
Iterative Layer-Based Raytracing on CUDA

Alejandro Segovia, Xiaoming Li, Guang Gao
University of Delaware

Electrical And Computer Engineering
DuPont Hall, Newark, DE
{segovia, xli, ggao}@udel.edu

Abstract

A raytracer consists in an application capable of tracing
rays from a point into a scene in order to determine the
closest sphere intersection along the ray’s direction.

Because of their recursive nature, raytracing algorithms
are hard to implement on architectures which do not support
recursion, such as the NVIDIA CUDA architecture. Even
if the recursive portion of a typical raytracing algorithm
can be rewritten iteratively, naively doing so could tamper
with the image generation process, preventing the parallel
algorithm’s results from maintaining high fidelity to the se-
quential algorithm’s and resulting, in many cases, in lower
quality images.

In this paper we address both issues by presenting
a novel approach for expressing the recursive structure
of raytracer algorithms iteratively, while still maintaining
high fidelity to the images generated by the sequential algo-
rithm, and leveraging the processing power of the GPU for
parallelizing the image generation process.

Our work focuses on designing and implementing a ray-
tracer that renders arbitrary scenes and the reflections
among the objects contained in it. However, it can be easily
extended to implement other natural phenomena, such as
light refraction, and to aid the iterative implementation of
recursive algorithms in architectures like CUDA, which do
not support recursive function calls.

1. Introduction

Raytracing is a technique widely used in several com-
puter generated imagery (CGI) applications. At its most ba-
sic level, the algorithm consists in casting (or tracing) rays
from a given point in 3D space through a viewing window,
called the viewport, into space, trying to find intersections
with a given set of objects called the scene.

Because of their mathematical simplicity, objects com-
monly used are spheres, whereas rays are characterized by a

base point and a direction. Other objects usually employed
include polygons or, more specifically, triangles.

While raytracing algorithms allow magnificent visual
representations of scenes and natural phenomena using
straightforward and simple algorithms, they are far more
compute-intensive than a rasterization process[1].

The main difference between rasterization and raytrac-
ing consists in that they work in opposite ways[1]. Dur-
ing a rasterization process, geometric primitives in the
scene are transformed and projected onto a region of a 2D
plane. Lighting, texturing and scaling are applied at differ-
ent stages of the process, allowing the final image rendered
to be correctly textured and shaded as seen from the camera.

During a raytracing process, on the other hand, rays are
cast from the camera into the scene for every pixel in the
image to render[1]. If an intersection of a ray with an object
is found, color computations are performed at the intersec-
tion point. The calculated color will eventually be the one
painted at the pixel that corresponds to the ray cast.

It is the great number of computations that have to be
performed during a raytracing process that make it far more
compute-intensive than a rasterization process.

One important characteristic of raytracing algorithms is
that the final color of every pixel in the image to be gener-
ated can be calculated independently of the others, provid-
ing a very natural way to parallelize a raytracer’s implemen-
tation by dividing pixel color calculations among threads.

Raytracing is known to be an embarrassingly parallel
problem, and thus raytracing algorithms provide a good op-
portunity to explore new hardware architectures in pursuit
of interactivity [2].

Furthermore, because of their very nature, raytracting al-
gorithms are inherently recursive and pose an interesting
design and implementation problem on many-core architec-
tures that do not support recursion, such as CUDA [3].

The problem to be addressed by this work consists in
how to refactor a recursive raytracing algorithm into an
iterative algorithm, suitable for efficient execution on the
CUDA architecture, and which does not alter the correct

248978-1-4244-5736-6/09/$26.00 ©2009 IEEE

combination of colors for the generated image, thus main-
taining high fidelity to the original algorithm’s results.

The following section details the problems addressed by
our work. Section 3 introduces a basic sequential raytracing
algorithm and analyzes a parallelization approach. Sections
4 and 5 present our novel stack-based approach for express-
ing recursion iteratively as well as our layered approach to
raytracing and describes its implementation on CUDA. Sec-
tion 6 describes our synthetic benchmark and presents the
results obtained. Finally, section 7 presents the conclusions
of our work.

2. Problem Formulation

When targeting the CUDA architecture, a raytracing al-
gorithm can be implemented as a single function that runs
on the GPU device, which is usually referred to as a kernel
in CUDA’s nomenclature. The problem is how to express
the raytracer algorithm’s recursion on CUDA, which does
not support recursive function calls for its kernel implemen-
tations.

