
CUDA Memory Optimizations for Large Data-Structures in the Gravit Simulator

Jakob Siegel, Juergen Ributzka, Xiaoming Li

Department of Electrical and Computer Engineering

University of Delaware

Newark, DE, USA

Email: jakob@udel.edu, juergen@udel.edu, xli@ece.udel.edu

Abstract—Modern GPUs open a completely new field to
optimize embarrassingly parallel algorithms. Implementing an
algorithm on a GPU confronts the programmer with a new
set of challenges for program optimization. Some of the most
notable ones are isolating the part of the algorithm that can
be optimized to run on the GPU; tuning the program for the
GPU memory hierarchy whose organization and performance
implications are radically different from those of general
purpose CPUs; and optimizing programs at the instruction-
level for the GPU.

This paper makes two contributions to the performance
optimizations for GPUs. We analyze different approaches for
optimizing the memory usage and access patterns for GPUs and
propose a class of memory layout optimizations that can take
full advantage of the unique memory hierarchy of NVIDIA
CUDA. Furthermore, we analyze the performance increase
by fully unrolling the innermost loop of the algorithm and
propose guidelines on how to best unroll a program for the
GPU. In particular, even that loop unrolling is a common
optimization, the performance improvement on a GPU derives
from a completely different aspect of this architecture.

To demonstrate these optimizations, we picked an embar-
rassingly parallel algorithm used to calculate gravitational
forces. This algorithm allows us to demonstrate and to explain
the performance increase gained by the applied optimizations.
Our results show that our approach is quite effective. After
applying our technique to the algorithm used in the Gravit
gravity simulator, we observed a 1.27x speedup compared to the
baseline GPU implementation. This represents a 87x speedup
to the original CPU implementation.

Keywords-GPGPU; CUDA; n-body; memory layout; opti-
mization

I. INTRODUCTION

Scientific computations have always been in need of more

computational power than available. However, obtaining

high computational power is traditionally very expensive

and, if available, the full usage of it requires extensive pro-

gramming efforts. The limited availability of computational

power to the HPC community has changed recently. Off-

the-shelf hardware such as IBM Cell processors in video

game consoles and Graphic Processing Units (GPUs) in

consumer PCs provides equivalent or even higher compu-

tational power than what was offered by the traditional

CPU-centered high-performance computing solutions. With

theoretical peak performances of up to 1 TFLOPS1 for the

1single precision floating point operations per second

NVIDIA G200 series, such GPUs are becoming a common

tool to accelerate computational expensive algorithms used

in scientific computing.

Until recently, it was a challenging task to implement an

algorithm efficiently to run on a GPU because the function-

ality of such a device was plainly geared toward graphics

acceleration and didn’t offer an interface to perform non

graphics related operations. Hence, scientific applications

had to be implemented using functions and APIs such as

OpenGL [18] that are intended only for graphic tasks. In

the past, the necessity of doing computation in OpenGL and

the lack of downward compatibility of newer generations

of graphic hardware greatly restrain the usage of GPUs

for scientific computing, even that the computational power

of many GPUs would have offered a cheap way to gain

additional FLOPS.

The introduction of the NVIDIA CUDA architecture and

the accompanying CUDA driver and C language extension

[13] made this computational power of GPUs easier to

utilize. In particular, it took GPU programming to a higher

level that normal programmers feel more familiar with.

The CUDA driver and C language extension simplify the

usage of the GPU as a co-processing device. However, even

though the problem of writing a program that can work

on a GPU seems to have been solved, the question of

how to tune a program to make it work well on a GPU

is only rudimentarily understood and insufficiently investi-

gated. Most notably, the program optimization for GPU faces

two major challenges: the radically different organization of

GPU memory hierarchy and the re-evaluation of traditional

instruction level optimizations in the new context of GPUs.

It’s the programmer’s responsibility to maximize the

throughput by optimizing the memory layout. Second, the

GPU runs programs in a SIMT2 manner where each instruc-

tion stream is a thread, so that the optimization for GPU

memory hierarchy must be tuned for the collection of mem-

ory access streams from multiple threads. Program optimiza-

tions for the CPU memory hierarchy usually assume that a

single process occupies all memory levels. The consideration

of multiple-thread memory accesses makes the optimization

for the GPU memory hierarchy more complicated than that

2Single Instruction Multiple Thread

2009 International Conference on Parallel Processing Workshops

1530-2016/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPPW.2009.78

174

for the CPU.

