
An Empirically Optimized Radix Sort for GPU

Bonan Huang, Jinlan Gao and Xiaoming Li
Electrical and Computer Engineering Department

University of Delaware

Abstract

Graphics Processing Units (GPUs) that support
general purpose program are promising platforms
for high performance computing. However, the
fundamental architectural difference between GPU
and CPU, the complexity of GPU platform and
the diversity of GPU specifications have made the
generation of highly efficient code for GPU in-
creasingly difficult. Manual code generation is
time consuming and the result tends to be diffi-
cult to debug and maintain. On the other hand, the
code generated by today’s GPU compiler often has
much lower performance than the best hand-tuned
codes. A promising code generation strategy, im-
plemented by systems like ATLAS [14], FFTW [4],
SPIRAL [11] and X-Sort [8], uses empirical search
to find the parameter values of the implementation,
such as the tile size and instruction schedules, that
deliver near-optimal performance for a particular
machine. However, this approach has only proved
successful when applied to CPU where the perfor-
mance of CPU programs has been relatively better
understood. Clearly, empirical search must be ex-
tended to general purpose programs on GPU.

In this paper, we propose an empirical optimiza-
tion technique for one of the most important sort-
ing routines on GPU, the radix sort, that generates
highly efficient code for a number of representa-
tive NVIDIA GPUs with a wide variety of archi-
tectural specifications. Our study has been focused
on the algorithmic parameters of radix sort that can
be adapted to different environments and the GPU
architectural factors that affect the performance of
radix sort. We present a powerful empirical opti-
mization approach that is shown to be able to find
highly efficient code for different NVIDIA GPUs.
Our results show that such an empirical optimiza-
tion approach is quite effective at taking into ac-
count the complex interactions between architec-
tural characteristics and that the resulting code per-
forms significantly better than two radix sort im-

plementations that have been shown outperforming
other GPU sort routines with the maximal speedup
of 33.4%.

1 Introduction

Graphic Processing Units (GPUs) are designed for
accelerating graphic operations and have strong
computing power. Actually, the latest GPUs such
as NVIDIA GTX 280 can achieve the peak per-
formance of almost 1 TFLOPS [9], which rivals
the performance of the supercomputers of just a
few years back. It makes sense to leverage the
computing power of GPUs on general purpose
computing. However, programming GPUs is not
easy. Because traditional GPU architectures are
fully geared towards graphic operations, to ex-
ploit the GPU computing power on general purpose
computing requires mapping a general computing
problem to a graphic problem and implement the
mapped graphic problem with graphic APIs such
as OpenGL. The indirect mapping and implementa-
tion seriously complicate the program development
for GPU and block the wide adoption of GPU in
general purpose computing.

The introduction of CUDA changes the land-
scape of GPU programming. CUDA introduces a
small set of C programming language extensions
that enable programmers to naturally express the
parallelization and the data layouts of an algorithm
for NVIDIA GPUs. No translation from a comput-
ing problem to a graphic problem is necessary in
CUDA. Furthermore, the CUDA extensions are rel-
atively easy to understand and have grammars and
semantics that may appear familiar to a normal pro-
grammer. As a reflection of the wide-spread usage
of CUDA in high-performance computing commu-
nity is that the new standard OpenCL [6] shares
many programming structures and architectural ab-
stractions with CUDA. CUDA has solved the prob-
lem of “make it work” for general purpose comput-
ing on GPUs.

2009 IEEE International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3747-4/09 $25.00 © 2009 IEEE

DOI 10.1109/ISPA.2009.89

234

2009 IEEE International Symposium on Parallel and Distributed Processing with Applications

978-0-7695-3747-4/09 $25.00 © 2009 IEEE

DOI 10.1109/ISPA.2009.89

234

However, the problem of “make it work well”
for GPU computing just start gaining research
attentions, and the introduction of CUDA actu-
ally complicates the optimization of programs on
GPU because the performance modeling of CUDA
is less well understood than that of traditional
OpenGL programming. Furthermore, GPU hard-
ware evolves fast. In the previous 18 months, there
have been 3 major generations of NVIDIA GPU
released to public. Architectural features of every
new generation of GPU change significantly from
those of the previous generation. Programs opti-
mized for one generation can not be expected to
perform equally well on the next generation. Man-
ually optimizing a program for a specific GPU ar-
chitecture could already be time-consuming and
tedious. Now the optimization problem is com-
pounded to catch up with every new generation of
GPU. We need a systematic method to tune pro-
grams for different GPUs.

