
Dynamic Optimization Option Search in GCC

Haiping Wu, Eunjung Park, and Miahilo Kaplarevic
University of Delaware

{hwu,epark,kaplarev}@capsl.udel.edu

Yingping Zhang
Intel Corporation

ying.m.zhang@intel.com

Xiaoming Li and Guang R. Gao
University of Delaware

xli@ece.udel.edu, ggao@capsl.udel.edu

Abstract

A set of carefully selected compiler optimization op-
tions could provide an additional performance boost
over the current best default optimization options in the
GNU Compiler Collection (GCC) C compiler. How-
ever, there are more than 60 optimization options in
GCC compiler, which translate to over 260 possible
combinations. GCC compiler developers are therefore
faced with a challenge. The goal is to automate the pro-
cess of optimization search, taking into consideration
the properties of the program. The resulting customized
set of options is aimed at out performing the best default
options available in GCC.

In this paper, we present a novel machine-learning based
method for dynamic optimization option search in GCC
compiler, which automatically derives the best candi-
date set of optimization options based on the input pro-
gram properties. An automated program analysis con-
siders input program objects such as selected functions,
program segments, or even the whole programs. The
preliminary tests show that this method provides better
performance over any default optimization level includ-
ing -O3, while the additional compilation time remains
minimal.

1 Introduction

GNU Compiler Collection (GCC) C compiler [5] has
more than 60 available optimization options, which
translate to over 260 possible combinations. As a re-
sult, finding the most effective combination of compiler
options represents a significant challenge to GCC users.
Fully understanding even a small subset of GCC options
often requires an in-depth knowledge of compiler’s in-
ner structure and organization. Therefore users typically

apply default optimization such as -O3 to reduce the
complexity of this task. However, even the highest de-
fault optimization level does not necessarily result in the
best performance for an arbitrary input program [3, 4].

Ideally, if GCC compiler was able to automatically se-
lect a set of options according to the specific input pro-
gram features, it would be possible to achieve an ad-
ditional performance speedup over the best default opti-
mization such as -O3. This is what has inspired us to de-
veloped a dynamic optimization option search method.

Our method uses a machine-learning technique to au-
tomatically derive predictive models for each program
object. Predictive models are used to determine which
set of optimization options will result in the best per-
formance, given the input program object features. Pro-
gram objects could be segments, functions or even the
whole programs. We have developed a dynamic op-
timization option search method for GCC version 3.3.
The preliminary results show that our method provides
better performance over any standard optimization level
including -O3, while introducing minimal additional
compilation time.

The remaining sections of this paper are organized as
follows:

We first describe the method’s fundamental principles in
Section 2. The detection of the program segment simi-
larity is discussed in Section 3. In Section 4, we present
the implementation skeleton that is integrated in GCC
internal. Section 5 gives the preliminary experimental
results. Finally, in Section 6 we discuss general obser-
vations, and introduce readers to ideas considered for
future work.



154 • Dynamic Optimization Option Search in GCC

2 Methodology Overview

The described dynamic optimization option search
methodology automatically derives predictive models
for each program object, and is based on a machine-
learning technique. A predictive model is used to de-
termine which set of optimization options will result in
the best performance, given the input program object
features. The automated program analysis considers in-
put program objects such as selected program functions,
program segments, and even the whole programs.

Our method first creates predictive models by training
a set of selected program segments [7]. These program
segments are typically loop structures. The selected pro-
gram segments are compiled in GCC using different sets
of optimization options and benchmarked on the under-
lying platform. A predictive model is created only for
those combinations of optimization options that result in
additional performance speedup over the best GCC de-
fault setting (usually -O3). Each predictive model con-
sists of a feature vector, which quantifies static proper-
ties of each program segment (further called program
performance behaviors), and the corresponding set of
optimization options.

A selected program segment needs to be trained if a
combination of optimization options which results in an
additional performance speedup cannot be found. The
training process is empirical. Once the predictive mod-
els are created, a machine-learning algorithm first parti-
tions the learning space of program performance behav-
iors into clusters using the feature vector of the predic-
tive models. Each cluster includes a unique predictive
model. Then the machine-learning algorithm matches
each input program object to a cluster using the pro-
gram performance feature vector of the input program
segment. The predictive model in the matched cluster
is then used as input program segment’s proxy to de-
termine the set of optimization options which should be
applied in compiling the program segment.

