
G-Code Re-compilation and Optimization for
Faster 3D Printing

Xiaoming Li

University of Delaware, Newark DE 19716, USA
xli@udel.edu

Abstract: The 3D printing technology has seen increasingly wider application
in industrial manufacturing and the general public domain. The normal working
flow of 3D printing, i.e., from Computer Aided Design (CAD), to 3D model de-
scription, and last to 3D printers, essentially uses languages such as STL (Standard
Tessellation Language or STereoLithography) and G-code to pass information be-
tween the work phases from designing to manufacturing. However, the languages
are produced and used literally (like using XML for only data representation), and
there has not been much discussion on how these de-facto programming languages
can be compiled or optimized. In this paper, we present our preliminary work that
tries to improve 3D printing’s efficiency at the backend of the working flow. We
re-compile the G-code into a higher-level IR, design a number of physics and graph-
ics driven optimizations, and re-generate G-code from optimized IR representation.
We test our G-code compiler on several popular 3D models and show upto 10.4%
speedup or save more than 16 hours on printing complex models.

1 Introduction
The 3D printing is an emerging technology for product development and manufac-
turing. It is young, but it has passed the stage of being only a hobby activity, and
has seen rapidly growing applications in industry. Some of the high-profile prod-
ucts that are 3D printed include Space-X’s SuperDraco engine [2], Airbus aircraft
parts [3] and many.

A standing-out issue for 3D printing is its speed [5]. Compared to the traditional
manufacturing technologies such as casting or forging, which handle volume of ma-
terial in batches, 3D printing builds up shapes with elementary forms of material
such as powders or filaments. Its speed depends on both the volume of product and
also the shape’s complexity. It is quite common to take days to print even a seem-
ingly simple 3D shape. For example, NASA is developing 3D printing technology for
the first manned lunar base. In its latest demo, a simple chair took about 2 weeks
to print [7].

This paper presents an initial and exploratory effort to improve 3D printing’s
speed using compiler-derived techniques. To understand the speed issue of 3D print-
ing, we need to examine its complete workflow. 3D printing usually starts with a
Computer Aided Design (CAD) software such as AutoCAD. The outcome of CAD
is usually the 3D geometrical representation of a product. Thereafter, the 3D ge-
ometrical representation is processed by a type of software called “slicers” to be
transformed into solid models and further been translated into commands that
can be understood by 3D printers. 3D printers will load the commands, which are
movements of servos and settings for printing such as temperatures or speeds. The
embedded controller on 3D printers will execute the commands and directly control
servos to move the printing nozzles and extruders.

Clearly, we can attempt to improve 3D printing’s performance at any phases of
the workflow. In this paper, we particularly look into the interface to the embedded



3D printer controller. The commands are usually represented in an industry stan-
dard format called G-Code. Our key observation is that while being sufficient to
control the movement of servos, G-code is primitive and loses high-level informa-
tion about the product being printed. The current technique that translates the 3D
geometrical model to the elementary movements in G-code is direct and does have
printing speed in mind. There has been a lack of proper intermediate representation
for any optimization work to became possible.

The main contributions of this paper are a higher-level printing IR for G-Code,
new optimization techniques that respect the physical contraints of 3D printing but
reduce the total printing time, and a G-code generator that re-generates improved
G-code from this IR. We evaluate our G-code compiler on a number of popular 3D
printing models and achieve up to 10.4% speed improvement.

2 Background and Overview

The 3D printing technology is a new manufacturing technology to build 3D shapes.
Generally speaking, traditional manufacturing methods such as forging ,casting or
injection molding manipulate volume of material into desired shapes. In contrast,
3D printing builds up a shape by gradually adding minuscule amount of material
into place piece by piece and layer by layer. That is why 3D printing is also referred
as “additive manufacturing” in many contexts.

The 3D printing workflow typical involves three phases: CAD, slicer, and 3D
printer. CAD software such as AutoCAD, Fusion 360 or OpenSCAD can be used to
design 3D models. CAD interfaces with slicer programs with the mesh description of
3D model. One of the industry’s defacto standard format for such mesh description
is STL (Standard Tessellation Language or STereoLithography).

