in the computation and how the data dependency

exists.

i n t r e g = 0 ;
a l u o p s = n u m b e r o f s p e c i f i e d a l u o p s ;
r [r e g] = i n p u t [0] + i n p u t [1] ;
c r e g ++;
a lu ops −−;
f o r (x =2; x<n u m b e r i n p u t s ; x ++)

r [r e g] = r [reg −1] + i n p u t [x] ;
r e g ++;

whi le (a l u o p s)
r [r e g] = r [reg −1] + r [reg −2];
a lu ops −−;
r e g ++;

o u t p u t = r [r e g] ;

Fig. 3: Generic Code Generation

While most of the micro-benchmarks use the generic code in

Figure3, the register usage micro-benchmark’s only difference

is where the sampling (texture fetching) takes place in the

kernel. The register usage micro-benchmark is generated using

the code in Figure 6. For each kernel generated in each

micro-benchmark, a number of parameters are set and used:

ALU:Fetch ratio, number of inputs, number of constants, num-

ber of outputs and the domain size. Each micro-benchmark

attempts to isolate the parameter being tested by keeping all of

the other parameters constant over the duration of the kernel,

unless where specified, and no input is used more than once. A

kernel has to have an output to be valid, otherwise the compiler

optimizes the kernel for no output. Every input that is declared

and sampled has to be used, otherwise the compiler optimizes

the input out of the code. Ideally, the kernel would be executed

over a domain of one since this would allow a clearer picture of

the execution of a kernel. Unfortunately, this was not possible

since the kernel invocation time is most often greater then the

execution time of a kernel of domain one. Instead, domains

were chosen based on more realistic application sizes and on

the availability of memory on the card.

Each kernel is generically generated by Figure 3, with slight

modifications per micro-benchmark. The kernel code was

generated in such a way as to eliminate compiler optimizations

from making adjustments to the code, in other words, the

kernel code was generated to get as close to an exact port

(from IL to ISA) as possible while still allowing the flexibility

of being portable across AMD GPU generations.

394389

Even with a large domain size, for example 1024*1024,

the execution times of one kernel are still very small. Each

kernel of each micro-benchmark was executed 5000 times

in order to obtain stable and comparable timings. All the

timings for the kernel executions do not include any off board

memory transfers and attempts to limit the timing to only

the kernel invocation and execution. This micro-benchmark is

only concerned with kernel parameters and does not attempt

to benchmark any off board characteristics.

A. ALU:Fetch Ratio

According to AMD’s StreamKernelAnalyzer tool, a static

analysis tool for kernels for the StreamSDK, a good

ALU:Fetch ratio lies between .98 and 1.09. The ALU:Fetch

ratio given in the StreamKernelAnalyzer already accounts

for the 4 to 1 ratio, meaning if a kernel has 16 ALU

operations and 4 TEX (texture fetch) operations then the

StreamKernelAnalzyer will report an ALU:Fetch ratio of 1.0

(4:1). The idea behind this number is that, theoretically, it

takes four cycles to execute a fetch and one cycle to execute

an ALU operation, so if you have a balance of 4:1 then you

are using 100% of the GPU. While this is a fair attempt to

statically determine the most balanced ALU:Fetch ratio, there

are several properties of a kernel that can only be measured

dynamically at runtime, such as memory accesses and fetch

latency hiding. The dynamic mapping from float or float4 to

memory types can also not be statically analyzed. This micro-

benchmark captures those dynamic issues when executed over

a wide range of ALU:Fetch ratios and memory types.

The inputs for this micro-benchmark are: inputs, out-

puts, constants, domain and ALU:Fetch ratio. This micro-

benchmark attempts to mimic this method and also uses a

4:1 ratio. For example, if this micro-benchmark is given 2

inputs and an ALU:Fetch ratio of 2.0, then it will generate

16 ALU operations (2*4*2.0). This micro-benchmark differs

from the generic code in that the number of alu operations is

determined by the number of inputs * 4.0 * the alu to fetch

ratio.