Table 1 shows the values of several architectural
features of 4 different NVIDIA GPUs. The archi-
tectural features include the number of cores, the
core frequency, the memory size and the memory
frequency. Not surprisingly, tuning a program for
NVIDIA GPUs needs to consider all those archi-
tectural features and the optimal values of tuning
parameters need to be adjusted for the different fea-
tures.

In this paper, we propose an empirical optimiza-
tion technique for radix sorting algorithm on GPUs.
We make two contributions. First we identify the
algorithmic parameters of the radix sorting that
need to be tuned for different GPU architectural
features. Secondly, we empirically optimize the
radix sorting to achieve over 30% speedup com-
pared with the best radix sorting implementation
currently available for NVIDIA GPUs.

The remaining of this paper is organized as fol-
lows. Section 2 will describe the background of
GPU programming and optimization and discuss
related work. Section 3 will present how different
architectural factors affect the determination of the
best values of parameters of the radix sorting. A
novel empirical tuning technique for the radix sort-
ing is presented in Section 4. Section 5 evaluates
our empirically optimized radix sorting with a num-
ber of good radix sorting implementations on 4 dif-
ferent NVIDIA GPUs. Finally Section 6 concludes
the paper.

2 Background and Motivation

In this section, we first overview the NVIDIA
CUDA programming framework and the funda-
mental challenges of optimizing a program for
CUDA, and then we discuss the radix sorting algo-
rithm and several implementations of radix sorting
on CUDA.

CUDA (Compute Unified Device Architecture)
is NVIDIA’s programming model that uses GPUs
for general purpose computing (GPGPU). It allows
the programmer to write programs in C with a
few extensions that are designed to allow the pro-
gramming of the CUDA architecture. These exten-
sions enable programmers to directly access multi-
ple levels of memory hierarchy that are quite differ-
ent from the common CPU memory/cache model.
Compared with general purpose CPU’s with cached
memory hierarchy, CUDA makes the performance
of a program much more sensitive to specific mem-
ory layouts used by the program and leaves the full
responsibility of taking full advantage of all levels
of the CUDA’s explicit memory hierarchy to CUDA
programmers.

The introduction of the NVIDIA CUDA archi-
tecture and the accompanying CUDA driver and
C language extension [9] make the computational
power of GPUs easier to utilize, in particular, tak-
ing GPU programming to a higher level. One that
normal programmers feel more familiar with. The
CUDA driver and C language extension simplify
the usage of the GPU as a co-processing device.
However, even though the problem of writing a pro-
gram that can work on a GPU seems to have been
solved, the question of how to tune a program to
make it work well on a GPU is only rudimentary
understood and insufficiently investigated. Most
notably, the program optimization for GPU faces
two major challenges: the radically different or-
ganization of GPU memory hierarchy and the re-
evaluation of traditional instruction level optimiza-
tions in the new context of GPUs.

Optimizing programs for GPU memory hierar-
chy is extremely challenging mainly because of two
factors. First, the GPU memory hierarchy is orga-
nized in a radically different way from the organiza-
tion of the CPU memory hierarchy. The two mostly
used layers of the GPU memory hierarchy are the
“global memory” and the “shared memory”. The
global memory is not cached, which invalidates the
basic assumptions of classical program optimiza-

235235

tions for the CPU memory hierarchy. When pro-
gramming the CUDA GPU, the programmer has
to manually manage data, copying from the global
memory to the shared memory. In this way, the
programmer can manipulate the access patterns to
increase the applications performance. It’s the pro-
grammer’s responsibility to maximize the through-
put by optimizing the memory layout, as well as,
removing bank conflicts in shared memory. Sec-
ond, the GPU runs programs in a SIMD-like man-
ner where each instruction stream is a thread, so
that the optimization for GPU memory hierarchy
must be tuned for the collection of memory access
streams from multiple threads. On the other hand,
program optimizations for the CPU memory hier-
archy usually assume that a single process occupy
all memory levels. The consideration of multiple-
thread memory accesses makes the optimization for
the GPU memory hierarchy much more compli-
cated than that for the CPU memory hierarchy.