STL files cannot be directly printed because they only describe the surface geom-
etry of a three-dimensional object without any model attributes. Slicer programs
such as slic3r or Simplify3D translate STL files into printable description of 3D
model. The translation involves two main tasks: figuring out the movements of
extruder to implement the 3D object, and conforming to a 3D printer’s specific
physical capability. Slicers also need to make sure the movements are legitimate for
a specific printer, and at the same time try to maintain the print quality of the fi-
nal product. Therefore, slicers will specify the physical attributes of the movements
such as the extruder temperature, the building bed temperature, and the speeds of
servo involved in movements.

The output of slicers is the description of all the movements, together with the
specification of the printer’s setup and the physical attributes of movement. All of
these are written in the G-code file to be send to the printer.

2.1 System Overview

The proposed G-code compiler has three main components: (1) the geometric IR,
which contains the same semantic information as the G-code, but stores it in a
graph-like data-structure to facilitate the analysis and transformation; (2) front-
end and backend, which convert between the G-code and the geometric IR; and (3)
compiler transformations that currently include only a few essential passes including
the preprocessing passes and the speed optimization passes.

Figure 1 shows the overall working flow of the compiler. The geometric IR and
the front/back ends are described in Section 3 and the compiler passes in Section 4.



G-Code Program

Front End:
G-Code grammar

in
.l, .y files

Geometric IR

Quality Optimization Passes

...

Speed Optimization Passes

Accessory
Edge

Insertion

Heuristics for 
next edge visting

Segmentation

SCC 
(strongly connected 

components)
identification

Preprocessing Passes

Compilation Passes

Back End:
G-Code emitter

Fig. 1: Working Flow of the G-Code Compiler.
3 Intermediate Representation for G-Code

3.1 Design Consideration

What is G-Code? G-code is a numerical control language for programming Com-
puter Numerical Control (CNC) devices. It was born out of the MIT Servomech-
anisms Lab in 1950s, and has since been extended by numerous standard institu-
tions and companies. Originally the language is designed to describe the control
and movement of cutting tools, i.e., essentially telling the servos where to move
and when. Since its beginning, the 3D printing technology also adopt this concept.
Today G-code also becomes the de-facto programming language for 3D printers.

Just like the CNC domain, the 3D printing community has also developed nu-
merous variants of G-code such as the Marlin, RepRap or MakerBot dialects. While
the variants are largely semantically compatible, they differ in the representation of
numbers and the settings of printer. Here we briefly describe the stem of the G-code
that is more-or-less common among all variants.

From the programming language perspective, G-code is extremely simple. Most
G-code variants don’t contain any control structures such as conditional branch or
loop. The language has two basic command sets—G commands that start with the
letter ”G”, and M commands that start with the letter ”M”. G commands basi-
cally describe movements. For example G1 (also represented as G01) specifies a
linear interpolated movement. G3 represents a counterclockwise, circular interpo-
lated movement. M commands basically specifies settings including both movement
settings and machine settings. For example, M205 sets the jerk rate (max accelera-
tion) on the XY axis. Most M commands are modal commands, which means that
the effect of the commands stays in effect until being replaced.

Geometrical Movements The requirement for the IR to store the movements
is easy to implement. The majority of a G-code file is the commands describing
the servos’ movements. The number of dimension in movement, or the degree of
freedom in servo motion, is essentially the number of servos in a printer. The basic
printers have 4 motors, and more advanced varieties have more. Usually the 3D
geometrical space is consisting of the X, Y and Z dimensions and is controlled by
three servos. There are two types of mapping from the three servos to the X/Y/Z
dimensions. In the Cartesian style of 3D printers, each servo controls the motion
along one dimension. The mapping is direct and linear. For the Delta 3D printers [4],



all three servos participate in the motion control along all three dimensions. The
motor movements are translated into 3D space movements through trigonometric
remapping.

In addition to the three servos that control the spatial movements, 3D printers
also have extruders that additively accumulate material. Normally one extruder is
directly controlled by a servo. So the number of material handling servos equals, in
most cases, the number of extruder equipped in a printer. An extruder servo mostly
moves in one direction, that is, extruding/adding material. On the other hand,
printing an object involves move the extruder motor backward, i.e., for retracting,
from time to timer. For example, to avoid the leakage of material when the extruder
moves from one section to another disconnected one, the corresponding extruder
servo will retract and when arriving at the destination location, extruding again.