B. Texture Fetch Latency and Global Read Latency

The texture fetch latency kernel tests the latency of fetch

instructions in a kernel while the global read latency micro-

benchmark tests the latency to read input from the global

memory. It does this by increasing the number of inputs over

each iteration of the kernel while keeping the number of ALUs

and outputs the same. The number of outputs is one for

every kernel execution, attempting to minimize the memory

bottleneck. Given the constraints of working around the IL

compiler and maintaining a non-complex micro-benchmark,

the kernel does not maintain the same number of global

purpose registers used as the input size increases. This causes

a reduction in simultaneous wavefronts as the input size

increases. Even though the number of simultaneous wave-

fronts/SIMD engine decreases, the kernel bottleneck remains

the texture fetch instructions and thus minimizes the impact

of more simultaneous wavefronts attempting to hide input

latency. This micro-benchmark is the same as the generic code

except that the number of alu ops is fixed to be the number

of inputs minus one. This insures that the texture fetch is the

bottleneck.

C. Write Latency

The burst write latency micro-benchmark tests the latency

of burst memory writes both to the output buffers (color

buffers) in pixel shader mode and to the global memory. The

color buffers cannot be used in compute shader mode, the

global memory must be used. Unlike the texture fetch latency

and global read micro-benchmark, it is possible to ensure

that the same number of global purpose registers are used

in each kernel with increasing number of outputs. This is

accomplished by making the input size eight, with a range

of outputs below the input size, and making the number of

global purpose registers dependent on the constant input size

(thereby giving a constant global purpose register usage) and

not the output size.

This still allows for the memory bottleneck over the larger

outputs. For some of the smaller output sizes the texture fetch

remains the bottleneck. The number of ALU instructions were

selected to be a relatively low constant value so that they would

allow for all of the inputs to be used but would not become

the bottleneck. This code differs from the generic code only

in that the number of alu operations is constant.

D. Domain Size

The domain size micro-benchmark tests a kernel over vary-

ing domain sizes. This micro-benchmark is the same as the

micro-benchmark shown in Figure ?? but takes a constant

ALU:Fetch ratio of 10.0 while varying the domain size. With

an ALU:Fetch ratio of 10.0 the bottleneck becomes the ALU

operations and gives a better idea of the impact of domain

size on execution. The number of inputs(8) and outputs(1)

also remain constant, allowing for a constant number of

global purpose registers(8) and therefore a constant number

of simultaneous wavefronts per SIMD engine.

E. Register Usage

The register usage micro-benchmark is the only micro-

benchmark that changes the sequence in which operations are

called. The parameters of this micro-benchmark remain similar

to the other micro-benchmarks: inputs, outputs, ALU:Fetch

ratio and domain size. In the other micro-benchmarks the

sampling of the inputs is done at the beginning of the program

prior to any ALU operations. Since the IL compiler produces

ISA code that has all the sampling in the beginning of the code

(though they can be run in parallel with ALU ops) and puts

each input into a register and maintains that register for the

life of the kernel it allows for some control over the number

of global purpose registers used.

By changing the point in the code to sample the inputs

(and hence use these inputs in ALU operations) the kernel

can control the number of global purpose registers used,

particularly when a large set of inputs and a high ALU:Fetch

ratio are used. This micro-benchmark also takes two additional

395390

Sample (3 2)
ALU OPs C l a u s e (use f i r s t 32 sampled)
Sample (8)
ALU OPs C l a u s e (use 8 sampled h e r e)
Sample (8)
ALU OPs C l a u s e (use 8 sampled h e r e)
Sample (8)
ALU OPs C l a u s e (use 8 sampled h e r e)
Sample (8)
ALU OPs C l a u s e (use 8 sampled h e r e)
Outpu t

Fig. 4: Example Register Usage Kernel

Sample (6 4)
ALU OPs C l a u s e (use f i r s t 32 sampled)
ALU OPs C la u s e (use n e x t 8 sampled h e r e)
ALU OPs C la u s e (use n e x t 8 sampled h e r e)
ALU OPs C la u s e (use n e x t 8 sampled h e r e)
ALU OPs C la u s e (use n e x t 8 sampled h e r e)
Outpu t