The two most important memory levels on the
GPU are the global- and the shared memory. They
have completely different organization and mem-
ory models and are exposed to different numbers
of threads. Particularly for larger data structures, a
layout that is beneficial for global memory accesses
will ruin performance for shared memory and vice
versa. As a result, the re-thinking of what memory
optimizations are needed for the GPU memory hi-
erarchy is required. Furthermore, instruction level
optimizations for the CPU usually assumes a pro-
gram can occupy all CPU resources such as regis-
ters. However, the main focus of instruction level
optimization for CUDA programs is to conserve
hardware resources to allow for a higher occupancy
of the available hardware for all threads. Therefore,
traditional instruction level optimizations such as
loop unrolling must be re-evaluated in the context
of GPU. Loop optimizations are of special interest
since most of the algorithms that qualify to be im-
plemented in CUDA are loop based.

The CUDA memory hierarchy is composed of a
very large on-board global memory which is used
as main storage for the computational data and for
synchronization with the host memory. Unfortu-
nately, the global memory is very slow and not
cached. To fully utilize the available memory band-
width between the global memory and the GPU
cores, data has to be aligned and accessed consec-
utively with 128 bit reads. To alleviate the high
latencies of the global memory, a shared memory,

which could be as fast as a register when accesses
to the shared memory are appropriately ordered, is
built-in into the CUDA architecture. The shared
memory may sound like a kind of cache. How-
ever, the shared memory is explicitly managed by
CUDA programs and special care has to be taken
when the shared memory is used. Since the shared
memory is accessed by 16 threads at the same time,
each memory bank should be accessed only by one
or all threads to guarantee minimum access time.
If this is not the case , shared memory access con-
flicts will occur and reads to the same memory bank
will be serialized. Furthermore, two other types of
memory, texture- and constant memory, are avail-
able. These memories can only be written by the
host machine, but not by the GPU.

In addition to the CUDA memory hierarchy, the
performance of CUDA programs is also affected by
the CUDA tool chain. The CUDA tool chain con-
sists of special GPU drivers, a compiler which is
based on the Open64 compiler[1], a debugger, a
simulator, a profiler and libraries.

3 Factors

GPU architectural features such as memory hierar-
chy parameters interact with the radix sorting al-
gorithm and determine the best values of the algo-
rithmic parameters. In this section, we first describe
the radix sort algorithm that we implement on GPU.
Then, we present a detailed analysis of performance
impact of those architectural features and how the
parameters of the radix sorting should be tuned for
those features.

3.1 Radix Sort Algorithm

Radix sort is one of the oldest sorting algorithm
and is probably the most important non-comparison
sorting algorithm. Radix sort work on the bits of a
number. Assuming the keys to be sorted are b− bit
integers and the width of the digit, that is, the num-
ber of bits being worked on by each pass of Radix
sort, is r, the keys can be viewed as an vector of
d = � b

r� digits of r bits each. The radix sort is con-
sist of d passes. The radix sort works from the least
significant digit to the most significant digit. Each
pass works on just one digit and sorts the input se-
quence with respect to that digit.

In the i − th pass, the radix sort has to figure
out the new positions of all the elements in the in-
put sequence after the i − th digit is sorted. We

236236

call the new position of an element as the rank of
that element. The calculation of the ranks of all
elements has three steps. In the first step, the algo-
rithm walks through the whole input sequence and
counts the number of elements in each of the 2r

bucket. The i − th digit of a key with value x will
be counted toward the x − th bucket. We call the
first step the “counting” step. In the second step,
the buckets are accumulated in a way that the new
value of the current bucket is the sum of all lower
numbered bucket plus the original value of the cur-
rent bucket. After the second step, the value of the
x− th bucket represents the starting position of all
elements with the i − th digit being x. The rank
of an element with the i − th digit being x is the
value of the x − th bucket plus the number of ele-
ments in front of it that have the same value in the
i− th digit. The second step is usually called “pre-
fix sum” or “scan” operation, which is a fundamen-
tal computation primitive and is used in many other
places [3]. In the third step of the radix sort, all el-
ements of the input sequence are scattered to their
final position that is determined by their ranks. Be-
cause the scatter operation is extremely inefficient
if done in-place, that is, without extra buffer, the
radix sort is almost always implemented as a out-
place algorithm, that is, the elements are scatter to
another array that is equal-sizes as the current ar-
ray. In the next pass, the roles of the two arrays
are reversed. We call the third step the “scattering”
step.