Movement Setting and System Setting Up to this point, the IR for G-code
is an abstract geometric space. Hypothetically speaking, transformations using it
won’t guarantee the correct printing of the transformed G-code. The reason is that
a movement needs to be accomplished with proper settings such as temperatures
and speeds for it to be printed correctly and with good quality. The setting is
also highly contextualized, i.e., the properness depending on what happens before
the movement. Therefore, a practical IR must incorporate information the printer
setting, and equally importantly maintain the dependency of the settings.

The main settings relevant to movement are temperature and speed. Movements
are printed with different temperatures. The reasons for doing that include to guar-
antee good bed adhesion, reduce material warping or improve surface quality of
object. Therefore, when our compiler parses the G-code, it needs to deduce the
temperatures for all the movements, and attaches the information to the edges in
the Cartesian space.

A 3D printer also constantly changes printing speed in the process of printing
an object. For example, when printing a small section, the speed might be reduced
to give material sufficient cooling time. As another example, when the movement is
across a large unsupported section, the speed might be increased to avoid sagging
of the material (a.k.a “bridging” mode). Clearly the speed setting of a movement is
context-sensitive, i.e., that the appropriate speed setting depends on what happens
before it.

In addition to the settings related to movement, G-code also contains commands
pertaining to features that are specific to slicer or printer. Those commands usually
appear at the prolog or the epilog parts of G-code. The commands are usually not
tied to specific movements. The compiler’s frontend will recognize the start and the
end of those sections, and re-emit them when transforming back into G-code.

Encoding Printer’s Physical Constraints By this point, the IR design has
become capable of representing the geometrical space that a printer’s motor can
reach, arbitrary movements in the space, and the settings of the printer’s auxiliary
equipment such as heat bed or fans. One thing that needs attention is the resolution
of number in the IR. The space and movements are not continuously reachable by
the printer. The servos are mostly step-driven. That means, they can only rotate as
multiples of the minimum amount of rotation, and can’t go below the rotation reso-
lution. In other words, the numbers should be discretized according to the printer’s
capability.

For example, a key specification parameter of 3D printer is the minimum layer
height. The parameter is usually linked to the rotation resolution of the Z-axis servo.



If the minimum height is 0.1mm, any representation of the Z-axis position in the
IR should be a multiple of 0.1mm. Imaging that if a transformation introduces a
new vertex in the space with Z = 3.55mm, the newly created vertex, however, is
meaningless because it simply won’t be able to be reached precisely by the printer.
Practically the printer’s controller might still accept such a value in the G-code,
but where it actually goes is unpredictable, and may likely create printing quality
problems such as the separation of layer.

Therefore, we make the resolution of number in the IR explicitly visible in the
IR. The resolution constraints are not only maintained when G-code is parsed or
re-generated, but also are mandated when transformations are applied on the IR.

3.2 Definition of the Geometric IR
We have so far discussed the main points for consideration when designing the IR
for G-code. Taking all these into account, we can put together a formal definition
of the G-code IR. The IR has two parts, a graph representation that describes the
geometric information in the G-code, and the decorating properties that store the
settings for the geometric movements and the printer.

The geometric basis of the IR is a N-dimensional graph, N being the number
of servos in the 3D printer that the IR is representing. The graph is undirectional,
because material printing can be done on either one of the two directions of the
movement. So this geometric information can be encoded as G = (V,E), V is
the vertex set and E is the edge set. For v ∈ V , v is a n-dimensional vector,
where each element vi represents the rotational position of the ith servo. For E =
ei|ei = vi0 − vi1 , each edge in the set represents the linear interpolated movements
of servos between vi0 and vi1 . The edges are undirectional.

The graph is decorated with three categories of property: vertex property, edge
property and environmental property. The vertex property in the current IR con-
tains the position vector vN of the vertex, and several flags that can be set by
analysis or transformation passes to facilitate future processing of the graph. The
flags include whether the vertex is introduced new in the segmentation pass, and
the strongly connected component index that the vertex belongs to.