Instruction level optimizations for the CPU usually as-

sumes a program can occupy all CPU resources such as

registers. However, the main focus of instruction level op-

timization for CUDA programs is to conserve hardware

resources to allow for a higher occupancy of the available

hardware for all threads. Therefore, traditional instruction

level optimizations such as loop unrolling must be re-

evaluated in the context of GPUs. Loop optimizations are

of special interest since most of the algorithms that qualify

to be implemented in CUDA are loop based.

In this Paper we propose a technique to optimize global

memory accesses especially for larger structures that exceed

the alignment boundaries of the CUDA architecture. Further-

more, we quantitatively analyze the performance increase on

a GPU by fully unrolling the innermost loop of a program

and propose a way to predict the impact on the performance.

Then we applied the techniques to a CUDA version of the

Gravit gravity simulator.

The remaining part of this paper is organized as following:

Sec.I-A overviews the NVIDIA G80 GPU and CUDA pro-

graming framework. Sec.II discusses the proposed memory

layout optimizations for CUDA. The loop optimizations

are described in Sec.IV. At last, Sec.V and Sec.VI discuss

related work and conclude this paper.

A. CUDA Overview

CUDA (Compute Unified Device Architecture) is

NVIDIA’s programming model that uses GPUs for general

purpose computing (GPGPU). It allows the programmer to

write programs in C with a few extensions that are designed

to allow the programming of the CUDA architecture. These

extensions enable programmers to directly access multiple

levels of memory hierarchy that are quite different from the

common CPU memory/cache model.

The CUDA memory hierarchy is composed of a large

on-board global memory which is used as main storage

for the computational data and for synchronization with

the host memory. Unfortunately, the global memory is very

slow and not automatically cached3. To fully utilize the

available memory bandwidth between the global memory

and the GPU cores, data has to be accessed consecutively.

To alleviate the high latencies of the global memory, a shared

memory can be used. Shared memory is explicitly managed

by the kernel and special care has to be taken when it is

accessed. When the same shared memory banks are accessed

by multiple threads at the same time, a memory access

conflicts will occur and the reads to the same memory bank

will be serialized. There are two other types of memory,

texture- and constant memory, available which will not be

discussed here.

In addition to the CUDA memory hierarchy, the perfor-

mance of CUDA programs is also affected by the CUDA tool

3caches aren’t existent except for a small texture- and constant cache

chain. The CUDA tool chain consists of special GPU drivers,

a compiler which is based on the Open64 compiler[2], a

debugger, a simulator, a profiler and libraries which can

be used with with most GPUs of the GeForce series. This

paper mainly studies optimizations that are specific to the

CUDA memory hierarchy including the CUDA register file.

A more detailed description about CUDA and its supporting

hardware can be found in [13].

B. What is Gravit

Gravit[1] is a multi-platform gravity simulator written by

Gerald Kaszuba. Gravit is released under the GNU General

Public License. It implements simple Newtonian physics

using the Barnes-Hut N-body algorithm [4]. Although the

main goal of Gravit is to be as accurate as possible, it

also creates beautiful looking gravity patterns. We select the

gravity simulation as our target problem because the gravity

simulation is an important type of physics simulations, and

optimization techniques developed for Gravit will be rele-

vant for many other N-body algorithm based computation

problems.

C. Algorithms used in Gravit

The Gravit simulates the gravity force and the movement

of many particles in a closed system. The most computation-

ally intensive part of the Gravit program is the calculation

of the external forces on single particles in the system. In

general the absolute force on a particle is the sum of the

external force, nearest neighbor force and the far field force.

Force = FE + FNN + FFF (1)

Where FE is the external force, FNN the nearest neighbor

force and FFF the far field force. In the Gravit imple-

mentation there are two different ways to calculate those

forces. One is to use the Barnes-Hut Tree Code algorithm

that is widely used in astrophysics and has been thoroughly

parallelized for standard multi-core systems. It addresses the

expensive far-field force calculations in the following clever

”divide-and-conquer” way.

1) Build an octree

2) For each sub-square in the octree, compute the center

of mass and total mass for all the particles it contains,

3) For each particle, traverse the tree to compute the force

on it.

