
Data Dependence Analysis In Presence Of

Inheritance and Polymorphism*

Li Xiaoming, Chen Daoxu and Xie Li
State Key Laboratory of Novel Software Technology

Department of Computer Science, Nanjing University, Nanjing 2 10093
Email: xmli @dislab.nju.cdu.cn, cdx @nju.edu.cn

Abstract:
The data dependence analysis is a hard problem,

particularly in the presence of data structures similar to
the pointer: The inheritance and the polymorphism in the

object-oriented language provide the program designing
and the software engineering with new methods. But at the
same time, they bring about more barriers in the
dependence analysis for object-oriented language. This
paper proposes an object-oriented data dependence
analysis model - 0 D A M . The model can present and
analyze the specijc concepts in 00 languages. We muinljj
discussed the framework and the ke-y techniques of ODAM,
including the object hierarchy graph, the merge of the
read-write set and the dependence analysis based on the

object hierarchy graph.

Keyword:
Dependence analysis, Object Hierarchy Graph,
Parallelism, Inheritance, Polymorphism

1. Introduction:
The most important aspect of the automatic

parallelizing compile is the data dependence analysis on
programs. When compared with the procedural languages,

many new concepts are introduced in 00 languages.
Among them, the following three have the most

significant effects on the dependence analysis. They are

the object, the inheritance and the dynamic binding. We

discuss the three aspects respectively in the following
parts.
The object is the basic idea in describing data structures in

00 languages. The object and the variable are two
different concepts in these languages, which is different

from that in the procedural language. According to the
declare type, variables can be divided into 2 categories,
one is the simple variable, and the other is the object
variable. The type of the simple variables is the primitive

type of a language, and what are stored in them are values
of the respective types. The declare type of the object
variables is a class, and they can be viewed as special
pointers. What the object variable stores isn’t the object,

but the binding relationship with the object. Only the
binding relations of the object variable with objects are

changed when assigning a new value to them. The object
variables have some common properties with the normal

pointers, such as two pointers can be alias to each other.

When considering the 00 characteristics, the object
variable has more unique properties, such as the
inheritance relation among objects according to the class
hierarchy graph.

The inheritance describes the hierarchical relation
between the data structures (class) in the 00 language.

Because of this, the object variables in 00 languages and

* This work is supported by the National Climb Plan B and
the 863 High Technology Research & Development Project.

0-7695-0589-2/00 $10.00 0 2000 IEEE
220

mailto:dislab.nju.cdu.cn

the pointer in procedural languages show many

differences. The object variable can bind not only the
object of its declared type, but also the object of the

subclass. On the contrary, the pointer can only point to the

memory units whose type is the pointer’s declared type.
We can conclude from the above that when analyzing the

data dependence in the 00 language, there are data
dependences not only between two object variables of the

same type, but also between the two who have the
inheritance relations.

The dynamic binding makes it impossible to get all

the information of the call at compile time. And

consequently, it’s more difficult to do the interprocedural

analysis. An object variable can bind objects of different

types, so if the method is overridden, the compiler cannot

know which method is to be called at runtime. On the

contrary, in languages like Fortran, the precise call graph

can be got at the compile time, which make the accurate
interprocedural analysis possible. So in the analysis on the

00 language, some conservative algorithms must be used
to do the interprocedural analysis, and it must include all
possible methods. It can be seen that in parallelizing the
00 language, the efficiency and the accuracy of the
conservative algorithms affect the mining of the
parallelism greatly.

Within the context, we propose the Object
Dependence Analyze Model (ODAM) and implement the
ODAM based on Java. The main idea of ODAM is to
include the class hierarchy and the virtual methods into the

intemal format of the dependence analysis, which make
the analyze algorithm can access these information fully.

So, The model can handle the peculiar characteristics in

00 language, including object, inheritance, dynamic
binding, etc.

The rest of this paper is organized as following:

Section 2 discusses the ODAM in detail, Section 3 gives
some examples, Section 4 gives some related works and
Section 5 is the conclusion.