The edge property contains the settings for correctly printing the edge. The
settings include temperature, line speed of movement, and starting/ending actions.
The temperature and the speed settings are self explanatory. The starting/ending
actions of an edges are those M instructions in the G-code that do not directly
affect movements but still need to be done before or after the printing of the edge.
Examples of such actions include M207—setting jerk rate, or M212—setting bed
offset for the auto-leveling feature, etc.

The environmental property describes the printer system constraints such as the
minimum resolution for servos or the sensors’ precision. Even though part of such
information can be reasoned from G-code, our current implementation manually
provide the environmental property as an external configuration for the compiler.

3.3 Example of IR
Here we illustrate the proposed geometric IR with an example segment of G-code.
The example is simplified for this illustration because in real G-code, the dimen-
sionality is at least 4—one servo each for the X, Y, and Z dimensions and one servo
for extruding. It is hard to visualize a 4 dimensional graph. So in this example, we
only use the X and Y axis and one extruder dimension in the G-code program.

Figure 2a shows the example G-code segment, and Figure 2b shows the visual-
ization of the corresponding IR. As we can see, each G-instruction is translated into



G1 X100 Y100 Z0 E1 F100
G1 X100 Y300 E2
G1 X300 Y300 E3
G1 X300 Y100 E4
G1 X100 Y300 E5
G1 X100 Y100 E5
G1 X300 Y300 E6

(a) G-code

0,0,0 (0,0,0),E0

100,100,0

(100,0,0),E1

100,300,0

(100,0,0),E1

300,300,0

(100,0,0),E1

(100,0,0),E1

300,100,0

(100,0,0),E1
(100,0,0),E1

(b) IR visualization

Fig. 2: G-code example and its corresponding IR visualized.
one edge, and the M-instructions preceding an edge will be attached to the starting
action property of the edge.

4 G-Code Optimization
The G-code IR provides a holistic representation of information contained in the
G-code output of slicer. The distinctive characteristic of the IR, compared with the
raw G-code format, is its high-level semantic. The IR is naturally geometrical and
the raw G-code is sequential. For example, movements in a G-code file might be
totally independent to each other. However, it is hard to tell that in the original
form, as the G-code mandates an unnecessary order between the movements. On the
other hand, the IR representation of the same movements can be easily analyzed
for their dependency or even spatial locality, and further be reordered for faster
printing.

The higher-level semantic of the G-code IR opens the door for 3D printing
transformations. That is, transforming a G-code IR representation of an object
into other equivalent IR representation, and when feeding the transformed IR to
a 3D printer, still produces the same object. The concepts involved in this G-
code compilation and optimization are similar to those for the typical computer
programming languages. However, as we can imagine, computers compute, but 3D
printers perform a very different kind of job in a very different way. We need to
redefine what kind of transformation is legal, what are the optimization goals, and
how to model performance (i.e., speed, quality, etc.) for the specific problem of
compiling for 3D printer.

4.1 Compilation Constraints

A transformation of the G-code IR changes both the geometric description and also
the order of movements or extrusion. First we need to find an operable definition of
what is a valid transformation. Eventually, any valid G-code transformations should
be able to print the same object that the original G-code program intends to make.
The question is how this correctness requirement can be translated into a series of
legality tests, like the dependency test for our computer compilers?

The correctness requirement for 3D printing basically means two things: (1) a
valid transformation must extrude material exactly as the original extrusion move-
ments do in the IR. The transformation cannot extrude more, and cannot extrude



less. (2) The order of extrusion must be feasible for the 3D printer. We can use a
simple example to demonstrate what is the “feasibility” here. When moving from
the position (x, y, z) = (100, 100, 2) to (100, 200, 2), for example, there should not
be any place along the moving path where the height of the printed part is higher
than 2. Otherwise, the movement will damage the printed portion.