This approach has a complexity of O(n log n) which for a

general purpose computer is better than the second approach

which is a pretty simple but way more computational intense

O(n2) algorithm. The second approaches computes the force

on a single particle pi simply by calculating and adding up

the forces exceeded on pi by all other particles p0 to pi−1

to pi+1 pn−1 in the system. Even that this second approach

looks like a waste of resources and computational power, it

is a perfect algorithm to be implemented on a GPU.

175

1 f o r i =1 t o N
F [i] = 0

3 f o r j =1 t o N
i f i != j

5 F [i] += F (j , i)
end i f

7 end i f

end f o r

Figure 1. Pseudo code to show the general idea of the far field force
calculation. In the code, F[i] is the total force on particle i and F(j,i) the
force j acts on i.

D. The N-body problem and the GPU

The Barnes-Hut Tree Code algorithm helps to improve

performance on a general purpose machine. Because of it’s

heavily recursive nature it is not an algorithm that allows for

an (easy) implementation on the CUDA architecture because

program parts that are written for CUDA (called kernel

functions) are limited in many ways compared with gen-

eral programming for the CPU, for example, no recursion,

limited synchronization, no inter block communication, no

dynamic memory allocation during runtime. To implement

an algorithm like the Barnes-Hut Tree Code algorithm on the

GPU, the recursion has to be transformed into an iterative

equivalent.

The second more direct approach is also the more com-

putational intense method. It represents a straight forward

way to calculate the force on for each particle F [i] out of
N particles, where F (j, i) represents the force on particle i

due to particle j.

This seemly more computational intense O(n2) algorithm
can be implemented more efficiently on CUDA. For this

algorithm we can have one thread for each single particle

to calculate and add up all the forces on itself. We use the

O(n2) implementation in this paper.

II. MEMORY LAYOUT OPTIMIZATIONS

For most known computer architectures the memory wall

represents a major performance issue. A GPU is no ex-

ception to this rule. A kernel running on a GPU usually

works on a massive amount of data that resides in global

memory and has to be loaded into the local memory of

GPU processor cores. A good memory layout is the key

to improve the performance of a CUDA kernel. Besides

reducing the overall access to global memory, it is of equal

importance to guarantee for coalesced reads. This means that

all threads of one warp, which access the memory in parallel

should access consecutive data elements. In the following

section we will discuss the transformations we performed

on the original memory layout and how those affected the

performance.

A. Original memory layout: Array of Structures (AoS)

In the Gravit application, we have to store the position

and the velocity in 3D as px,py,pz and vx,vy,vz, as well as

t ypede f s t r u c t p a r t i c l e s {
2 f l o a t px , py , pz ;

f l o a t vx , vy , vz ;
4 f l o a t mass ;

} p a r t i c l e t ;
6

p a r t i c l e t S [N] ;

Figure 2. Original layout of the input data structure. This layout leads to
7 single non coalesced reads from global memory

a scalar value for the mass m for every single particle. In

the original layout those values are stored in a structure with

seven elements as shown in Figure 2.

For this layout every thread of the warp will read one

value of the structure at a time. As shown in Figure 3, this

results in seven non-coalesced reads from global memory

for every time the elements of such a structure have to be

accessed by a thread.

Figure 3. Each thread has to issue 7 reads where the reads for the threads
of one warp half are not coalesced

This is one of the worst case scenarios for CUDA.

We used the results of this layout as the baseline for the

following tests.

B. Structure of Arrays (SoA)

Since coalesced reads seem to be of great importance

to improve memory access time, the straightforward way

to achieve this is to change the layout from an array of

structures to a structure of arrays as presented in Figure 4.

This means that every value that in the previous version was

stored as an element of the structure now is saved in an array

of scalar values. We now have an array for each dimension of

all the positions as well as for the velocities and the masses.

Overall there are seven arrays of scalar values.

The structure-of-array layout guarantees that all reads

from global memory are coalesced since all threads of the

same warp-half will access consecutive single floating point

values in global memory, as shown in Figure 5.

1 t ypede f s t r u c t p a r t i c l e s {
f l o a t px [N] , py [N] , pz [N] ;

3 f l o a t vx [N} , vy [N] , vz [N] ;
f l o a t mass [N] ;

5 } p a r t i c l e t ;

7 p a r t i c l e t S ;

Figure 4. The Structure of Arrays layout guarantees for coalesced read
when threads are reading from the single arrays. One thread still needs to
issue 7 reads to retrieve all relevant data.