Under architectures such as CUDA, recursion must be
replaced by another approach that will generate the same
effect. One possible approach would be to transform the
recursive algorithm into an iterative one, however, naively
rewriting the recursive portion of a general raytracing algo-
rithm leads to two difficulties.

First, the way colors are accumulated while raytracing
natural phenomena, such as object reflections or light re-
fraction, is important and cannot be altered. Typically, for
every intersection found during the raytracing process, a
new ray is cast from that point into a new direction as to
determine if other object intersections are found along that
ray and, if they are, what color would that other object con-
tribute to the final color seen by the camera.

This process could be repeated an arbitrary number of
times, and once a satisfactory number of rays have been
traced, the colors would start to be accumulated in the op-
posite order in which they were calculated, yielding the final
image.

Under the classical raytracing algorithm, calculated col-
ors would have been temporarily stored in the function call
stack and then combined together using a convex combina-
tion of colors.

Because of the nature of recursion, this convex combi-
nation of colors would have been evaluated as return values
are popped from the function call stack, with the first in-
tersected sphere’s color (i.e. the one which the camera is
actually seeing) being the last to be combined.

Clearly this order is important and must be preserved,
otherwise, the last reflected color will be more noticeable
on the final image than the diffuse color of the sphere itself,

and the produced images will not appear to be similar to the
original algorithm’s.

Secondly, CUDA’s parallelism level depends heavily on
the number of available registers, which are needed in order
to execute the threads contained in thread blocks. Having a
kernel use too many registers will tamper with the device’s
parallelism level, and in time, with the application’s perfor-
mance.

On current hardware, a kernel should not use more than a
few registers (10 or 16, depending on the video card model)
in order to achieve an occupancy of 100%[3]. Although
raytracing algorithms are simple to implement, they might
require a large number of registers for executing, especially
when performing some of the complex memory manage-
ment operations required to improve performance.

3. Raytracing Algorithms

The pseudocode depicted as Algorithm 1 corresponds to
a typical raytracer’s main algorithm. This algorithm is ex-
ecuted sequentially on each pixel in order to calculate its
final color.

In this example, the function calculateLighting encapsu-
lates all color calculations, in particular, shading and shad-
ows.

Algorithm 1 Recursive raytracing
intersection, sphere = closestIntersection(ray, scene)
if intersection == null||bounces ≤ −1 then

return BLACK
end if
color = calculateLighting(intersection, sphere, lights)
ray’ = reflect(ray, intersection, sphere)
a = sphere.alpha
return (1 - a) * color + a * raytrace(ray’, bounces - 1)

In a sequential implementation of the raytracer, Algo-
rithm 1 would be implemented as a function to be executed
on the CPU, calculating the color of every pixel in the im-
age, one at a time.

In a parallel implementation, however, advantage can be
taken of the fact that pixel color calculations are indepen-
dent from one another and thus threads that process groups
of pixels in parallel could be spawned.

On some architectures, it might even prove beneficial to
spawn exactly one thread per pixel. This is the case for
CUDA, where creating a thread for every pixel will en-
able our implementation to transparently scale across sev-
eral generations of devices as more and more processing
cores continue to be added to CUDA-enabled GPUs[3].

Care must be taken when parallelizing Algorithm 1,
however. Algorithm 2 presents a first parallel version of
this raytracer algorithm.

249

This algorithm executes in parallel, calculating the color
to paint every pixel of the image being rendered. Since
CUDA does not allow recursive function calls, the recur-
sion has been naively refactored into a loop.

Algorithm 2 Initial version of a parallel raytracer
pixel = BLACK
for i = 0 to maxbounces do

intersection, sphere = closestIntersection(ray, scene)
if intersection == null then

return pixel
end if
color = calculateLighting(intersection, sphere, lights)
a = sphere.alpha
pixel = (1 - a) * color + a * pixel
ray = reflect(ray, intersection, sphere)

end for
return pixel

In this algorithm each pixel is assigned an initial color
and, as rays are cast, hit and bounce off objects, colors
are accumulated incrementally. The problem with this al-
gorithm is that the order in which colors are combined is
the exact opposite of the order used in Algorithm 1, thus
yielding very different results.

This problem arises from having naively rewritten the re-
cursion as a loop, accumulating colors as ray-sphere inter-
sections are found. It could be avoided, however, if colors
where temporarily stored in an abstract data type that would
allow the program to have them accumulated in the opposite
order, once all colors had been calculated. An ideal abstract
data type to this means would be a stack.