Beyond that a valid transformation must print out the same shape, like a com-
piler transformation should produce the same results, 3D printing has requirment
on the quality of printout. Still using compiler transformations as example, in a
computer program, transforming ”1+1” into ”1*2” will be legal but may carry dif-
ferent speed characteristics. The term “performance” in 3D printing not only means
printing speed, but also printing quality. When the movements in a printing job are
reordered, in many cases, the outcome can have drastically changed quality. It is
because materials that 3D printer handle, such as PLA, ABS or Nylon, exhibit
different physical properties such as layer adhesion when they are printed with dif-
ferent speeds, or with printing direction from the layer below, etc.. Therefore, when
we transform G-code, we need to respect this additional quality constraint.

4.2 Optimization For Printing Speed

Just like that our computer compiler transformations can be tuned for different goals
such as speed or code size, G-code can also be transformed to improve on different
3D printing metrics such as printing speed or product quality. In this paper, we
describe our exploratory study of printing speed optimization using the G-code IR.

Pre-processing with IR Given an IR representation of a 3D printing task, the
basic job is to traverse all the edges exactly once. As we will discuss later, this
job sounds like an Euler Tour problem. But before we start looking into how to
walk through the graph, we want to point out that the raw IR representation hides
potential optimization opportunities. And these opportunities can be made available
for later transformation by adding a preprocessing pass after the compiler front-end.

In this study we implement two preprocessing passes: graph segmentation and
connected component identification.

The purpose of graph segmentation is to facilitate the route searching in the
Euler Touring based optimization. Here is an example of how graph segmentation
can help. As Figure 3 shows, in the original G-code representation, two movements
A − C and B − D intersect in space. However, because they are originally repre-
sented as two separate edges, the Euler Touring algorithm might not be able to take
advantage of the intersection to find more efficient tours. If we segment the graph,
i.e., introduce a dummy vertex for the intersection point, the touring algorithm
would be able to move only parts of the original movements and find more efficient
touring path. Thanks to this added flexibility of touring, after graph segmentation,
the Euler Touring algorithm will find the shortest tour that uses the additional
connectivity of the dummy vertex ”S”.

Graph segmentation itself is a conceptually very simple processing. A naive
algorithm will try to intersect an edge with all other edges. If any two edges intersect,
introduce the intersection point as a new vertex and break up the original two edges
into four based on the intersection point. In this case, the complexity of the naive
segmentation will be O(E2), where E being the number of edges. Because the newly
created edges might also intersect with other edges, the iteration will continue until
no further changes are made.

The naive graph segmentation algorithm won’t work in practice. A typical 3D
object will involve millions of edges. The complexity of O(E2) simply make the naive



Orig

A

CB

D

(a) Original Graph

Orig

A

S

B C

D

(b) Segmented Graph

Fig. 3: IR Pre-processing: Graph Segmentation
algorithm not viable. We use two pruning techniques to accelerate the algorithm.
The first is to further preprocess the graph IR to identify connected components.
So that we only need to test intercepting with a component. We use a DFS-based
approach to find all connected components. Since connected components can still
be huge, we further re-organize a component into layers and only try interception
test with in the layer that the edge belongs to and the layer below and the layer
above, where are the only place that any potential intercepting edges can reside.

4.3 Printing Speed Optimization

As previously discussed, the proposed G-code IR supports a variety of optimization
goals such as speed, printing quality or physical strength. This paper describes our
preliminary result of optimizing speed. Under this set up, the goal function is simply
to cover all edges in the original graph exactly once, and minimize the overall time.

The goal sounds very much like an Euler Tour problem, i.e., finding a path in a
finite graph that visits every edge exactly once. The main challenges to adapt the
Euler Tour problem in the solving of the G-code printing speed problem lie in the
subtle but fundamental problem setup differences. The differences are derived from
how 3D printers work and perform.

The starting point of our preliminary optimization is based on the Hierholzer’s
algorithm [6,8] with solutions to address the specifics of the G-code optimization
setup. Our main effort is spent on addressing the differences between the Euler Tour
problem and our optimization problem. Next we describe the differences and our
solution thereof.