176

Figure 5. Each thread has to issue 7 reads where the reads for each type
of data element are coalesced

1 t ypede f s t r u c t p a r t i c l e s a l i g n (1 6) {
f l o a t px , py , pz ;

3 f l o a t vx , vy , vz ;
f l o a t mass , / / p l u s h idden 32 b i t padding

e l emen t

5 } p a r t i c l e t ;

7 p a r t i c l e t S [N] ;

Figure 6. Aligned structure with one padding element for the second part.

C. Array of Aligned Structures (AoaS)

One way of improving access to structures residing in

global memory is using the alignment attribute offered by

CUDA (Figure 6) or using already aligned build in types

like float4, which is defined as an aligned structure with 4

float values x,y,z and w

CUDA can handle 64 bit and 128 bit aligned data and read

or write such data with one single read or write instruction.

By aligning the original structure to 128 bit, an eighth hidden

32 bit value is added to the structure (Figure 6). Hence

the overall number of reads can be reduced to two 128 bit

reads, as shown in Figure 7. This is the commonly proposed

solution to efficiently handle larger structures in CUDA.

Figure 7. For all 7 elements each thread now only has to issue two 128bit
reads. But the reads are not coalesced

Even that by adding a padding value the memory usage

is slightly increased, the number of issued global memory

accesses gets drastically reduced.

D. Structure of Arrays of aligned Structures (SoAoaS)

Overall it can be said that there are two major optimiza-

tions that can either be applied to larger structures residing

in global memory, where each will increase the overall

performance.

• Accessing consecutive elements to guarantee for coa-

lesced reads.

• Alignment of data structures to allow for fewer reads.

1
t ypede f s t r u c t posmass s a l i g n (1 6) {

3 f l o a t x , y , z , mass ;
} posmass t ;

5
t ypede f s t r u c t v e l o c i t y s a l i g n (1 6) {

7 f l o a t x , y , z ; / / p l u s 32 b i t h idden padding

e l emen t

} v e l o c i t y t ;
9

t ypede f s t r u c t p a r t i c l e s a l i g n (1 6) {
11 posmass t p [N] ;

v e l o c i t y t v [N] ;
13 } p a r t i c l e t ;

15 p a r t i c l e t S ;

Figure 8. Aligned structure with 2 arrays of aligned structures. Instead
of the alignment specifier the aligned build in type float4 could have been

used instead.

As shown in the previous section each of those optimiza-

tions can be applied to the data set discussed in this paper.

Both ways will have a positive impact on the performance

which one in general is the better approach still has to

be determined. To benefit from both methods we propose

a combination of those approaches. By organizing aligned

structures that don’t exceed the alignment boundary in mul-

tiple arrays we first can reduce the overall number of issued

reads by using 64 or 128 bit accesses and we can guarantee

that all the memory accesses of the single threads in a warp

half are coalesced. For this specific example we went from

the original implementation with 7 single non coalesced

reads to two 128 bit coalesced reads. The resulting memory

layout can be described as a “structure of arrays of aligned

structures” (SoAoaS)(Figure 8). Furthermore we grouped

data elements with similar access frequencies into the same

structure to guarantee that no data elements are loaded that

are not needed at the time. The improved memory access

pattern is shown in Figure 9.

Figure 9. For all 7 elements each thread now only has to issue two 128bit
reads. With the Structure of Array of Structures layout the structures in the
two arrays can be read coalesced.

III. EXPERIMENTS AND RESULTS

The average memory access time is the most direct metric

of the effectiveness of our memory layout optimization. To

measure the actual memory access time, we strip down the

kernel to containing only the read operations from global

memory. We used the clock() function to get the clock

cycles needed to perform these operations. To prevent the

177

compiler from removing the loads or executing the clock()

function before the loads are completed we had to add

instructions that use the loaded values before measuring the

time. Thus, the overall test kernel layout can be described

as the following:

1) setup all the variables needed

2) get the clock cycles

3) load data from global memory using the pattern and

layout we want to examine

4) sum up all the data we retrieved from global memory

5) get the clock cycles, calculate difference and write

result into global memory for review.