The next section presents a new parallel algorithm that
builds on these concepts but generates images more effi-
ciently which are also true to the images produced by the
original raytracing algorithm.

4. Independent Layers Approach

Our proposed solution consists in changing the basic
structure of the raytracing algorithm in order to address the
aforementioned problems.

We start by dividing the raytracing algorithm into a set
of individual cooperative kernels. Each one of these kernels
executes one after the other on the GPU (i.e. the device).
Within each kernel one thread will be spawn for each pixel
of the image to be rendered.

Results from a kernel’s execution will remain in the de-
vice’s global memory, where the next kernel launched will
be able to access them.

The part of our algorithm that will execute on the CPU
(i.e. the main program running on the host) will be respon-

sible for launching the kernels in sequence, but will be able
to access their intermediate results from global memory.

This will allow our raytracing algorithm to leverage both
the programmability of the host and the high parallelism of
the device, in order to implement complex effects that could
not be easily expressed if the solution was implemented as
a single kernel.

Furthermore, this model will allow the host to launch the
kernels several times iteratively, each time with a different
set of parameters, and then store temporary results for post-
processing, in order to implement visual effects and natu-
ral phenomena such as reflections and refraction, which are
typically expressed through recursion.

This concept is significantly different from previous
work on raytracer implementations on CUDA, such as the
one presented in [5]. In [5] the author does leverage both
the CPU and GPU, but uses the CPU just to parse the scene
configuration files and to handle events from the user. The
GPU must execute the (single) kernel that renders the whole
scene, without assistance from host code.

In our algorithm, since control over the image generation
process is retained by the host, the main program can use the
kernels as building blocks to generate different renders of
the scene iteratively, keeping references to all the rendered
images, and then having them combined in a final stage.

Kernels should be launched with the appropriate set of
parameters in every loop depending on the visual effects be-
ing rendered. Every rendered image will remain in the de-
vice’s global memory and references to them will be main-
tained in a stack structure in the host’s main memory.

Once all images have been rendered, the stack will be un-
winded and images will be combined together in the correct
order as if they were layers of the same picture, yielding the
final image.

Not only does this approach allow the iterative imple-
mentation of natural phenomena while still producing im-
ages true to the original recursive algorithm, but also ad-
dresses the problem of register pressure by separating the
algorithm into independent cooperative kernels.

The idea of dividing raytracing logic among several ker-
nels has been presented before in [4]. Their objective was
to divide the logic as a mechanism to avoid branching and
looping, which were constructs not available on graphics
hardware at the time, as well as to maximize parallelism.
Our objective, on the other hand, is to add flexibility to our
algorithm and to reduce register pressure.

A new parallelized raytracing pseudocode is presented
as Algorithm 3. It leverages our layered concept in order to
calculate reflections.

The main loop is executed by the CPU whereas the ker-
nels (denoted by the Krnl suffix) execute one at time on the
device, performing their computations in parallel.

It is important to note that since a stack is a LIFO struc-

250

ture, layers are combined in the same order their colors
would have been combined by Algorithm 1, had they been
temporarily stored in a function call stack.

Algorithm 3 Iterative, layer-based raytracing (host code)
for i = 0 to maxbounces do

intersections = intersectKrnl(bases, directions,
spheres)
shadowmap = shadowsKrnl(intersections, spheres,
lights)
layer = lightingKrnl(intersections, spheres, lights,
shadowmap)
directions = reflectKrnl(intersections, directions,
sphere)
bases = intersections
push(layer)

end for
image = new()
repeat

layer = pop()
image = lerpKrnl(layer, image)

until stackempty()
return image

In this version of the algorithm the host iterates
maxbounces times, generating successive reflected images
at each iteration.

For the first iteration, rays are cast in parallel from the
viewer’s position, through the viewport, into the scene. The
resulting layer will correspond to the objects directly seen
by the camera, correctly shaded, but without reflections.
For the second iteration, rays will be cast (again in parallel)
from the intersection points found during the previous iter-
ation, and the direction will be the previous ray’s, reflected
on the sphere’s surface.

The relationship between two consecutively generated
images a and b is that b corresponds to the image result-
ing from raytracing the scene with the rays being cast from
the intersections points found when rendering image a into
the direction light would take when being reflected on the
intersected sphere (at the intersection point).

Since a new ray will be traced for every ray previously
cast, there will be a one-to-one relationship between the
number of rays to be traced and the number of threads exe-
cuting our algorithm.