– Goal: The Hierholzer algorithm finds an Euler tour in a graph, and that’s it.
There is not any optimization criteria built-in. The only guarantee is that every
edge is visited exactly once. But no effort is made to find the tour that minimize
the total distance or other graph metrics. Note that the total distance in an
Euler tour is not fixed for a graph, as accessory edges need to be introduced in
order to guarantee the existence of an Euler tour.
Our solution is to include heuristics at several places in the algorithm to optimize
the total tour time. The places include the construction of accessory edges, the
choice of next edge and the choice of next vertex to visit. The final heuristics
also consider the next couple of challenges, and will be detailed in Section 4.4.



– Complexity: The computation complexity of the Hierholzer’s Algorithm is O(V +
E), V being the number of vertices and E being the number of edges. Real-world
G-code, when transformed into the proposed IR, can contain millions of vertices
and/or edges. It is impractical to blindly apply the Hierholzer’s Algorithm. Our
solution is motivated by a type of compiler pass, i.e., the Strongly Connected
Components (SCC) passes. That is, we apply the optimization algorithm on
every connected component that has been found. Also when the work on one
component is finish, we use the same heuristic that finds the next vertex to
identify the next component to process.

– Performance of edge visit: In the setup of the Euler Tour problem, the weights
of edges are constant. In our G-code optimization problem, the weights are the
distance of movement, and they are indeed constant, too. However, the time
to travel through the edge is not. This is because for a 3D printing to move,
the setting of the movement must be ready, which introduce overhead. Also the
change of moving direction lead to acceleration, and the involved servos need
to do extra work to handle the G-force. Overall, the time to travel through an
edge is contextually dependent on the previous edge. Our solution is to build
a physical performance model, quite rough at this stage, for the edge traversal,
and incorporate the model into the optimization heuristics.

4.4 Optimization Heuristics

Accessory edges: In order to find an eulerian tour, accessory edges need to be
introduced in a graph to connect pairs of vertices with odd degrees. We need to
minimize the total distance of the introduced accessory edges to optimize the total
time for traveling the eulerian tour. That is, if a graph has n odd-degree vertices,
we need to find the division scheme that minimize

∑
∀v dist(vi, vj), This is another

well-known algorithmic problem called the Pairwise Optimization problem. We use a
simple heuristic to solve the problem. We build a matrix of all the pairwise distances
any two of odd-degree vertices, and use Dynamic programming to iteratively remove
the next shortest pair, until all odd-degree vertices are covered. We want to point
out that our heuristic is not globally optimal.

Next edge to visit: In the Hierholzer’s Algorithm, if a just-visited vertex has
multiple un-visited outbound edges, a random choice is made. In the case of G-code
IR, the choice of the next edge carries significance with regard to the edge traversal
time. There are two reasons. First, if the next edge has different setting, e.g., speed
or temperature, the printer need to change setting first before it can drive the
servos to make the movement. That introduces overhead. Second, change of moving
direction introduces G-force in servos. This is call “jerk rate” in the 3D printing
terminology. Without going into too much physic details, the short conclusion is
that the lower the G-force, the faster the printing. Using the example in Figure 3b,
if the current vertex is S, and the previous edge is B − S, the best next edge is
S −D but not S −A or S − C, as S −D is mostly aligned with the previous edge
and will incur the least G-force.

We develop a simple heuristic here. We first check the printing setting of the
edge candidates, and if possible, only choosing from the ones that have the same
setting as the current edge, or if not possible, involving the least setting changes. If
there are still multiple candidates, which are the majority of the cases, choose the
one the involves the minimum G-force to travel.



5 Experiment and Evaluation
The G-code compiler and the printing speed optimization are evaluated with 3D
models. There have been no public available compiler/optimization work on G-code,
and as the result there is no “standard” benchmark for the kind of evaluation we
want to do. Fortunately, due to the increasing populaty of 3D printing technology,
there are multiple websites for people to share 3D printing models—sort of like
github for 3D models. We use http://www.thingiverse.com (Thingiverse), one of
the most widely used 3D model sharing site, and use several of the most popular
models on that site as the benchmarks. The models are “Baby Groot”, “Benchy”,
“Printer Test”, and “Mid Castle”. Table 1 shows the benchmark models, download
links and the total number of downloads as reported by Thingiverse.