Both the predictive models and the machine-learning al-
gorithm are integrated in GCC internal. The enhanced
GCC identifies all candidate program segments, extracts
the program performance behaviors of each segment
and translates them into the feature vector, and finally
correlates program segments with the predictive mod-
els by means of the feature vectors. In the back-end
optimization GCC phase, each program segment is op-

Experimental Platform

Identify Candidate Program Segments

Calculate Feature Vectors

Correlated with Clusters

Dynamic segment-based 

compilation

Machine-learning

Create Predicative Model

Dynamic Compile

Sample Programs Applications

Create Predicative Clusters

Predicative Model

Marked Segment with Model Index

Figure 1: Infrastructure of Automatic Optimization Op-
tion Search Methodology

timized using only the options which are selected in its
matched predictive model.

The creation of predictive models is a “one-size-fits-all”
process, and is developed as a “plug-in” component for
GCC. A flowchart description of our methodology in-
frastructure is shown in Figure 1.

3 Program Similarity, Predictive Model and
Machine-Learning

Predictive models are used to determine applicable sets
of optimization options to each input program segment.
Each predictive model could represent an infinite num-
ber of program segments. Program segments that have
similar program performance behaviors to their pre-
dictive models can be considered predictive model in-
stances.

In this section, we first introduce a method used in pro-
gram performance behavior analysis, then we describe
the mechanism how the predictive models are created,
and finally we presents the machine-learning approach.

3.1 Program Performance Behaviors Analysis

Program performance behaviors are static properties of
each program segment, and are relevant in choosing
compiler optimization options. In general, program per-
formance behaviors can be determined solely based on
the analysis of operations found in program segments.



2007 GCC Developers’ Summit • 155

To simplify the analysis we limit program segments to
loop structures only. Also, we only observe the follow-
ing four classes of program performance behaviors:

• Memory access

• Operation

• Conditional Statement

• Global Data and Local Data

Each class of behaviors consists of several types of pro-
gram performance behaviors, depending on the under-
lying architectures and the complexity of the machine-
learning technique. We consider 11 behaviors to de-
scribe each program segment, as shown in Table 1. Too
many types would make the machine-learning space too
big, and consequently the machine-learning algorithm
performance would become poor.

Each type of behaviors is translated into an integer. The
translation phase involves the following steps:

• Estimate the total number of instructions. Assume
each operation in the program segment is trans-
formed into a related instruction. Classify all op-
erations and calculate the number of instructions
for each type of operations.

• Calculate the total number of memory access in the
program segment (LOAD/STORE operands only).
A variable is treated as a STORE operand if it ap-
pears on the left side of an assignment statement.
Otherwise the variable is a LOAD operand. If a
variable is reused several times in the program seg-
ment, it is only counted once, except when reused
in the parameter list of a function call.

• Extract the storage feature of each variable and cal-
culate the global and the local (stack) space size.

• Extract other types of program behaviors directly
from the program segment.

The behavior extraction procedure transforms program
performance behaviors into a fixed-format feature vec-
tor, which always has 11 elements. For all program
behaviors that are not extracted, the corresponding el-
ements in the feature vector are set to 0.

3.2 Predictive Model Creation

Predictive models are trained from a set of sample pro-
gram segments. We chose a set of accredited bench-
marks for the program segment selection. The current
implementation only considers loop structures as the
candidates for training program segments.

The selected program segments are first benchmarked
on the underlying platform. A custom made tool for
optimization option combination search (options gener-
ator) repeatedly produces new combinations of options
from a narrowed-down space of all possible option com-
binations [7]. Each selected program segment is com-
piled using the proposed combination of options. If
this combination of options leads to an additional per-
formance speedup over the best default option of GCC
(usually -O3), a predictive model is derived from this
program segment and this combination of options is
stored in the model. If a combination of optimization
options is stored in the predictive model, this combina-
tion of options is called an optimized set of options (or
OSO) of this model.