The complexity of radix sort is O(N), N being
the number of elements to sort. Thus, the main ad-
vantage of radix sort is its low instruction count.
However, the main disadvantage of radix sort is its
poor data locality in the third step, that is, the scat-
tering step, because the elements are generally not
written to consecutive memory locations.

3.2 Radix Sort Implementation in CUDA

One natural way to implement the radix sort algo-
rithm in CUDA is to parallelize the three steps of
the algorithm. All the three steps of radix sort can
be parallelized, though in different ways.

The parallelization of the counting step of radix
sort is conceptually simple. The input sequence
will be blocked and each processor in a multi-
processor machine will work on a different block.
The counting on each processor will produce per-
processor buckets. The per-processor buckets can
be explicitly combined into a global array of buck-

ets, or the per-processor buckets can be stored in a
way that the global offsets of each local bucket can
be calculated in one pass of the prefix-sum step.
The second approach is more efficient because it
enables the computing of prefix sum in the second
step in parallel and enables each processor to read
the offsets locally in the scattering step. In this pa-
per, the second method is employed in the imple-
mentation of the counting step.

The kernel of the second step of radix sort is the
prefix sum primitive. The prefix sum primitive is a
fundamental data-parallel primitive and can be ef-
ficiently on multicore processors [13]. In this pa-
per, we use a publicly available implementation of
the prefix sum primitive that is a part of the CUDA
Data-Parallel Primitives (CUDPP) library [2]. As a
matter of fact, the prefix sum step uses only a small
percentage of the total execution of radix sort, be-
cause compared with the input sequence, the num-
ber of bucket is very small. Even though the op-
erations on each bucket in the prefix sum are more
expensive, the overall time spend on the prefix sum
is not a main factor in the performance of radix sort
on CUDA. The main overhead of radix sort lies in
the counting step and the scattering step, in particu-
lar, the scattering step is the most expensive step of
radix sort.

The counting step and the prefix sum step pro-
vide per-block buckets that contain the offsets of
all elements in that block. This greatly simplifies
the work of the scattering step. The scattering step
writes all elements in a block to their final loca-
tions in the memory. The final locations are de-
termined wholly in local because all information
needed is stored in the per-block buckets. However,
this scheme usually makes inefficient use of mem-
ory bandwidth on CUDA, because multiple proces-
sors scatters elements to widely different locations
in the memory. This situation is called un-coalesced
memory write in CUDA, and can be up to 10 times
slowdown compared with coalesced memory write.
The performance tradeoffs of different implemen-
tations of the scattering step will be discussed in
Section 3.3.1

3.3 Algorithmic Parameters and Architectural
Factors

In this section we describe the parameters in the im-
plementation of radix sort on CUDA and the archi-
tectural features of NVIDIA CUDA GPUs. Our fo-
cus is the analysis of the performance impact of dif-

237237

ferent values of the algorithmic parameters, and the
interaction between the architectural features and
the radix sort algorithm. Usually the relation be-
tween the architectural factors and the optimal val-
ues of an algorithmic parameter is complex. As dis-
cussed in the next section, in this paper we study
how to use empirical search to find out the opti-
mal value of the algorithmic parameters, taking into
consideration the architectural features. In other
words, we try to train the radix sort algorithm on
different NVIDIA CUDA GPUs by testing the per-
formance of different shapes of the radix sort and
find out the one with the best performance. By
measuring execution time, the training identifies the
best values for the algorithm parameters that deter-
mine the shape of the radix sort algorithm.

3.3.1 Algorithmic Parameters

There are two kinds of algorithmic parameters in
our implementation of radix sort. The first kind
of algorithmic parameters determines the division
of workload among all the processors of a GPU.
Section 2 describes that threads in CUDA are
organized in two levels: thread grid and thread
block. Therefore, we can specify the division
of workload using a tuple of 3 numbers (num-
ber of threadblock, number of thread per block,
number of element per thread). Because the
workloads of the three steps of radix sort are
different, the counting step and the scattering step
working on the input sequence, and the scattering
step working on the buckets of a digit, our imple-
mentation of radix sort needs two such tuples, or 6
parameters, to describe the division of workload in
a specific configuration of implementation.