Table 1: 3D Model Benchmarks
Benchmarks URL # of Downloads

Baby Groot https://www.thingiverse.com/thing:2014307 32402
Benchy https://www.thingiverse.com/thing:763622 42329

3D Printer Test https://www.thingiverse.com/thing:2656594 32235
Medieval Castle https://www.thingiverse.com/thing:862724 18701

All the models are downloaded as STL files. We use Simplify3D [1], a widely
used commercial Slicer to generate G-code for the STL. The 3D printer we use is
JGAurora A8, and its controller firmware is Marlin, a Linux-based software that is
widely used as the operating system in 3D printers.

The G-code output from Simplify3D is the input to our compiler and optimizer,
and our output is also G-code. We measure the printing time of the before/after
versions of the G-code. Actually Simplify3D also reports estimated printing time
based on its own G-code output, and in almost all cases, its estimation is spot on.
In this paper, we report the actual printing time.

Table 2 shows the before and the after printing time of the benchmark modes. We
also collect statistics of the model before vs. after, including the number of vertices,
number of edges, total distance traveled. As the result shows, our optimization
achieves upto 10.4% speed or about 973 minutes for the model ”Medieval Castle”
that has the highest number of edges (9.08 million). On simpler models, our speed-
ups are around 5%.

Table 2: Before/After Comparison and Speedups.
Benchmarks Edges Vertices Total Distance (mm) Time (minutes) Speedup

Baby Groot 3.39M/3.42M 3.58M/3.65M 183.536K / 174.227K 632.945/605.71 4.7%
Benchy 2.05M/2.43M 2.43M/2.67M 5.34M/5.22M 1866.1/1766.75 5.3%

3D Printer Test 190.9K/194.2K 211.37K/213.3K 872.1K / 829.3K 380.301 362.723 4.6%
Medieval Castle 9.08M/9.76M 16.81M/17.33M 29.1M/27.51M 9358.84/8385.93 10.4%

6 Conclusion
In this paper we present the preliminary design of a G-code compiler. Particularly
we introduce an appropriate IR that captures all information in G-code and in
addition makes it easily to retract higher-level graphic and physical information.
Furthermore, we discuss the legal test for G-code transformation on the IR and
several heuristics for improving the printing performance. The evaluation using
several popular 3D models shows up to 10% speedup on complex and long printing
jobs.

http://www.thingiverse.com
https://www.thingiverse.com/thing:2014307
https://www.thingiverse.com/thing:763622
https://www.thingiverse.com/thing:2656594
https://www.thingiverse.com/thing:862724


References

1. Simplify3d. https://www.simplify3d.com/
2. Spacex uses dmls to 3d print inconel superdraco en-

gine chamber. https://additivemanufacturingtoday.com/
spacex-uses-dmls-to-3d-print-inconel-superdraco-engine-chamber

3. Bridging the gap with 3d printing. (2018), https://www.airbus.com/newsroom/news/
en/2018/04/bridging-the-gap-with-3d-printing.html

4. Bell, C.: 3D Printing with Delta Printers. Apress, USA, 1st edn. (2015)
5. Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies: Rapid Pro-

totyping to Direct Digital Manufacturing. Springer Publishing Company, Incorporated,
1st edn. (2009)

6. Hierholzer, C., Wiener, C.: Ueber die Möglichkeit, einen Linienzug ohne Wiederholung
und ohne Unterbrechung zu umfahren (March 1873)

7. Staedter, T.: Ai spacefactory wins nasa’s 3d-printed extraterrestrial habitats challenge.
In: IEEE Spectrum. IEEE (May 2019)

8. Torrubia, G.S., Blanc, C.T., Navascués-Galante, L.: Eulerpathsolver : A new application
for fleury ’ s algorithm simulation (2009)

https://www.simplify3d.com/
https://additivemanufacturingtoday.com/spacex-uses-dmls-to-3d-print-inconel-superdraco-engine-chamber
https://additivemanufacturingtoday.com/spacex-uses-dmls-to-3d-print-inconel-superdraco-engine-chamber
https://www.airbus.com/newsroom/news/en/2018/04/bridging-the-gap-with-3d-printing.html
https://www.airbus.com/newsroom/news/en/2018/04/bridging-the-gap-with-3d-printing.html

	G-Code Re-compilation and Optimization for Faster 3D Printing