2. ODAM
ODAM mainly deals with the holdbacks brought by

the 00 concepts to the parallelism mining :a an
object-oriented way. The key idea is generating the

abstract object according to the class hierarchy. Based on
that, it gives the rules to test the dependence between the

abstract objects and the real ones, and it tries the best to
get the most precise dependence relation possible. The
following part describe the ODAM from several aspects:
Section 2.1 clarifies the problems ODAM solves; Section

2.2 introduces the concept of the Object Hierarchy Graph;
Section 2.3 gives the rules how to calculate the define set

and the use set including abstract objects; Section 2.4

gives the rules of dependence testing and Section 2.5
discusses the implementation of ODAM.

2.1 Problem Clarification
The problems in the data dependence analysis can be

divided into 2 largely-distinct categories. The first is the

problem concerns only the dependence among object
variables (Figure 1). The second involves analyzing the

dependence between two fields of objects (Figure 2).
We shall refer the first problem as Variable

Dependence Problem (VDP), and the second as Field
Dependence Problem (FDP). The essence of VDP is to

analyze the binding relation between the object variables
and the real objects. Then naturally, the analysis

techniques for the scalar variables in procedural language
can be applied in VDP. On the other hand, the key point in
FDP is to test whether the objects bound by the object
variables are equal. The counterpart in the procedural

language is to test whether two pointer point to the same
memory location. But in FDP, much more factors must be

considered, including inheritance, encapsulation, etc. Also,
FDP must be handled in the interprocedural analysis in

00 languages, because methods belong to class and they
are dynamic bound. This paper mainly concerns with FDP.

2.2 Object Hierarchy Graph
The inheritance relation must be dealt with when

considering FDP. The class hierarchy graph is usually used
when depicting the inheritance relation among classes.
That gives us implication that we can also use the

221

...
. ,, I ClassAobjl,obj2;

$: objl = new ClasSA(); ,
T: obj2 = new ClasSA();

" , ...
U: objl = obj2;

There exists output dependence

between S and T, and flow
dependence between T,U

Figure 1:Variable Dependence Problem

...
ClassA obj 1 ;

S:
T: objl.field1 = ...;

obj 1 = new ClasSA();

...
U: ... =objl.fieldl;

There exists flow dependence between
S and T, but whethert here is dependence between

T and U depends on if obj 1 is
redefined in statements between T,U

Figure 2:Field Dependence Problem
hierarchy graph when dealing with the inheritance relation
among objects. We can apply the hierarchical relations to

test if two object variables may bind the same object. First,
the concept of real object is introduced:

Definition 1 Real Object(R0): RO is a data structure,

which identifies uniquely the real objects in program
generated with the operator new. The object type is also

recorded in RO.
In Figure 3, we can distinguish the different objects

bound with the object variable obj in different phases of
runtime with the use of R 0 1 and R02. If not stated

explicitly, the following part use Java as the example
1 an guage .

Assume ClassB is a direct subclass of ClassA.
ClassA obj;

obj = new ClassA (>;

//This object is identified as R01:
......
obj = new ClassB (>;

NR02 ;

Figure 3:Use of RO
We need to say some more words if the object is

generated in a loop. There are many ways to deal with this.

For example, we can assign the same RO to all the objects
generated in the loop while ignoring the infection of the
iteration. This is a method with low precision. On the

other extreme, different ROs will be assigned to objects

generated in different iteration, which can improve the
precision of the analysis. We can see from this that the
concept RO has good adaptability that it can reach
arbitrary precision the analysis requires.

Definition 2 Abstract Object (AO): Abstract object is a
virtual object. Each class and array type corresponding to
one unique abstract object. The A 0 represents all the
instances in the type. The abstract object corresponds to

type ClassA is showed as AOClass~.
The abstract object treats the objects of the same type

as a whole. The define and use of a field of a abstract
object is viewed as the define and use of the
corresponding field of all the object of the class.
Definition 3 Let CLASS denotes all the classes in the
program. The function type: A 0 U RO-CLASS is defined

as following: type(obj) = the type of obj, objE A 0 U RO

The relation super c CLASS x CLASS is definded as
following: (ClassA,ClassB)E super if and only if ClassA
is the direct superclass of ClassB. Consequently, super*

and super+ can be definded.