To measure the effect of the memory optimizations on

the benchmark kernels, we used input data similar to the

data used in the Gravit project. Since the idea behind those

optimizations was to use the best possible memory layout

and access pattern for a real-world application and not just

for benchmarking. All the tests were run on a Pentium Core

2 Duo running Ubunut 8.03 with 2.4GHz and 2 GB of RAM,

a G8800GTX GPU using the versions 1.0, 1.1 and 2.2 of

CUDA driver/compiler.

A. Results for the memory access benchmarks

For the memory access benchmarks we can see that coa-

lesced reads and alignment increase the memory bandwidth

usage of the program. The baseline version discussed in

section II-A shows the worst performance compared to all

the other layouts and patterns we suggested. As can be seen

in Figure 10 the runtimes for the benchmarks II-B, II-C

and II-D outperform the unoptimized benchmark II-A. All

the optimizations show impressive results as can be seen

in Figure 11, e.g. the speedup from benchmark II-A to

benchmark II-D is approximately 50%. Even the the change

from 7 non coalesced reads to 7 coalesced reads II-B gave a

speedup of roughly 10%. The biggest improvement resulted

from reducing the overall number of reads by switching to

an aligned data layout which allows for 64 or 128 bit reads.

Our results show that a combination of alignments and a

layout that allows for coalesced reads gives the best results

for large-structure based input data.

When compiled and run with the 1.1 or 2.2 version

of CUDA it can be observed that NVIDIA significantly

changed how unoptimized memory accesses are handled up

to a level that not coalescing or aligning the data doesn’t

effect the overall performance to the same extend as it did

with CUDA version 1.0. It is interesting to observe that

the impact on the performance has a complete different

pattern for CUDA 1.1. For the latest CUDA 2.2 revision

the impact of the single optimizations has a pattern similar

to CUDA 1.0, (Figure 10). Why CUDA 1.1 was effected

differently cannot determined with the available tools and

documentation. Inspection of the generated assembly code

didn’t reveal any obvious changes done by the compiler

as well as memory snapshots didn’t show any automated

 200

 250

 300

 350

 400

 450

 500

unopt AoS SoA AoaS SoAoaS

M
u

lt
ip

ro
c
e

s
s
o

r
C

y
c
le

s

Applied Optimization

Average Cycle Count per Single 4 Byte Read

CUDA 1.0
CUDA 1.1
CUDA 2.2

Figure 10. Comparison of the average cycle count to read one of the 4
byte data elements of the structure using the different memory layouts and
access patterns. The values obtained are calculated as:

avg cycles per read =

cycles needed to read the whole structure

of 4 byte elements in structure
.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

CUDA 1.0 CUDA 1.1 CUDA 2.2

S
p

e
e

d
u

p

CUDA Revision

Speedup for the Different Memory Layouts

SoA
AoaS

SoAoaS

Figure 11. Comparison of the speedup for the different memory layouts
and access patterns. The baseline is the unoptimized AoS version discussed
in section II-A

alignment. For the latest CUDA 2.2 revision our final

benchmark II-D still shows an improvement of roughly 30%.

This suggests that the combination of structure alignment

and coalesced reads still gives the best performance for large

data structures.

IV. OPTIMIZING GRAVIT

To see how well the structure of array of structures

approaches works in a real application we implemented the

Gravit function that calculates the far field forces in CUDA

using the optimized data layouts. As a baseline we used the

original Gravit AoS layout for global memory. To obtain

performance results we ran the application and measured the

overall runtime from copying the data to the device, through

the kernel invocation till after copying the results back. We

repeated this procedure for problem sizes from 40,000 to

1,000,000 particles. The data of the benchmarks discussed

178

in section II represents the layout we encountered with

Gravit. Therefore all the different memory layouts could

be applied, where also the SoAoaS approach was the most

efficient, (Figure 9). For this data layout we also considered

grouping the data in a way that elements with similar access

frequencies are stored together. Here the positions vectors

and the masses are always needed at the same time; the

velocities are read less frequently. This leads to the structures

shown in Figure 8. In general the procedure we suggest

should be:

1) Group data in portions with similar access frequencies.

2) Split structures that exceed the alignment boundaries

into smaller structures of 64 or 128 bits that can be

aligned.

3) Organize the aligned structures in arrays to allow for

coalesced read.