The options generator repeatedly produces combina-
tions of options until an OSO is found. If the genera-
tor has not found an OSO after the whole search space
is exhausted, the selected program segment needs to be
trained. This is a trial and error process where the num-
ber of assignment statements and the number of oper-
ations (operands and operators) is adjusted in the pro-
gram segment. A selected program segment has to be
skipped if no OSO is found after 10 training iterations.

Once an OSO is found, the program performance be-
haviors of this program segment are extracted and quan-
tified into a feature vector. A predictive model is formed
by pairing up the feature vector and the OSO.

3.3 Machine-Learning to Determining the OSO

Machine-learning techniques offer an automated frame-
work to correlate input program segments with predic-
tive models. The correlation is based on the program
performance behaviors similarity between the input pro-
gram and the predictive model. The comparison is only
done between the feature vectors of the input program
and the predictive model.



156 • Dynamic Optimization Option Search in GCC

Performance Behaviors Meaning
Global Space Number of Bytes allocated for globals
Local Space Number of Bytes allocated for locals
Load Number of Memory load
Store Number of Memory store
Boolean Number of Boolean operations
Arithmetic Number of Arithmetic operations
Logical Number of Logical operation
If Condition Number of IF statements
Switch Number of Switch statements
Function Number of Function call
Parameter Number of actual parameters in all functions

Table 1: Performance behaviors of a Program Segment

3.3.1 Cluster Creation

It is rarely the situation that the feature vector of an arbi-
trary program segment and the predictive model match
exactly. Fortunately, our machine-learning technique
supports an approximate match. That is, the learning-
space (program performance behaviors space) is parti-
tioned into a series of clusters. Any two points are con-
sidered to be matched if they belong to the same cluster.
Accordingly, a program performance feature space can
be partitioned into a series of clusters, using the predic-
tive models as a representative point in a cluster. The
goal is to find a unique mapping between the feature
vector of an input program segment and a cluster.

Partitioning a learning space can be done in many ways,
such as Logistic Regression approach [2], Decision Tree
approach [1, 6] and Clustering [7]. The current imple-
mentation uses the mean-value clustering approach to
partition the program performance features space.

We have observed that if an OSO applies to a program
segment, the same OSO also applies to its variations (for
instance, decrease or increase in the number of oper-
ations found in the segment) in certain ranges [8]. In
other words, we treat the feature vector of a predictive
model as a point (we call it a model point) in the learn-
ing space. The points near the model point can also con-
verge to the same OSO as the predictive model.

Our goal is to find the points that are within a close
proximity of a model point, and to partition them
into a cluster. To find these points, we developed the
following partitioning algorithm:

Learning-Space Partition Algorithm

Step 1: Create two bound vectors VL and VU by means
of the feature vector of the predictive model. The ith
elements of VL and VU are 0.5mi and 2mi (mi is the ith
element of the feature vector of the predictive model),
respectively.

Step 2: Using the bound vectors VL and VU , manually
create two new program segments PIL and PIU . These
two segments, in source structure, should be similar to
the program segment that converges to the predictive
model. The segments are then measured to find their
OSOs. If no OSO is found or the OSO is not the same as
the OSO of the predictive model for segment PIL, each
element of VL will be adjusted by increasing it for a half
of the original value. A new PIL is created and again
measured iteratively. Similarly, if no OSO is found or
the OSO is not the same as the OSO of the predictive
model for the segment PIU , each element in VU will be
adjusted by reducing it for a half of the original value,
and a new PIU is created and measured iteratively.

Step 3: If the OSO is not the same as the OSO of the
predictive model for the segment PIL or PIU , a new pre-
dictive model is created by the segment PIL or PIU and
a new cluster is created by repeating the algorithm.

After step 2 is completed, the final bound vectors VL and
VU create a cluster of learning space based on the feature
vector of the predictive model. A cluster contains infi-
nite number of instances. If both VL and VU are the same
as the feature vector of the predictive model, the cluster



2007 GCC Developers’ Summit • 157

contains only one point, which is the predictive model
itself.