For example, type(AOc,,,,4) = ClassA. As to the R 0 1
and R 0 2 in Figure 3, type(RO1) = ClassA, type(R02) =

ClassB and (ClassA,ClassB)E super.
Based on the above, we can give the definition of the

Object Hierarchy Graph, whose purpose is to show the

222

inheritance relation among objects, including both real

objects and abstract objects.

Defmition 4- Object Hierarchy Graph: It has two

component, which can be wrote as (V,E). V=AO U RO is

the set of vertex. E is the set of directed edges. (vl,v2)E E

if and only if one of the following is satisfied: (1)

vl,v2 E AO, (type(vl),type(v2)) E super; (2)

v l E AO,v2E RO , type(vl)=type(v2).

From the definition of OHG it can be proved that the
OHG is a directed acyclic graph(DAG) if no cycles

present in the class inheritance graph (The cycles of

inheritance are forbidden in most compilers). What the

OHG defined is the containing relation among objects

being read or wrote. If a node in the OHG is accessed, it

will be dealt with as all the node in the connected

subgraph containing the origin node have been been read

or wrote. In Figure 4, (a) shows the classes’ inheritance

relations; (b) is a program fragment and (c) gives the OHG

corresponding to (a) and (b) according to the definition
4.

2.3 Calculate Define Set And Use Set
According to the definition of VDP and FDP, the

statements without method call can be divided into 2
categories. (1) Simple statement: Only the simple type

variable and the object variable are definded and used; (2)

Field statement: Some fields of objects are definded and

used. In practice, a statement may be both the simple
statement and the field statement. But in order to improve

the precision and the efficiency of analysis, the statement

can be converted into one of them in the front-end. The

detail of the converting techniques won’t be discussed

here.

We use SIMPLEVAR to denote the set of all simple

variable, and OBJVAR to the set of object Variable. The

set of all variable is VAR=SIMPLEVARuOBJVAR. A
special set OBJFIELD is introduced to represent the set of

all fields of objects (RO or AO).Then all the memory units

needed in the analysis form a set

MEM=VARU OBJFIELD.

Definition 5 Given xE OBJFIELD,two functions can be

class ClasSA{
...
1

class ClassB extends ClassA

...
1

class ClassC extends ClassA

...
1

(a) The classes

ClassA obja;

ClassB objb;

ClassC objc;

obja = new ClassB(); //ROl;

objb = new ClassB(); //R02;
objc = new ClassC(); //R03;

obja = new ClassA(); //R04;

(b) The program fragment

(c)OHG

Figure 4 The Object Hierarchy Graph

definded on x: Obj: OBJFIELD + A 0 U RO. Obj(x)

return the object of x; Fld: OBJFIELD +string. Fld(x)
return the name of the field of x. Because all fields have

223

. .
... I ?

ClassA obj;

SI : obj = new ClasSA(); //Ro1
S2: ... = obj.field1;

...
S3: obj.field1 = obj.field2 + 1;

//Assuming the algorithm has lose

//the track of obj

def(Sl)={obj}

use(S2)={ROl.fieldl}

def(S3)=[AOc,,,,A,fieldl }

use(S3)={ AOcpdSsA.field2 }

Figure 5:Calculate the defluse set
unique names in a class, two fields can be distinguished by

the names.

Definition 6 def ~tatement-2'~.' give the define set of
a statement;

use: statement - 2"'

bind: OBJVAR
bound to a object variable.

give the use set of a statement;

2(AO U RO) give the set of object

The defhse set of a simple statement can be got
directly. The variables appearing in the left side of the

assign symbol are added to the def set, and the variables in

the expressions are added to the use set.

As to getting the defhse set of a field statement, the

object binding set must be got first for all the object

variables in the statement. In order to ensure the

correctness of the analysis, all the corresponding field in

the object binding set should be added to the def/use set

respectively. The common method to calculate the object

binding set is to track the binding relation of the object

variable following the program flow. If the tracking

algorithm is precise enough, it can accurately determine

the object binding set of each object variables in the

statement, i.e. bind(V) C R O . On the other hand, the track
may be lost when dealing with the loop or the method call

statement. If no assignment to the object variable occur

after losing the track, it can be conservatively estimated

that the object bound to the variable is the abstract object

of the declared type of it. From the definition of abstract,
we can prove that the conservative assumption is correct.