The only exception for this rule will be for those rays that
did not intersect any objects in the previous iteration, how-
ever, we can safely assume that scenes usually raytraced are
dense in objects and thus it is highly unlikely for rays not to
intersect any objects in the scene.

Given this assumption, we can conclude that, for every
iteration, the computations to be performed will be correctly
balanced among threads, allowing our algorithm to achieve

a very high degree of parallelism when raytracing all but the
simplest scenes.

Algorithm 3 relates to the work presented in [6] in the
sense that we are using the GPU to perform the tasks it is
best at: performing computations in parallel, while we are
using the CPU to perform those tasks the GPU is worst at:
orchestrating kernel calls and creating, maintaining and un-
winding a dynamic stack for finally composing the layers
into the rendered image.

5. Raytracer Implementation

We will implement an iterative layer-based parallel ray-
tracer on CUDA in order to evaluate our new raytracing al-
gorithm.

Another interesting visual effect that could be easily im-
plemented by applying this approach is light refraction, trig-
gered by a ray that impacts a translucent object.

5.1 Algorithm Implementation

The parallel implementation of the algorithm proposed
consists in spawning one thread on the GPU for each pixel,
allowing color calculations to be performed in parallel on
the video hardware.

The NVIDIA CUDA architecture eases the implementa-
tion process by allowing the developer to define and imple-
ment functions that execute directly on the GPU using a set
of C-language extensions.

Raytracing primitives, such as calculating intersections,
calculating shadows and calculating lighting were all imple-
mented as individual cooperative kernels.

Reflections in our raytracer were implemented using our
layered concept. In order to render reflections, the host it-
erates, configuring kernel launches as to generate images
corresponding to different ray bounces in every loop. Ev-
ery rendered image is stored in the device’s global memory
and a corresponding stack of pointers is maintained in host
memory.

Once all the images have been rendered, the host starts to
unwind the stack, combining all the rendered images with
one another, in order to produce the final image.

Images are combined using a convex combination of col-
ors. The function that applies this operation is implemented
as a kernel as well, so every pair of images is combined in
parallel, on the GPU.

Once stack unwinding is completed, the final image is
copied from device memory into host memory and rendered
on the screen. Figure 1 visually depicts this concept.

In this figure, the first two images are generated by call-
ing the same set of kernels with different raytracing param-
eters.

251

Figure 1. Layer-based raytracing example.

In the first image, all rays are cast from the camera’s po-
sition, whereas their direction is into the scene. In the sec-
ond image, rays are cast from all the points intersected at
the first iteration, and their direction corresponds to the di-
rection light would be reflected into when colliding with a
curve mirror (the sphere). The third image shows the com-
bination of both images.

For this sample figure, the application was configured as
to bounce rays just twice, however, since the image render-
ing process is completely dynamic, the user may configure
the application to bounce rays any number of times at run-
time, with the only limitation being the device’s available
global memory.

Should a third level of reflection have been requested,
the set of kernels would have been launched once again,
this time with the ray bases set at the intersections found for
the last image and the directions set to a new ray bounce on
the spheres. All three images would have been composed in
the end.

5.2 Memory Management

Spheres in our raytracer were arranged in a linear data
structure. Using a linear data structure provides several ben-
efits when compared to other alternatives.

In the first place, since the set of spheres to be processed
by all threads is the same (independently the direction rays
are cast into) branching is reduced dramatically, helping to
further improve each kernel’s performance[7][3].

In the second place, using a linear data structure helps
simplify memory management logic, thus decreasing regis-
ter pressure and increasing every kernel’s occupancy on the
device[3].

In order to find the best possible memory layout to re-
solve the problem of determining the closest intersection of
a ray with the set of spheres, three different approaches were
proposed and implemented.

The first approach consists in placing the list of spheres
in global memory and having the function that calculates
intersections process them directly. This approach will be
referred to as the naive approach.

The second approach proposed consists in copying a sub-
set of the spheres from global memory into the device’s
shared memory and having only that subset processed by

the function that calculates intersections.
Once all the spheres in this subset have been processed,

a new subset is loaded and processed.
This process is repeated until all the spheres have been

used. Since shared memory is a scarce resource, restrict-
ing the subset size provides good scalability in terms of the
number of spheres in the scene, which can be in the order
of hundreds or even thousands.

This approach will be referred to as the incremental ap-
proach, since spheres are processed incrementally in fixed
size batches.

The third approach proposed consists in having a sub-
set of the spheres processed from shared memory and its
complement processed directly from global memory. This
approach will be referred to as the hybrid approach.