Although only a few points are measured in a cluster, it
is possible to assert that all instances have the same OSO
if they belong to the same cluster. However, the formal
proof is beyond the scope of the paper.

3.3.2 Mapping Program Segment to Cluster

The machine-learning algorithm tries to correlate an in-
put program segment to a predictive model by assign-
ing the feature vector of the input program segment to
a cluster. That is, the algorithm determines which clus-
ter includes the feature vector of the program segment.
Once it finds the cluster that includes the program seg-
ment’s feature vector, the OSO of the predictive model
in the cluster will be applied to the program segment.

The program performance behaviors of an input pro-
gram segment are first extracted and transformed into
a feature vector. The machine-learning algorithm then
searches the corresponding cluster using the feature vec-
tor. If each feature vector element is within the range
of the corresponding bound vector of a cluster, the in-
put program segment is considered an instance of this
cluster. In other words, the cluster includes the feature
vector of the program segment. Therefore, the predic-
tive model of each cluster determines the OSO applied
to the program segment.

Not all elements of the program segment’s feature vec-
tor fall within the range of the same cluster. Instances
that experience this scenario are assigned to a universal
cluster UC, which has no specific predictive model as-
signed to it. These instances will be compiled using a
default -O3 option.

4 Implementation in GCC Compiler

The integration of the presented methodology is fully
transparent from the user’s point of view. This section
describes the required alterations to GCC compiler.

The complete modification is done in two steps: 1) a
front-end integration of the predictive models and the
machine-learning tool, after an intermediate representa-
tion is generated and the inlining has been finished, and
2) implementation of the program segment-based OSO
selection in the optimization phase.

4.1 Implementation Principle

The input code is first transformed into the Ab-
stract Syntax Tree (AST) intermediate representation
in GCC’s front-end. This is where the machine-
learning algorithm is integrated. The compiler enters
the machine-learning routine before it traverses the AST
to generate the Register Transfer Language (RTL) rep-
resentation. The machine-learning routine searches for
the candidate program segments and records their posi-
tions in the compiled program.

During the candidate program segment searching phase,
the machine-learning routine correlates each candidate
program segment to a predictive model. Upon the com-
pletion of this phase, the compiled program is divided
into a sequence of program segments. The program seg-
ments that do not correlate to any predictive model are
assigned a default -O3 option. The predictive model cor-
related program segments are usually represented in the
RTL format and are passed to the GCC’s back-end.

Unmodified GCC uses fixed set of optimization options
to optimize the whole compiled program. The modi-
fied GCC ‘forces’ the compiler to use a customized set
of optimization options for each program segment. The
set of optimization options for each program segment
comes from the OSO of the corresponding predictive
model. The candidate program segments search and the
machine-learning phase are executed after the inlining
has been performed in order to keep the program seg-
ment invariance.

4.2 Machine-Learning Implementation

In this section we present the implementation process
of the machine-learning approach which correlates pro-
gram segments to predictive models.

The machine-learning routine first extracts performance
behaviors for each program segment in the compiled
program. This is done in a single pass, which typically
increases the compilation time for less than 1%. The ex-
tracted behaviors are quantified and translated into a fea-
ture vector. The machine-learning algorithm then deter-
mines the feature cluster of the observed program seg-
ments using the feature vector. The OSO of the predic-
tive model of this cluster is used to compile the program
segment. If the program segment’s feature vector relates



158 • Dynamic Optimization Option Search in GCC

Applications

AST

RTL

Feature

Calculation

Cluster

Matching

Table
Feature

Table
OSO

Marked

the Loops

Optimization

Option Reset
Code

generation

Optimization

phase

…

…

Loop

Identify

Figure 2: Flowchart of Machine-Learning Approach

to more than one cluster, it is considered a non matched
segment.

The current implementation processes each loop struc-
ture in the program in the described way. A predictive
model table is then used to map loop indexes (the order
of the loop in the compiled program) to the order num-
ber of the correlated predictive model. A special predic-
tive model order number 0 matches every loop structure
and program segments which have no determined corre-
lating predictive model.

Figure 2 shows the flowchart and the data structures
used in the implementation of the machine-learning ap-
proach.