Fig. 5: Example Clause Usage Kernel

i n t r e g = 0 ;
a l u o p s = a l u f e t c h r a t i o s p e c i f i e d ∗

4 . 0 f∗n u m b e r i n p u t s ;
a l u o p b l o c k = max alu ops

a l l o w e d i n c l a u s e ;
/ / t h i s i s t h e maximum number
/ / o f VLIW a l u ops a l l o w e d
/ / i n s i d e an a l u c l a u s e
r [r e g] = i n p u t [0] + i n p u t [1] ;
c r e g ++;
a lu ops −−;
f o r (x =2; x<number inpu t s−s p a c e∗ s t e p ; x ++)

r [r e g] = r [reg −1] + i n p u t [x] ;
r e g ++;
a lu ops −−;
a l u op b l o c k −−;

whi le (a l u o p b l o c k)
r [r e g] = r [reg −1] + r [reg −2];
r e g ++;
a lu ops −−;
a l u op b l o c k −−;

a l u o p b l o c k =max alu ops
a l l o w e d i n c l a u s e ;

f o r (i =0 ; i<s t e p −1; i ++)
f o r (x =0; x<s p a c e ; x++

r [r e g]= r [reg −1] + i n p u t [x+ s p a c e∗ s t e p] ;
r e g ++;
a lu ops −−;
a l u op b l o c k −−;

whi le (a l u o p b l o c k)
r [r e g]= r [reg −1] + r [reg −2];
r e g ++;
a lu ops −−;
a l u op b l o c k −−;
a l u o p b l o c k = max a lu ops a l lowed

i n c l a u s e ;
o u t p u t = r [r e g] ;

Fig. 6: Register Usage Kernel Generation Code

parameters in order to generate the kernel: the space and the

step. The space dictates how many fetches will be together in

a TEX clause within the ISA, while the step determines how

many separate (away from the initial sampling) clauses there

will be. For example, given an input size of 64, a space of

8 and a step of 4, the kernel would look like Figure 4. The

register usage micro-benchmark kernel generation code can be

seen in Figure 6.

To insure that the benefit did not come from fetch latency

hiding tests were run using the code layout shown in Figure

5, where the input usage is spread out but not the sampling.

IV. RESULTS

The code for each micro-benchmark is capable of executing

over a wide range of values for each parameter. For example,

the ALU:Fetch ratio micro-benchmark is coded such that it’s

parameters are: number of inputs, number of outputs, alu:fetch

ratio and domain size. This same methodology was used when

executing kernels for every micro-benchmark; however, due to

limited space not all results for every run for all parameters are

included in this section. The results included in this section are

indicative of the behavior of the micro-benchmark regardless

of the parameters used. For example, results for the ALU:Fetch

ratio micro-benchmark were obtained for a wide range of input

sizes and domain sizes (output size remained at one to keep the

bottleneck focus on the ALU to Fetch relationship). For each

input size and domain size, the execution times differed but

the behavior of the micro-benchmark (the ALU:Fetch ratio at

which the bottleneck went from being the texture fetch to the

ALU operations) remained the same. Each micro-benchmark

was executed for both float and float4 data types over each

of the three different architectures: RV670, RV770, RV870,

for both pixel and compute shader mode, where possible. The

RV670 architecture (3870), while supporting global memory

reads/writes, does not support compute shader mode.

Compute shader mode is linear, so when fetching textures,

the two dimensions must be calculated manually (this is done

automatically in pixel shader mode). In all of these micro-

benchmarks that use texture fetching in compute shader mode

a naive approach is used unless otherwise stated, that is the

micro-benchmarks use a 64x1 block size. This is the least

complicated block size to compute and is the most straight

forward to use; however, it is possible that one can achieve

greater performance by using different block sizes (4x16 for

example). It is also possible that certain applications may

perform better than others when using different block sizes.

All results are given in single precision floating point.

A. ALU:Fetch Ratio

Given the hardware configuration of a particular GPU, there

is usually an ideal ALU:Fetch ratio based on the number

of ALU units to the number of fetch units. This micro-

benchmark attempts to find the spot at which the ratio changes

the boundedness of the kernel from ALU to fetch and vice-

versa. Figure 7 plots for both float and float4 for both pixel

and compute shader modes (where possible) for each of the

architectures for a range of ALU:Fetch ratios from .25 to 8.0

incremented by .25. The domain of execution is 1024x1024 for

all the ALU:Fetch ratio results shown, a large enough number

of threads to keep the GPU busy. The input size chosen for

the graphs is 16; however, many different input sizes were

executed, all showing similar behavior for the same data type,

mode, architecture and ratios.