A. Loop unrolling

Most of the algorithms that are suited for being imple-

mented in CUDA are heavily loop based. Not surprisingly,

loop optimizations, if applied appropriately, might be very

beneficial for CUDA kernels. Loop optimizations are mainly

designed to enhance the program’s memory hierarchy per-

formance such as loop tiling and improve instruction-level-

parallelism of a program such as loop unrolling. Among

the loop optimization, those that target at memory hierarchy

performance can not be directly applied to GPU programs

because the memory hierarchy performance on GPU must

be optimized within the context of a collection of threads

instead of optimizing only one thread as assumed by most

existing loop optimizations for memory hierarchy. Among

the loop optimizations for instruction-level-parallelism, loop

unrolling is generally thought as a simple optimization.

On a common CPU, loop unrolling allows the compiler to

do extensive instruction reordering and scheduling to hide

latencies of slow instructions (e.g.memory operations). This

leads to a speedup of the overall application. However, loop

unrolling is worth being re-examined under the context of

GPU programming because the general pattern of program-

ming for GPUs reveals additional guidelines as to which

loop level to unroll and the performance improvement from

loop unrolling on GPUs involves factors that are considered

less important for loop unrolling on a CPU.

In many cases, the part of a program running on the GPU

have similar patterns of code. A CUDA kernel handling

an O(n2) algorithm like the n-body problem, the Gravit

algorithm being an example, generally has the following

structure:

1) The thread setup code S that sets up the environment

for one single thread. Here all the information is

organized that will be needed just by this single

thread. This portion of the code is executed once for

every thread. If every thread works on one single data

element we have N threads.

2) The thread block setup code B or input data fetcher.

The portion of the code that fetches the data used by

all or most threads in a single block and stores it into

shared memory. This portion of code is commonly

executed
N

K
times where N is the problem size and

K is the number of data elements per slice the input

date is split in. For problems with single dimensional

input data like Gravit, K usually equals the block size

since every thread works on one element and every

thread in a thread block loads one element per slice.

3) The usually pretty small inner loop P which is exe-

cuted N2 times and handled by the thread represents

the essential part of the algorithm where most of the

calculations are performed.

Let’s assume that S,B, P represent the fraction of instruc-

tions in those code segment and that

S + B + P = 1.0 (2)

which represents all the instruction of the kernel with one

iteration for each loop. Usually the innermost loop P is very

small, containing only a few instructions, and has a small

number of iterations compared to the problem size, e.g., K

times in the Gravit algorithm. Furthermore, the innermost

loop P if unrolled likely will not reveal any possibilities for

instruction reordering, like the case in the Gravit algorithm.

Therefore, if we still use the mindset of loop unrolling for

CPU, the innermost loop of a GPU kernel will not be thought

as a good target for loop unrolling. However, the benefit/cost

analysis for loop unrolling is different for GPU kernels. We

can come up with a formula that will give us an idea of how

the overall instruction load changes for a problem of size N

and a block size of K.

Speedup =
N ∗ (S1 + N

K
∗ B1 + N ∗ P1)

N ∗ (S2 + N

K
∗ B2 + N ∗ P2)

≈

P1

P2

(3)

It is obvious that for large N we can neglect S and

B because their factors, 1 and
N

K
, are usually at least a

magnitude less significant than P ’s factor and are negligible

when N is large. P is typically very small. Consequently, if

we can reduce the amount of instructions of the innermost

loop we will see that the overall number of instructions will

get reduced by the same fraction as we reduced the number

of instructions.

For our example, the Gravit simulator has an innermost

loop that doesn’t reveal any possibilities for instruction

reordering. However, when we unroll the loop starting from

unrolling it 4 times to fully K or here 128 times, the result

is rather surprising. With a fully unrolled loop we gain a

speedup of 18%. The nature of this speedup is plainly the

reduction of overall instructions that have to be performed

per iteration of the inner most loop. It is a pretty common

thing for a CUDA kernel that the “kernel“ of the algorithm

179

that has to be performed for every data element consist of

only a few instructions. In the case of Gravit the innermost

loop consists of a little more than 25 instructions including

the instructions needed for the loop. By fully unrolling the

loop we get rid of one compare, an add, a jump plus an

additional add to calculate the address offset that now is hard

coded. By just looking at the portion of code this doesn’t

look like a huge improvement compared to the increase in

code size. But if we look at the overall problem size and

the importance of this innermost loop, we will see that this

code segment is executed N2 times and represents more than

95% of the overall execution time. By fully unrolling this

portion of the code we just reduced the overall number of

instructions for this part by nearly 20%.