4.2.1 Feature Vector Creation

The procedure of identifying candidate program seg-
ment and the feature vector calculation is described as
follows:

1. Traverse AST until a loop structure is determined.

2. For each loop structure,

(a) Assign an index IndexL(initial 0) and initialize the
predictive model record table TableFeature with 0

(b) For each statement in the loop body, extract the in-
formation which contributes in the calculation of
the program performance behaviors. Repeat until
the end of the loop structure is reached.

(c) Calculate the feature vector and store it to the
TableFeature.

3. Repeat the above until the end of AST is reached.

In the end, each item in the TableFeature represents a cor-
relation between a program segment (loop index) and its
corresponding feature vector.

4.2.2 Predictive Model Correlation

After calculating the feature vectors of all candidate
program segments, the machine-learning algorithm at-
tempts to match segments to clusters. The following
procedure describes the matching process:

1. For each feature vector in TableFeature

(a) Compare the feature vector with the feature vec-
tors of all clusters.

i. If the feature vector is an instance of a clus-
ter, correlate this segment to the predictive
model of this cluster and store the corre-
sponding OSO into TableOSO.

ii. If the feature vector is not an instance of any
cluster, store 0 into TableOSO

2. Repeat the above for all elements in TableFeature

In the end, each item in TableOSO contains the correla-
tion between each loop structure in the program (loop
index) and a matched predictive model’s OSO. OSO = 0
designates the loop structures that have no correspond-
ing predictive model. The following optimization phase
will replace 0 with -O3 for these segments.

4.3 Dynamic Program Segment Compilation

The optimization options supplied by GCC compiler are
classified into three sets: basic optimization options B,
global optimization options G, and local optimization
options L. Our methodology only considers local opti-
mization options L, because global optimization options
force GCC to optimize the whole program instead of
just the code segments. Considering G optimizations in
our methodology would call for a complex analysis of
GCC compiler. The basic optimization options B, typi-
cally activated by -O1 in GCC, do not contribute to our



2007 GCC Developers’ Summit • 159

Index Optimization Option
o1 fforce-addr
o2 fmove-all-movables
o3 fprefecth-loop-arrays
o4 freduce-all-givs
o5 fsched-spec-load
o6 fsched-spec-load-dangerous
o7 funroll-loops
o8 funroll-all-loops
o9 fbranch-count-reg
o10 fpeephole
o11 fforce-mem
o12 strength-reduce
o13 fcse-follow-jumps
o14 fcse-skip-blocks
o15 freturn-loop-opt
o16 fsched-spec
o17 fpeephole2
o18 frename-registers

Table 2: GCC Local Optimization Options

method. Hence, we choose B∪G as a default set of op-
tions in the current implementation. That is, the options
in B∪G are always active.

Table 2 lists the local optimization options L which is
used in our method.

The original GCC optimization phase is modified by
adding an additional step where the customized set of
optimization options for each program segment is se-
lected dynamically. The set of optimization options for
each segment comes from the corresponding predictive
model OSO.

In the GCC optimization phase, each option applies to
the whole input program object (program or function).
A customized set of options can not be set for program
segment due to GCC internal architecture constrains.
Alternatively, we dynamically turn on and off any op-
tion when it travels the input program object. That is,
the application of an option o to a program component
C depends on whether the option o is in the OSO of the
program segment to which the program component C
belongs.

This is the phase that limits the number of options ap-
plicable in our methods, and generates the majority of

added compilation time. For example, in the current im-
plementation, only 10 among the total of 18 local opti-
mization options shown in Table 2 have passed the test.

If GCC compiler was able to do region-based processing
instead of a whole program based processing, we could
dynamically set the customized set of options in the be-
gin of each region, because the program segments could
be transformed into regions. This issue is addressed by
the ongoing efforts.

4.4 Dynamic Program/Function Based Compila-
tion

The presented method also covers the automated opti-
mization option search applied to both program func-
tions and to the whole programs. This implementation
is integrated in GCC toolchain instead of GCC internal.

The whole program search is based on the dynamic op-
tion search applied to program functions only. The later
is in turn, derived from a dynamic option search for pro-
gram segments in the function.