The difference in Figure 7 is in two points: execution time

and bottleneck. For the float data in pixel shader mode, the

ALU operations become the bottleneck at a much smaller

ALU:Fetch ratio, 1.25 while the ALU operations don’t

396391

 0

 10

 20

 30

 40

 50

 60

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

T
im

e
 i

n
 s

e
c
o

n
d

s

ALU:Fetch Ratio

ALU:Fetch Ratio

3870 Pixel Float
3870 Pixel Float4
4870 Pixel Float

4870 Pixel Float4
4870 Compute Float

4870 Compute Float4
5870 Pixel Float

5870 Pixel Float4
5870 Compute Float

5870 Compute Float4

Fig. 7: ALU:Fetch Ratio for 16 Inputs

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

T
im

e
 i

n
 s

e
c
o

n
d

s

ALU:Fetch Ratio

ALU:Fetch Ratio for 4x16 Block Size

4870 Compute Float
4870 Compute Float4
5870 Compute Float

5870 Compute Float4

Fig. 8: ALU:Fetch Ratio for 16 Inputs with Block Size of 4x16

 0

 10

 20

 30

 40

 50

 60

 70

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

T
im

e
 i

n
 s

e
c
o

n
d

s

ALU:Fetch Ratio

ALU:Fetch Ratio Global Read Stream Write

3870 Pixel Float
3870 Pixel Float4
4870 Pixel Float

4870 Pixel Float4
5870 Pixel Float

5870 Pixel Float4

Fig. 9: ALU:Fetch Ratio for 16 Inputs using Global Read

become the bottleneck for the float4 data in pixel shader mode

until a much higher ALU:Fetch ratio, 5.0 for both the RV670

and RV770. The RV870 responds differently, which would

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

T
im

e
 i

n
 s

e
c
o

n
d

s

ALU:Fetch Ratio

ALU:Fetch Ratio Global Read Global Write

4870 Pixel Float
4870 Pixel Float4

4870 Compute Float
4870 Compute Float4

5870 Pixel Float
5870 Pixel Float4

5870 Compute Float
5870 Compute Float4

Fig. 10: ALU:Fetch Ratio for 16 Inputs using Global Read and
Write

suggest that there exists architectural differences between the

SIMD engines for each chip. Though not shown in the graph,

the bottleneck for the RV870 doesn’t change until 9.0. Given

an output size of one for all data plots, the constant execution

time is a bottleneck contributed to the input (the texture fetch

is the bottleneck over the range of constant execution times).

After the constant execution time the float and float4 data

points in pixel shader mode, for a given input size, begin to

converge at high ALU:Fetch ratios, implying the kernel is, at

that point, ALU bound. For compute shader mode the point

at which the bottleneck becomes the ALU operations for the

float data is higher and for the float4 is much higher. This

can be attributed to the way in which the inputs are sampled

and the block size used to sample the inputs. A block size of

64x1 is not optimal for cache locality, cache size (which is

halved from the RV770 to the RV870), cache line size (which

was doubled from the RV770 to the RV870) and reducing

memory bank conflicts. Also, due to the nature of the GPU,

the cache is two dimensions so when using a 64x1 block size

(a one dimension block size) only half the cache is used. This

doesn’t occur in pixel shader mode since the two dimensional

access happens automatically by the rasterizer, where as in

compute shader mode the programmer has to decide the access

manually. This data suggests that there is not a best ALU:Fetch

ratio for all data types and modes. This data also suggests

that doing a simple 1D-to-2D conversion to access the texture

fetching is not the optimal method. The cache is optimized for

tiled access; however, the compute shader mode is executed in

a linear fashion (the pixel shader mode is executed in a tiled

access similar to the cache).

Comparing Figure 7 which uses a naive 64x1 fetch approach

and Figure 8 which uses more optimized two dimensional

4x16 approach, you can notice that there is a significant

improvement in performance for both the RV770 and RV870

in compute shader mode. For instance, the ALU:Fetch ratio for

the RV770 and RV870 is equal for both float and float4 data

types. The ALU:Fetch ratios; however, are different for each

GPU suggesting that one block size might not be best for all

GPUs. The RV870 performance quadruples in compute shader

397392

mode for float4 data types and the RV770 approximately

triples for the same.

There is little difference for the RV770 and RV870 between

Figure 9 and Figure 10. This is because both use global

memory for the input and the output size is very small in

comparison, so any impact either a global memory write or

a streaming store would have is negligible. The RV670’s

global memory is very slow, due to the DDR3 memory

used (as opposed to the DDR5 for the RV670 and RV770),

and using global memory for the inputs significantly reduces

performance when compared to texture fetching. The same

is not true for the RV770 and RV870, where each one has

the same or slightly better performance using global memory

reads versus the 64x1 naive texture fetching in compute shader

mode, as opposed to in Figure 8 where the performance is

better due to the increased cache hit rate.