Furthermore, the impact of register pressure of loop

unrolling is probably not a major factor when deciding

whether to unroll a loop and if yes how many times to

unroll on CPU. However, the impact of register pressure in

the application of loop unrolling is zoomed on GPU. Given

the large number of thread that try to run at the same time

on GPU, the limited number of registers of a GPU often

reduces the number of threads that can be in active state

simultaneous. More precisely, because not enough registers

can be allocated to the hundreds of threads on GPU, the

execution of many threads have to be backlogged. Improving

the GPU occupancy of a program has shown to be crucial

to maximize the parallelism and improve speedup. One

huge benefit of loop unrolling in CUDA that in some cases

can increase performance even further is the fact that by

removing the iterator of the innermost loop we freed a

register. This reveals a chance to increase the occupancy

of the device.

The above analysis of loop unrolling in the context of

GPU has been fully reflected in our application of loop

unrolling to Gravit. By fully unrolling the loop we reduced

the number of instructions of one single iteration by roughly

18% and we gained an overall speedup of 18% by doing

so. Further more it shows that optimizing the inner most

loop of the algorithm in many cases is more beneficial

than extensive global memory optimizations. Since access

to global memory for most kernels will take place in section

B which won’t affect the overall performance for more than

a few percents where optimizations in the inner loop might

affect performance by a magnitude more. Furthermore, in

the case of Gravit we reduced the maximum number of

registers used by a single thread from 18 to 17. In addition

we observed that that by manually applying invariant code

motion we were able to reduce the register pressure for the

innermost loop by one register. Through this and switching

to a block size of 128 threads we were able to increase the

GPU occupancy from 50% to 67% resulting in another 6%

of speedup compared to the baseline GPU implementation.

The results for all those optimizations are shown in Figure

12. Whereas the fully optimized version represents a 87x

speedup compared to the original serial CPU version.

Figure 12. Comparison of the different optimization levels for Gravit with
different problem sizes

V. RELATED WORK

Memory layout optimizations and loop optimizations have

been studied extensively for general purpose CPUs. Among

the many memory layout optimization studies [5], [6], [12]

relate to the memory layout optimization proposed in this

paper, because all approaches focus on improving program

performance by changing the layouts of programmer-defined

data structures. Loop tiling is probably one of the most

important program transformations to improve the cache

locality of a program and is studied in [7], [10], [14], [15],

[19]. Studies of loop unrolling include those that analyze

the benefit/overhead ratio and predict the best unrolling

factors [17], [9].

Work on loop optimizations for GPUs concentrating on

loop unrolling was presented in [16]. Their experiments

concentrated on optimizing matrix multiplication for the

GPU platform. The n-body problem has been researched

and implemented in many applications during the years.

Optimized versions can be found in the SPEC benchmarks

under AMMP[3] which uses a fast multipole method. Other

implementations include[11][8] from which the CUDA im-

plementation is the most interesting one, which was com-

pletely reimplemented solely for the CUDA system. Our

focus, however, was not to implement an program from

scratch. Our intention was to accelerate existing programs,

by extracting computational extensive kernels and move

them to the GPU. This allowed us to improve the per-

formance of an existing application without burdening the

programmer with extensive code changes.