There are four steps in the function based dynamic op-
tion search implementation:

Step 1: Identify all candidate program segments in each func-
tion found in the input program and search their OSOs. This
step is the same in the segment based search.

Step 2: Assign a weight to each OSOs of a function. The
weight is equal to the product between the number of times
the same OSO appeared in the function, and the sum of the
OSO’s feature vector elements.

Step 3: Each function is assigned the OSO with the maximum
weight.

Step 4: Spill the input program into functions and involve
GCC to compile each function with the selected OSO. The
generated object files of these functions are then linked and
executed.

The implementation of the program based dynamic op-
tion search is somewhat similar to the function based
implementation, with certain exceptions. After deter-
mining the OSO, each function’s OSO is assigned a new
weight. The new weight is the sum of all function’s
weight in which the same OSO appears. The OSO with
the maximum new weight is selected as the program’s
OSO.



160 • Dynamic Optimization Option Search in GCC

This is just one of the possible implementations for
function based and program based dynamic option
search methods, which is not necessarily the most effi-
cient one. We are aware of at least one important short-
coming:

the selected OSO may not be a dominant OSO for all
program segments found in the function. In other words,
some program segments may introduce negative perfor-
mance speedup when compiled with this OSO.

Our research is partially focused with exploring alterna-
tive methods, which could better address the observed
issues with the current implementation.

5 Experimental Results and Analysis

The current implementation supports 1) the Intel em-
bedded XScale PXA255, and 2) a general-purpose Intel
Pentium 4 platform running Linux. Both platforms use
GCC 3.3.

5.1 Experimental Results

A total of 13 cases have been tested. The 13 cases are se-
lected from 4 accredited benchmark packages - Comm-
Bench, Mediabench, Mibench and SPEC2000. The test
cases and the predictive model training cases are coming
from two separate suites. The training cases are tuned,
while the test cases are unknown to the compiler. We
believe that this makes the evaluation of our method fair
and accurate.

The testing phase consists of the following 4 arrange-
ments:

• Baseline Test This test searches for the best result
for each test case, when the default GCC options
are used such as -O1, -O2 and -O3. The best result
is set as a baseline, and is compared to the perfor-
mance achieved through applying the new method-
ology.

• Program segment Based Test This test evaluates
our dynamic optimization options search method,
during its application to program segments. This
test is done automatically.

• Function Based Test This test evaluates the appli-
cation of our method to program functions. Each
function is compiled separately through its OSO.
The individually compiled files are linked together
and measured as a whole. This test step is currently
done manually.

• Whole Program Based Test This test evaluates
the application of our method to a whole program.
The tested case is compiled solely through the cor-
responding OSO. This step is also done manually.

Figure 3-(a) shows the performance speedup results on a
general-purpose Intel Pentium 4 platform running Linux
and GCC 3.3. The presented results cover the perfor-
mance speedup of the whole program based, the func-
tion based, and the program segment based approach
over the best default GCC option (baseline), for each
test case.

Figure 3-(b) shows the compilation overhead over -O3
default option in GCC 3.3, for the tested cases.

5.2 Analysis of Experimental Results

From Figure 3-(a), we find that the additional perfor-
mance speedups over the best GCC default result for
different program objects of: the whole program based,
the function based, and the program segments based ap-
proach is on average 2.2%, 1.2% and 1.7%, respectively.
The Maximum speedups are 13%, 18% and 7% respec-
tively.

The program segment based option search performance
is not as expected, and in few cases we even experience
a negative speedup. We believe that this is due to not
enough identified program segments, and due to the fact
that we currently train only a small number of predictive
models. The total of 11 program performance behaviors
is currently used. However, the machine-learning space
is very large. A higher learning performance would es-
sentially require a lot more data. The second reason is
that the execution time for the identified program seg-
ments is only a small fraction of the program execution
time. Also, we have currently implemented only 10 lo-
cal options in GCC, while the other 8 options are in the
debugging phase. That is, the OSO for each segment is
searched from a subset of the local option set L.