There are several samples in the StreamSDK that have

kernels that are ALU bound. For example, the Binomial

Option Pricing sample has several kernels that are ALU bound.

Intuitively, ALU boundedness is desired; however, it’s best to

attempt to fully utilize all resources if possible, so these ALU

bound kernels can benefit from added fetches and/or outputs.

If low arithmetic intense data can be added to this kernel, or

if this kernel can be added to another fetch bound operations,

then the overall resources of the GPU could be better utilized

while still maintaining ALU boundedness.

B. Read Latency

Figure 11 shows that the texture fetch latency for both float

and float4 data types is linear, but not at the same slope.

Looking at Figure 11 the execution time for n float4s is

approximately the same as the execution time for 4*n floats.

While the same number of global purpose registers were not

achieved here, the small ALU:Fetch ratio gives confidence

that the bottleneck remains the texture fetch units. The fetch

times are reduced with each passing generation, as expected;

however there is a point (at 9 inputs) in which the RV870’s

texture sampling execution time jumps due to a decrease in

cache hit rate.

Figure 12 shows the latency of reading from the global

memory. This graph shows a dramatic improvement in global

memory performance from the RV670 to the RV770 and

RV870. Looking at the two Figures 11 and 12, the GPU

is becoming more generalized with each generation. The

RV670’s global memory read is much slower than it’s equiva-

lent texture fetch; however, this is not true for the RV770 and

the RV870. The latency for reading from the global memory

is not effecting much by which shader is being used, either

pixel or compute and is approximately the same whether

vectorized (float4) or non-vectorized (float) data is being read.

Vectorization is an obvious optimization over non-vectorized

data in this case.

The matrix multiplication samples in the StreamSDK are

fetch bound, meaning not enough ALU operations are being

done per fetch to hide all fetch latencies and fully utilize the

ALU units. Knowing this problem is fetch bound gives an

indication of which direction to begin optimization. Increasing

the number of ALU operations per fetch will begin to change

the bound towards ALU, this is also true for increasing

the number of outputs per fetch. Decreasing the number of

global purpose registers could also help to hide fetch latency.

Lastly, increasing the cache hit rate by possibly increasing the

elements per block or decreasing the number of simultaneous

wavefronts. In compute shader mode, changing the block size

to two dimensions can also increase the cache hit rate and

reduce the fetch boundedness.

 0

 10

 20

 30

 40

 50

 60

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
im

e
 i

n
 s

e
c
o

n
d

s
Number of Inputs

Texture Fetch Latency

3870 Pixel Float
3870 Pixel Float4
4870 Pixel Float

4870 Pixel Float4
4870 Compute Float

4870 Compute Float4
5870 Pixel Float

5870 Pixel Float4
5870 Compute Float

5870 Compute Float4

Fig. 11: Texture Fetch Latency

 0

 10

 20

 30

 40

 50

 60

 70

 80

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
im

e
 i

n
 s

e
c
o

n
d
s

Number of Inputs

Global Read Latency

3870 Pixel Float
3870 Pixel Float4
4870 Pixel Float

4870 Pixel Float4
4870 Compute Float

4870 Compute Float4
5870 Pixel Float

5870 Pixel Float4
5870 Compute Float

5870 Compute Float4

Fig. 12: Global Read Latency

C. Write Latency

Figure 13 shows that the streaming store latency for both

float and float4 data types is linear. In order to maintain the

same number of global purpose registers, an input size of eight

was chosen, this causes an input bottleneck at the beginning

of this graph. Here, vectorization of the output yields the same

or better performance.

Compute shader mode does not support streaming stores

(output to color buffers) and only supports output to global

memory. Figure 14 shows the latency of writing to the global

398393

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5 6 7 8

T
im

e
 i

n
 s

e
c
o

n
d

s

Number of Outputs

Streaming Store Latency

3870 Pixel Float
3870 Pixel Float4
4870 Pixel Float

4870 Pixel Float4
5870 Pixel Float

5870 Pixel Float4

Fig. 13: Streaming Store Latency

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8

T
im

e
 i

n
 s

e
c
o

n
d

s

Number of Outputs

Global Write Latency

3870 Pixel Float
3870 Pixel Float4
4870 Pixel Float

4870 Pixel Float4
4870 Compute Float

4870 Compute Float4
5870 Pixel Float

5870 Pixel Float4
5870 Compute Float

5870 Compute Float4

Fig. 14: Global Write Latency

memory. Again, global memory is uncached, but unlike the

global read, global write is effected much more by which

data type is chosen, float or float4. The approximate execution

times for float versus float4 appear to be 1/4th, so each float is

written at some constant speed, whether it is vectorized or not.