VI. CONCLUSIONS

Even though GPUs have become an integral part of

high performance computing, optimizations for those ar-

chitectures still lack sufficient investigation. Among them,

180

the memory layout optimizations for the specific memory

organization of GPU are expected to significantly accelerate

programs on GPU. Particularly, applications that frequently

access data stored in large structures suffer from unopti-

mized access patterns. Our work presented a novel idea on

how to efficiently use the heterogeneous memory space of

these architectures. We developed and tested our approach

in a real world application, Gravit. Our layout optimization

technique consists of splitting large structures into smaller

sub structures that are aligned and stored consecutively

in global memory. For CUDA 1.0, our results show a

50% speedup when using this approach compared to an

unoptimized layout. Even for improved frameworks like

the CUDA version 2.2, our method still provides 30%

speedup. Furthermore we analyzed how common loop op-

timizing techniques affect the performance of heavily loop

based CUDA kernel functions. Because of the blocking of

computation to match the GPU architecture, large loops

that couldn’t be completely unrolled in the original ap-

plication now can be fully unrolled. Our tests show that

when completely unrolling a loop in CUDA and applying

simple manual optimizations like invariant code motion,

we can gain surprising speedups. The main reason is that

the nature of most CUDA implementations determines that

the innermost loop just holds a few instructions but works

on huge data-sets. Therefore, the relatively few instructions

used by the innermost loop still represent large percentage

of the overall instructions executed for the algorithm. In

addition, fully unrolling a loop frees registers which might

lead to an increase of the overall GPU occupancy. Future

work for our memory layout is to study how the basic

principles can be tuned for different GPU models or new

developing environments such as OpenCL, which we believe

will equally benefit from a combination of the optimization

techniques proposed in this paper.

REFERENCES

[1] Gravit home page. [online]. http://gravit.slowchop.com.

[2] Open64. http://www.open64.net.

[3] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones,
and B. Parady. SPEComp: A new benchmark suite for
measuring parallel computer performance. Lecture Notes in
Computer Science, pages 1–10, 2001.

[4] J. Barnes and P. Hut. A hierarchical O (N log N) force-
calculation algorithm. Nature, 324(6096):446–449, 1986.

[5] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-
conscious structure definition. In PLDI ’99: Proceedings
of the ACM SIGPLAN 1999 conference on Programming
language design and implementation, pages 13–24, New
York, NY, USA, 1999. ACM Press. Separate a class into
”hot” class and ”cold”class.

[6] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. In PLDI ’99: Proceedings of the ACM
SIGPLAN 1999 conference on Programming language design
and implementation, pages 1–12, New York, NY, USA, 1999.
ACM Press. (1) Organize tree-like data structure together in
cache. (2) Allocate contemporary elements ina cache block
as much as possible.

[7] S. Coleman and K. s. McKinley. Tile Selection Using Cache
Organization and Data Layout. In Proc. of Int. Conference
Programming Language Design and Implementation, pages
279–290, June 1995.

[8] A. Dellson, G. Sandberg, and S. Möhl. Turning FPGAs Into
Supercomputers. Cray User Group, 2006.

[9] P. Kisubi, P. Knijnenburg, and M. O’Boyle. The Effect of
Cache Models on Iterative Compilation for Combined Tiling
and Unrolling. In Proc. of the International Conference
on Parallel Architectures and Compilation Techniques, pages
237–246, 2000.

[10] M. Lam, E. Rothberg, and M. E. Wolf. The Cache Perfor-
mance and Optimizations of Blocked Algorithms. In Proc.
of the Int. conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 63–74,
October 1991.

[11] J. P. Lars Nyland, Mark Harris. Fast N-Body Simulation with
CUDA, chapter 32, pages 677–695. GPU Gems. Addison-
Wesly, 2007.

[12] C. Lattner and V. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap.
SIGPLAN Not., 40(6):129–142, 2005.

[13] C. NVIDIA. NVIDIA CUDA Compute Unified Device Archi-
tecture Programming Guide, 1.1 edition, 11 2007.

[14] P. Panda, H. Nakamura, N. Dutt, and A. Nicolau. Augmenting
Loop Tiling with Data Alignment for Improved Cache Perfor-
mance. IEEE Trans. on Computers, 48(2):142–149, February
1999.

[15] G. Rivera and C. Tseng. Data Transformations for Eliminat-
ing conflict Misses. In Proc. of Int. Conference Programming
Language Design and Implementation, pages 38–49, June
1998.

[16] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi,
S.-Z. Ueng, J. A. Stratton, and W.-m. W. Hwu. Program
optimization space pruning for a multithreaded gpu. In CGO
’08: Proceedings of the sixth annual IEEE/ACM international
symposium on Code generation and optimization, pages 195–
204, New York, NY, USA, 2008. ACM.

[17] R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical
Optimizations of Sofware and the ATLAS Project. Parallel
Computing, 27(1-2):3–35, 2001.

[18] M. Woo and M. Sheridan. OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 1.2. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA,
1999.

[19] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong,
M. Garzarán, D. Padua, K. Pingali, P. Stodghill, and P. Wu. A
Comparison of Empirical and Model-driven Optimization. In
Proc. of Programing Language Design and Implementation,
pages 63–76, June 2003.

181