The example of how to calculate the def/use set' of

statements is shown in Figure 5.
There are fundamental differences between the

calculation of the def/use set for the simple statement and

for the call-method statement. Because of the

polymorphism introduced by the 00 language, a

call-method statement corresponds to more than one

possibilities of call at runtime. We employ the

conservative approach that the def/use set are calculated as

the union of the corresoponding sets of all the method

possibly called. Considering the definition of the

dependence relation (Definition 8), only the field

statement and the call-method statement have effects on

the defhse set at the call site. It's the same as the analysis

of the field statement, the object binding set of the object

variables used in the method, including the call object, the

object variables as the arguments, must be got first. The

calculation of the def/use set can be more precise with the

improvement of the analyze algorithm without any bound,

if the defhse set is expressed in OHG. For example, two

extremes are of special interest: (1) Estimate the data
dependence without analyzing the method at all. In this

condition, if we want to calculate the defhse set, first we
must get the corresponding abstract of the object variables

in the method called; second, the defhse set of the method/'

can be set as the union of all the fields of the objects in the

connected subgraph of OHG containing the corresponding

node of the abstract object. Obviously, the def/use set got
in this way is the superset of the true defluse set of the

method. So the correctness is guaranteed. (2) In some

simple conditions, the object binding set can be got

precisely. So the techniques such as the inline analyze can

be used to get all the defhse set of the statements in the

method, with the same idea of tracking. Consequently, the

def/use set of call statement is the union of all these sets.

The example of calculating the defhse set of the call

method statement is shown in Figure 6.

/

224

...
Parent obj;
...
S 1 : obj.func();

//Given that bind(obj)=(R 0 1 ,R02} and
//type(ROl) = Parent type(R02) = Child
...
S2: obj.func(); //bind(obj) = { AOParcn,}

The method func is overridden in subclass Child

so:
def(Sl)=def(ROl .func) U def(R02.func);
def(S2)=def(AOP,,,,,.func) U def(AOchild.func);
use(Sl)=use(ROl .func) U use(R02.func);

use(S ~) = U S ~ (A O ~ ~ ~ ~ ~ , . ~ U ~ C) U use(AOchild.func);

Figure 6:Calculate the defhse set of call-method
statement

2.4 Dependence Analysis
We can do the dependence testing after get the

def/use set of all the statement. The concept “layer” is

introduced to describe the range of the dependence test.
The data dependence relation is only valid between two
nodes in the same layer. The inter-layer dependence is
meaningless.

Because the dependence between the nodes in the
loop and that out of the loop don’t have explicit meaning,

and the same is true to that between the nodes in a method
and the nodes in the same method of the call site, we can
give the condition to set up a new layer: (1) When
analyzing a loop statement; (2) When analyzing a call

statement. The loop statement and the method-call
statement can viewed as a virtual node when doing the

dependence testing between them and the other nodes in

the same method. The defhse set of a virtual node is the
union of the defhse sets of all the nodes in its sublayer.

Three categories of dependence is considered in most

cases. They are the Flow Dependence, the
Anti-Dependence and the Output Dependence. When not

considering the OHG they can be defined as: Given two
node S1 and S2 in the same layer, and S2 is accessable

from S1 along the control flow of the program:

(1) Flow Dependence (6 ,):

S2 6 , S1 tf def(S1) n use(S2) f 0

(2) Output Dependence (6 ,):

S26, S1 tf def(Sl)ndef(S2) f 0

(3) Anti Dependence (6 ,):

S26, S1 tf def(Sl)ndef(S2) f 0

When the OHG is introduced in the dependence

testing, the testing conditions above aren’t valid any more,
because there may be abstract object in the def/use set.
The abstract object should be looked upon as all the

objects of the class, so we cannot determine the
dependence relation only by comparing two memory units

in the def/use set are equal. The definition of the
intersection of two memory unit sets should be extended
to test the dependence of two def/use set based on OHG.
Definition 8 Extended Containing Relation : Given

xE MEM, S MEM, X E ~ S tf

3 : y E S A (((x E VAR) A (x = y))

v ((x E OBJFIELD) A (y E OBJFIELD)