So while there doesn’t appear to be an advantage to vectorizing

global writes, there doesn’t appear to be any disadvantage

either. Again, like in the streaming store example, the constant

execution times can be attributed to the bottleneck at those

outputs being the texture fetch instead of the global write.

The StreamSDK Monte Carlo sample includes several ker-

nels which are global write bound. This indicates that for these

kernels, there is room for additional ALU instructions (with

no performance decrease) until the point at which the bound

changes from write to ALU, the same can be said of fetch

instructions. This micro-benchmark gives the execution time

of a write bound kernel for varying output sizes, signifying

the point at which the kernel is write bound.

D. Domain Size

Figure 15 shows kernel execution over a large domain size,

ranging from 256x256 to 1024x1024 and incrementing by 8x8

for the pixel shader mode and 64x64 for the compute shader

mode (the compute shader mode requires that the elements be

padded to 64 unless special instructions are used, which were

not here). In this test there are eight inputs and one output and

the ALU:Fetch ratio is 10, which insures that the bottleneck

is the ALU operations. The results in Figure 15 show both

float and float4 plots for both pixel shader mode and compute

shader mode. While the plot tends to move up and down in

small areas, the overall plot increases. This overall picture

reemphasizes that a large number of threads are needed to

keep the GPU busy.

Figure 15(a) shows the results from pixel shader mode while

Figure 15(b) shows the results from compute shader mode.

Since the bottleneck is the ALU and the micro-benchmark

maintains a high level of data dependency across ALU op-

erations (and hence doesn’t allow any VLIW packing opti-

mizations in the bundles), the execution time is the same for

both float and float4 data types. While this micro-benchmark is

trivial and the results appear as expected, the cache hit rates

decrease as domain size increases, so this micro-benchmark

shows that the domain size can effect performance via the

cache hit rates.

E. Register Usage

Figure 16 gives clear evidence that for a constant number

of inputs, outputs, ALU:Fetch ratio and domain size there is a

significant impact on performance with a decrease in register

pressure, both in pixel shader mode and compute shader

mode for the RV670 and RV770. The RV870 is impacted

slightly less by the decrease in register and in same cases

decreases performance due to cache hit rates. This decrease

in performance can be attributed to a decline in cache hits

with an increase in simultaneous executing wavefronts. This

same decrease in performance can be seen for the RV770 in

Figure 17 where a block size of 4x16 was used to access the

texture fetches instead of the naive 64x1 approach. The RV870

doesn’t get the same decrease in performance using the 4x16

block size that it did when using the 64x1 block size. It’s

important to note that even though the RV770 gets a decrease

in performance with increase in simultaneous wavefronts for

the 4x16 block size, the overall execution time is still better

than the 64x1 block size implementation, the same is true

for the 5870. One reason that the RV870 might not see the

decrease with a block size of 4x16 compared to the RV770 is

that the RV870 has half the cache of the RV770.

In the tests shown the number of inputs is 64, a space size

of eight and a step size of six. In Figure 16 the ALU:Fetch

ratio is 4.0. To make sure that the performance increase comes

from the decrease in register pressure, and not from moving

ALU operations across clauses, a very similar test (the clause

movement micro-benchmark mentioned in Figure 5) was run

that kept all the ALU operations the same (using the same

inputs and in the same clauses as the register usage kernel,

meaning the data was spread out over the same number of

399394

 0

 5

 10

 15

 20

 25

 30

 35

 40

256 320 384 448 512 576 640 704 768 832 896 960 1024

T
im

e
 i

n
 s

e
c
o

n
d

s

Domain Size

Domain Size Pixel Shader

3870
4870
5870

(a) Domain Pixel Shader

 0

 2

 4

 6

 8

 10

 12

 14

 16

256 320 384 448 512 576 640 704 768 832 896 960 1024

T
im

e
 i

n
 s

e
c
o

n
d

s

Domain Size

Domain Size Compute Shader

4870
5870

(b) Domain Compute Shader

Fig. 15: Impact of Domain Size (a) and (b)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