6. Synthetic Benchmark

In order to prove our proposed solution, a synthetic
benchmark was designed and implemented.

The benchmark compares our new parallel raytracer al-
gorithm against a reference sequential algorithm. The ob-
jective of the comparison was to measure the speedup ob-
tained from our layer-based parallel implementation on
CUDA, while still producing images of high fidelity to the
sequential implementation.

The tests consist in rendering into a 512x512 pixel can-
vas a predefined scene of 51 spheres, tracing reflections
among its objects 3 times.

The scene was to be rendered 30 times by each imple-
mentation under different hardware and software configura-
tions. For each execution, the raytracing algorithm would
be measured, averaged and the corresponding speedups
would be calculated.

At the software level, configuration of the reference se-
quential implementation of the raytracing algorithm was
unique, whereas the parallel implementation was to be
benchmarked under three different configurations, one for
each memory model presented in the previous section:
naive, incremental and hybrid.

The CUDA version employed for the parallel raytracer
was 2.2 and measurements were performed by means of the
CUDA Event facilities. CUDA Events provide an exact ker-
nel timing mechanism that can be used to measure the total
time a function was executing on the GPU[3].

At the hardware level, five different configurations were
benchmarked: two workstation configurations and three
mobile configurations.

The following subsections group the results obtained by
the different hardware configurations and, then, by the dif-
ferent software configurations. The speedup values for our
parallel raytracer implementation were calculated by com-
paring against the reference sequential implementation. The

252

reference implementation was assigned a baseline speedup
of 1.

6.1 Workstation Benchmarks

The following two benchmarks were executed on a
workstation configuration consisting of a 2.0GHz Intel Pen-
tium D processor, with 2GB of RAM and two NVIDIA
GeForce video cards: a GeForce 8800GTX and a GeForce
280.

The video card used for benchmarking was selected by
software when invoking the parallel raytracer. The Operat-
ing System under which these benchmarks were performed
was Ubuntu Linux 8.10.

Figure 2 corresponds to the results from executing the
benchmark on the GeForce 8800GTX video card. The
video display was connected to this video card during the
benchmarking process.

Figure 2. Intel Pentium D 2.0GHz, 2GB RAM,
NVIDIA GeForce 8800GTX.

As Figure 2 shows, when comparing the parallel ray-
tracer against the sequential implementation, a significant
speedup is obtained for all three sphere memory layouts.
The incremental approach yields the best results.

Figure 3 shows the results of executing the benchmark
having switched to the NVIDIA GeForce 280 video card.
This video card was not connected to the video display dur-
ing the benchmarking process.

Under this benchmark, the naive approach proved to
achieve a higher speedup than the incremental and hybrid
approaches, even if it does not take advantage of the de-
vice’s shared memory.

In all three cases, the speedup obtained when comparing
against the reference implementation was very significant,

Figure 3. Intel Pentium D 2.0GHz, 2GB RAM,
NVIDIA GeForce 280.

with the naive approach averaging an speedup of more than
85X.

6.2 Mobile Benchmarks

The following three benchmarks were executed under
the mobile configuration, consisting of a 2.66GHz Intel
Core 2 Duo processor with 4GB of RAM and two NVIDIA
GeForce video cards: a GeForce 9400M and a GeForce
9600GT.

The video card used for the benchmark was selected by
software when invoking the parallel raytracer. The Operat-
ing System under which these benchmarks were performed
was Mac OS X 10.5.8.

Figure 4 depicts the results obtained from executing the
benchmark using the NVIDIA GeForce 9400M. This video
card was connected to the video display during the bench-
marking process.

Although results obtained were not as impressive as
the ones obtained for the workstation configuration, it is
common for mobile video cards to provide less processing
power than for workstation or desktop videos cards.

Once again, in all of its three configurations, the parallel
implementation of the raytracer algorithm provided a signif-
icant speedup when compared against the sequential imple-
mentation. The incremental approach was the best sphere
processing solution, yielding an speedup of more than 3X.

Figure 5 presents the results for the benchmark using the
NVIDIA GeForce 9400M video card while not connected
to the video display.

Even if the NVIDIA GeForce 9400M video card was not
connected to the video display, the results obtained were

253

Figure 4. Intel Core 2 Duo 2.66GHz, 4GB RAM,
NVIDIA GeForce 9400M.

very similar to the ones previously obtained.
Finally, Figure 6 presents the benchmark results for the

mobile configuration using the NVIDIA GeForce 9600GT
video card. This video card was connected to the video dis-
play during the benchmarking process.