A (obj(x) is in the connected subgraph of OHG that

containing obj (y)) A (fld (x) = fld (y))));
Extended Intersection Operator ne : Given M1,

M2 MEM, xE MEM, M1 n ,M2 is defined as:

M 1 n e M 2 = ((x ~ M ~ A x E , M ~) V (X € , M ~ A X E M ~))

Based on the definition of the extended Intersection

operator, we can define the extended dependence testing

conditions which can deal with the abstract object: Given
two node S1 and S2 in the same layer, and S2 is

accessable from S1 along the control flow of the program:

(1) Extended Flow Dependence (A ,):

225

S ~ A , SI tf def(Sl)neuse(S2) f 0

(2) Extended Output Dependence ():

S 2 a 0 S 1 fJ def(SI)nedef(S2) f 0
’

(3) Extended Anti Dependence (A~):

S 2 ~ ~ s 1 tf def(S1)nedef(S2) f 0

2.5 Implementation and Application

Front-end Analysis

IT1 Dependence Analysis

I I Dependence I .
Compile time

Task Scheduling

Runtime

1 Figure 7 System Flow I
We implement ODAM in JAPS [9] based on Java

language. Two main aspects should be noted: one is the
use of ODAM in compile time; the other is the support to

ODAM at runtime. Figure 7 is the main flow of the

system.
In front-end analysis, we get the class hierarchy

graph the primitive information about the variables being

wrote or read. In the second phase, the OHG is

constructed according to the definitions 1 - 4, and the

defhse set is calculated after the definitions 5-7. Both the
steps are in term of the request of the
dependence-analyzing algorithm. In the phase of

dependence analysis, definitions 8 and the concept layer
are used to calculate the dependence. Different algorithms

can be used and they may be replaced by more precise
algorithm with the advance of the research. ODAM
provide sufficient support to these.

In the following 3 phases, how to support the abstract
object must be considered. The abstract object in ODAM
is a virtual concept introduced with the purpose of

conducting the data dependence analysis. There aren’t any
abstract objects in real programs. And different supports

are needed in the shared-memory system and the
distributed-memory system:

(1) Shared-Memory System

In Shared-Memory Systems, if given two tasks T I

and T2 and the data conflicting set between T I and T2

contains abstract objects, T2 must be executed after T1.
When T1 has finished, all the objects are wrote back to the
shared memory. The system states are synchronized. The

abstract object has no effect on the execution of T2. So in
shared-memory system, it’s necessary only to consider the

abstract object concept in the analyzing phase. No runtime
support is needed.

(2) Distributed-Memory System
In Distributed-Memory System, if the abstract object

AO~I...A is contained in the data conflicting set between T2

and T1, T2 must be executed after T1. When T1 has
finished, some objects in the conflicting set must be

transferred from T1 to T2, according the data dependence

types (A r. A o, A .). If AOCM is needed to be transferred,

because it doesn’t exist at all, all the real objects (RO) in

the connected subgraph that containing A O C ~ ~ ~ ~ A should be
transferred to T2 to synchronize the system. So as to the
distributed-memory system, it is needed to determine the

226

110

1 1 0 5

Figure 8:data dependence in “benchmark

connected relation in OHG at runtime.

3. Case Study
The program to be analyzed is the Java version of

Linpack (the source code can be downloaded from
http://www.cs.cmu.edu/-jch/java/linpackloop.java). We

analyzed the key method run-benchmark() in Linpack
with ODAM. The interprocedural analysis is applied in the

process. The dependence graph got automatically is shown

in Figure 8. In Figure 8, the triangle symbols represents

the head and the tail node; the round symbols represent

simple node; and the rectangle symbols represent
method-call node.The directed edges represent the data
dependence relation between nodes. If the label of the
head less than that of the tail of the edge, the dependence

is A f , else it is A a orAo.It ought to be notified that
Figure 8 is for the purpose of showing the data
dependence fully, so we don’t include the granularity

control.