64 57 49 41 33 25 17 10

T
im

e
 i

n
 s

e
c
o

n
d

s

Global Purpose Registers

Register Pressure Effect

3870 Pixel Float
3870 Pixel Float4
4870 Pixel Float

4870 Pixel Float4
4870 Compute Float

4870 Compute Float4
5870 Pixel Float

5870 Pixel Float4
5870 Compute Float

5870 Compute Float4

Fig. 16: Impact of Register Usage

clauses) but sampled all the inputs at the beginning of the

program, instead of spreading the sampling out to the point

right before the inputs are used (resulting in a constant number

 8

 10

 12

 14

 16

 18

 20

64 57 49 41 33 25 17 10

T
im

e
 i

n
 s

e
c
o
n

d
s

Global Purpose Registers

Register Pressure Effect for 4x16 Block Size

4870 Compute Float
4870 Compute Float4
5870 Compute Float

5870 Compute Float4

Fig. 17: Impact of Register Usage with Block Size of 4x16

of registers). The result was a constant execution time with no

performance gain.

The performance increase in Figure 16 begins to level off

with a decrease in register pressure, this is caused by an in-

crease in wavefronts and a switch in bottlenecks, from texture

fetch latency to ALU operations. This suggests that, for cached

data, a decrease in register pressure does not directly equate to

an increase in performance. It also suggests that it’s possible

to add registers to the kernel and increase performance. This

micro-benchmark gives a good indication of the sweet spot for

balancing register pressure and cache hit rate. For example,

AMD put ”dummy” registers in some of the SGEMM so as

to avoid thrashing the cache, thereby reducing the number of

simultaneous wavefronts but increasing performance through

an increase in cache hit rate.

V. CONCLUSION

In this paper we have described some of the major obstacles

of kernel performance for the AMD GPU and have shown

how they effect performance in both pixel shader mode and

compute shader mode for some of the major kernel parameters.

We provide a micro-benchmark suite by which to obtain both

latencies and bound points for these major parameters that can

be applied to both past and future AMD GPU generations. We

express how these micro-benchmarks can be applied to deter-

mine where optimizations need to occur. We show that there

are real world examples that can benefit from this analysis

and open the possibility for optimization at the kernel code

level, the kernel level and the application level, for instance,

code optimizations, kernel merging and application merging

to increase overall performance. Furthermore, we provide

suggestions for optimizations based on the boundedness of the

kernel. Future work of this suite can more explicitly isolate

parameters and adapt to next generation hardware changes.

REFERENCES

[1] AMD. ATI Stream Computing User Guide, 2009.
[2] AMD. R700-Family Instruction Set Architecture Reference Guide, 2009.

400395

[3] I. Buck, K. Fatahalian, and P. Hanrahan. GPUBench: Evaluating GPU
performance for numerical and scientific applications. In Proceedings of
the 2004 ACM Workshop on General-Purpose Computing on Graphics
Processors, 2004.

[4] A.X. Duchateau, A. Sidelnik, M.J. Garzaran, and D. Padua. P-Ray: A
Suite of Micro-benchmarks for Multi-core Architectures.

[5] M. Frigo and S.G. Johnson. FFTW: An adaptive software architecture
for the FFT. In IEEE International Conference on Acoustics Speech and
Signal Processing, volume 3. Citeseer, 1998.

[6] E.J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization framework
for sparse matrix kernels. International Journal of High Performance
Computing Applications, 18(1):135, 2004.

[7] L. McVoy and S. Graphics. lmbench: Portable tools for performance
analysis.

[8] R.H. Saavedra, R.S. Gaines, M.J. Carlton, and M.J. Carlton. Char-
acterizing the performance space of shared memory computers using
Micro-Benchmarks. Proc. Hot Interconnects &# 039; 93, 1993.

[9] R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra
software. In Proceedings of the 1998 ACM/IEEE conference on Super-
computing (CDROM), pages 1–27. IEEE Computer Society Washington,
DC, USA, 1998.

[10] K. Yotov, K. Pingali, and P. Stodghill. X-ray: A tool for automatic
measurement of hardware parameters. In Quantitative Evaluation of
Systems, 2005. Second International Conference on the, pages 168–177,
2005.

401396