Results for this benchmark were mixed, with the naive
and hybrid approaches not being able to match the results
obtained for the 9400M video card. The incremental ap-
proach, however, exceeded the results previously obtained,
yielding a speedup of more than 6X.

In all cases and for all hardware and software configu-
rations, our parallel raytracer implementation proved to be
significantly faster than the reference sequential implemen-
tation, with speedups obtained ranging from a minimum of
3X, for a mobile configuration, to a maximum of more than
85X, for a workstation configuration.

7. Conclusion

In our work we studied different raytracer parallelization
approaches and proposed a new efficient and scalable algo-
rithm that leverages a host managed, device-based stack as a
mechanism for expressing the recursive nature of raytracing
iteratively.

Through our synthetic benchmark we were able to ver-
ify that our algorithm yields very good results that maintain
high fidelity to the images produced by the original raytrac-
ing algorithm while, at the same time, provide a significant
speedup.

Furthermore, we were able to demonstrate that our algo-
rithm is very scalable in terms of GPU hardware, being able
to leverage low-end mobile video cards as well as high-end
workstation GPUs by dividing our problem in a way that

Figure 5. Intel Core 2 Duo 2.66GHz, 4GB RAM,
NVIDIA GeForce 9400M in an idle state.

could be distributed to all the streaming processors avail-
able automatically.

We believe our approach for expressing recursion iter-
atively, with the assistance of the host managed, device-
based stack, could be leveraged and extended well beyond
the field of raytracing as a more general mechanism for
refactoring recursive algorithms into new iterative forms
where strong data dependency restrictions apply.

In terms of memory layout, we were able to identity our
incremental sphere processing approach as the best solution
for processing the scene spheres when these are stored in a
linear data structure such as a list.

It would be very interesting to implement other memory
layouts (such as kd-trees) and measure the impact on ap-
plication performance from expressing the logic needed to
traverse them iteratively while, at the same time, trying to
leverage all the streaming processors available on the GPU.

Our incremental approach to sphere processing, on the
other hand, is simple enough while, at the same time, it al-
lows the raytracing algorithm implementation to excel at ex-
ecuting in parallel on the device, ranging from a minimum
speedup of 3X on mobile hardware configurations to a dra-
matical 79X speedup on high-end hardware configurations,
allowing reasonably interactive raytracing to be performed
on commodity hardware.

8. Acknowledgement

Alejandro Segovia would like to thank Jakob Siegel for
his patience and Juergen Ributzka for his encouragement.
He would also like to thank Gabriel F. Gambetta and, spe-
cially, Marı́a Soledad Villar, without whose unconditional
support, this work would not have been possible.

254

Figure 6. Intel Core 2 Duo 2.66GHz, 4GB RAM,
NVIDIA GeForce 9600GT.

References

[1] van der Ploeg, A.J. 2008. Interactive Ray Tracing.

[2] Horn, D. R., Sugerman, J., Houston, M., and
Hanrahan, P. 2007. Interactive k-d tree GPU ray-
tracing. In Proceedings of the 2007 Symposium
on interactive 3D Graphics and Games (Seat-
tle, Washington, April 30 - May 02, 2007).
I3D ’07. ACM, New York, NY, 167-174. DOI=
http://doi.acm.org/10.1145/1230100.1230129

[3] C. NVIDIA. Compute Unified Device Architecture Pro-
gramming Guide. NVIDIA: Santa Clara, CA, 2009.

[4] Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan,
P. 2005. Ray tracing on programmable graphics hard-
ware. In ACM SIGGRAPH 2005 Courses (Los Ange-
les, California, July 31 - August 04, 2005). J. Fujii,
Ed. SIGGRAPH ’05. ACM, New York, NY, 268. DOI=
http://doi.acm.org/10.1145/1198555.1198798

[5] Allgyer, M. 2008. Real-time Ray Tracing using CUDA.
Master’s Project Report.

[6] Carr, N. A., Hall, J. D., and Hart, J. C. 2002.
The ray engine. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics
Hardware (Saarbrucken, Germany, September 01 - 02,
2002). SIGGRAPH/EUROGRAPHICS Conference On
Graphics Hardware. Eurographics Association, Aire-la-
Ville, Switzerland, 37-46.

[7] Carrillo, S., Siegel, J. and Li, X. 2009. A control-
structure splitting optimization for GPGPU. In Pro-

ceedings of the 6th ACM conference on Computing
frontiers. ACM New York, NY, USA, 147-150.

255