4. Related Work

There exist many parallelizing compile technologies

for the 00 languages. The emphasis of these technologies
is mostly on the pointer-like data structures and the

interprocedural analysis. The main idea of the approach

from J.Hummel et.a1.[2] is to label data structures with
path expressions. The dependence tester tries to prove that

dependence between two paths is impossible based on a

group of axioms. If the proof exists, no dependence is
possible. The advantage of the approach is that it has a
well-formed theory basis. But it’s impractical because the

axioms can’t be given easily. W.Amme et.al [3] proposed a
pointer analysis model based on the N D graph. It has a

similar concept to the abstract object in ODAM, which is
the abstract pointer. The limitation is that the abstract
pointer can’t present the object hierarchy in 00 language

directly. In order to solve the alias set problem, A. Deutsch

[4] develop a different memoryless method, which
employing only algebraic methods. Due to the lack of the

support to the update of the binding relations, this method

has no way to calculate the must-alias information. So it
can only tell if two pointers conflict, but can’t give the
data set the pointers depending on. M. Sagiv [5] solved the
dependence problem on the cyclic data structure by

analyzing the possible shapes of data structures. D.Bairagi

[6] and D.Grove[7] developed approaches to construct the
precise call graph of programs in 00 languages. The Javar
project [8] from Indiana University mainly exploits the

parallelism in the loop and recursive methods in Java

program. It has not only compile-time analysis, but also
runtime dependence test. Because the emphasis is on the

latter, it doesn’t exploit satisfactory parallelism from the

analysis.

5. Conclusion
ODAM can deal with the 00 characteristics such as

inheritance, encapsulation and dynamic binding in the data
dependence analysis in a convenient way and with high

efficiency. It provides supports to both the parallelism
mining and the parallel task executing. ODAM can be

applied to all the popular 00 languages, for it provides the
further research on the data dependence analysis with a
consistent internal format. We will put our emphasis on

227

http://www.cs.cmu.edu/-jch/java/linpackloop.java

integrating ODAM with other techniques in the future,

which we believe will exploit the parallelism of programs
more fully.

[9] Du Jiancheng, Chen Daoxu and Xie Li: ”JAPS:An
Automatic Parallelizing System Based on JAVA”,
Science in China, 1999 ,vol 3, 279-288

References
[11 James R.Larus and Paul N.Hilfinger,”Detection

Conflicts between Structure Acesses”, Proceedings of

the SIGPLAN’88 Conferences on Programming

Language Design and ImplementationsJune 1988.

[2] Joseph Humme1,Laurie J.Hendren and Alexandru

Nicolau,”A General Data Dependence Test for

Dynamic Pointer-Based Data Structure”,Technical

Report, U. of Califomia,Irvine, 1994

[3] Wolfram Amme,Eberhard Zehendner,Data

dependence analysis in programs with pointers,

Parallel Computing ,1998, 24, 505-525

[4] A. Deutsch, Interprocedural may-alias analysis for

pointers:beyond k-limiting, Proceedings of the ACM

SIGPLAN’94 Conference on Programming

Languages Design and Implementation,Orlando, 1994,

230-241

[5] M. Sagiv, T.Reps, R.Wilhelm, Solving shape-analysis

problems in languages with destructive updating,

SIGPLAN-SIMACT Symposium on Principles of

Programming Languages,FL, 1996, 16-3 1

[6] D. Bairagi, S.Kumar, D.P. Agrawal, Precise Call

Graph Constrction for 00 Programs in the Presence

of Virtual Functions, IEEE Transactions on Parallel

and Distributed Systems, 1997, 8(4),412-416

[7] D.Grove, G. Defouw, J.Dean, et.al. Call Graph

Construction in Object Oriented lanaguage,

OOPSLA’97 Conference Proceedings, Atlanta, CA,

October, 1997

[8] Aart J.C.Bik and Dennis B.Gannon,”Automatically

Exploiting Implicit Parallelism in Java”, Technical

Report TR473, Indiana University,Jan. 1997.

228