From Figure 3-(b), the compilation overhead over -O3
for segment based option search is on average 2.87%



2007 GCC Developers’ Summit • 161

–

Figure 3: Experimental Results on Pentium 4

(for program based and function based option search,
the compilation overhead is on average 0.58% and
3.25%, respectively). The major part of the compila-
tion overhead is due the dynamic option search phase.
Limited by the structure of GCC 3.3, for every opera-
tion, we have to locate which segment does it belong to.
We are confident that the compilation overhead can be
reduced on average to less than 2% as we go deeper into
the GCC structure.

The speedups found in function based option search
show interesting phenomena. In some cases we expe-
rienced impressive speedups, while in others have neg-
ative speedups. If the speedup of a certain function is
positive, the selected OSO from one of its program seg-
ments is one of the dominant OSOs for all other pro-
gram segments in the function. We were not able to find
a dominant OSOs for the functions that experience neg-
ative speedup. The presented test results show only an
assertion that there is a dominant OSO for each function.
However, how to find dominant OSOs remains an open
topic.

The speedups of program based option search are rela-
tively comparable to function based speedups. There-
fore, any improvement in function based option search
will consequently improve the program based option
search.

6 Conclusion and Future Work

In this paper, we have described an automated opti-
mization options search method, discussed certain im-
plementation challenges, and presented preliminary ex-
perimental results.

The final goal of our work is to find the optimal or near-
optimal set of GCC compiler inherent optimizations for
an arbitrary application in an automated fashion. We
believe that defining a proper methodology is only the
first step toward reaching this goal.

Currently we are focused to the following tasks:

• Develop a new clustering strategy of partitioning
the machine-learning space



162 • Dynamic Optimization Option Search in GCC

• Study the relationships between the program seg-
ment performance behaviors and the underlying ar-
chitecture features and develop a more precise de-
scription of the program segment performance be-
haviors.

• Improve the efficiency of the current non region
based implementation of our method, so that the
overhead of compilation is further reduced.

• Extend our method to apply multi-core architec-
tures.

We believe that the current implementation meets the
two initially set criteria: (1) achieve increased perfor-
mance over the best default optimization setting, and
(2) additional compilation time should be minimal and
should not interfere with the overall GCC performance.

Acknowledgments

We sincerely thank our colleague Murat Bolat for his
valuable role in developing the options combination
search tool.

This project was made possible by the NSF awards
CCF-0541002 and CNS-0509332, for which we are sin-
cerely thankful.

References

[1] Francois Bodin Antoine Monsifrot and Rene
Quiniou. A machine learning approach to
automatic production of compiler heuristics. In In
Artificial Intelligence: Methodology, Systems,
Applications, pp 41-50, 2002.

[2] John Cavazos and M.F.P. O’Boyle.
Method-specific dynamic compilation using
logistic regression. In OOPSLA’06, Portland OR,
US, Oct. 2006.

[3] M. Haneda, P.M.W. Knijnenburg, and H.A.G.
Wijshoff. Optimizing general purpose compiler
optimization. In CF’05, May 2005.

[4] Z. Pan and R. Eigenmann. Fast and effective
orchestration of compiler optimizations for
automatic performance tuning. In Proceedings of
the International Symposium on Code Generation
and Optimization, 2006.

[5] Richard Stallman. Using and Porting the GNU
Compiler collection (GCC). Free Software
Foundation, Inc., 2000.

[6] S. Kasif S. K. Murthy and S. Salzberg. A system
for induction of oblique decision trees. In Journal
of Artificial Intelligence Research, 2:1-32, 1994.

[7] Hai P. Wu, E. Park, Murat Bolat, Mihailo
Kaplarevic, Ying P. Zhang, Xiao M. Li, and
Guang R. Gao. An automatic methodology for
program segment-based compiler optimization
search. In Technical Memo071, CAPSL, Unive. of
Delaware, Nov. 2006.

[8] Hai P. Wu, E. Park, Mihailo Kaplarevic, Ying P.
Zhang, Murat Bolat, Xiao M. Li, and Guang R.
Gao. Automatic program segment similarity
detection in targeted program performance
improvement. In 2007 Workshop on Performance
Optimization for High-Level Languages and
Libraries (POHLL07), March 2007.