The second kind of algorithmic parameter de-
scribes the number of bits—r—that are processed
in each pass of the radix sort, that is, the width of
a digit. The number of passes of the radix sort is
determined by r. Previous studies have been us-
ing a fixed r for all passes. For example, the radix
sort implementation if CUDPP uses r = 1 [2], and
Satish et.al. use r = 4 in their implementation. In
our study, we give more flexibility to the selection
of r by enabling the usage of different r’s in differ-
ent passes of our radix sort. Therefore, the parame-
ter that describes digits of our radix sort is a vector
�r = {r0, r1, ..., rn|

∑
i ri = b}.

In summary, the algorithmic parameters of the
radix sort studied in this paper are the tuple (num-
ber of threadblock, number of thread per block,

number of element per thread) for the counting
step and the scattering step, the tuple (num-
ber of threadblock, number of thread per block,
number of element per thread) for the prefix sum
step, and the vector of digit sizes �r.

3.3.2 Architectural Factors

In this section we discuss three architectural factors
of CUDA, number of cores, global memory band-
width, and the frequencies of GPU core and global
memory, and the effects of those factors on the per-
formance radix sort. Furthermore, we present the
relation between the architectural factors and the
best values of the algorithmic parameters.

Number of cores: The NVIDIA GPUs that sup-
port CUDA have very different number of cores,
e.g., as few as 8 cores in GeForce G 100 to as many
as 240 core in GeForce GTX 280. The number of
cores impacts the performance of radix sort mainly
through the organization of threads in the CUDA
kernel, that is, the number of threadblock (NB) and
the number of thread per block (NT). For a given
input sequence, when the number of available cores
increases, each thread will handle fewer input ele-
ments. Because the execution of thread has a fixed
overhead no matter how many elements are pro-
cessed in the thread, the amortization of the fixed
overhead is higher for fewer elements. On the other
hand, because the maximum number of thread that
can be supported by a core is a constant in CUDA,
when the number of core increases, more threads
can be spawned. More spawned threads mean that
cores are better utilized because it is easier to find
threads that are ready to run from a larger pool of
thread. As a result, the radix sort may benefit from
higher level of concurrency. Therefore, the perfor-
mance will achieve the best tradeoff with regard to
the number of cores when the amortized overhead
equals the performance improvement of higher con-
currency.

Global memory bandwidth: The selection of
the digit sizes �r determines the level of utiliza-
tion of global memory bandwidth in radix sort.
When larger ri is selected, the whole radix sort
needs fewer passes to completely sort a input se-
quence. Because each additional pass incurs over-
head, fewer passes might improve performance.
However, on the other hand, larger ri means the in-
put sequence will be written to more diverse loca-
tions in the global memory, because the total num-
ber of bucket is 2ri which increases exponentially

238238

with ri. That is, the input sequence will be writ-
ten to more buckets, and hence it is less likely
that elements will be written to consecutive loca-
tions. This sacrifices the efficiency of global mem-
ory bandwidth because coalesced writes, which are
the writes of element to consecutive locations, can
improve writing performance by a factor as high as
10 in CUDA. Balancing the two factors, the best
point of tradeoff with respect to the utilization of
global memory bandwidth is the point when the
overhead of one additional pass equals the potential
improvements of global memory write performance
from writing to a smaller number of buckets.

Frequencies of core and global memory: The
NVIDIA GPUs have a wide range of core fre-
quencies and memory frequencies. For example,
the lowest end NVIDIA GPU that support CUDA,
GeForce 8300 GS, has core frequency of 450 MHz
and memory frequency of 800 MHz, while the 2
numbers for the fastest NVIDIA GPU, GeForce
GTX 285, are 648 MHz and 2484 MHz respec-
tively. Furthermore, GPU cards on the market may
not use the standard frequency of its GPU. The
GPU chip and the memory might be overclocked
by GPU card vendors. This further complicated the
tuning of CUDA programs because the tuning must
consider more possible GPU configurations. The
core frequency and the memory frequency affect
the selection of the best value of the number of ele-
ment processed per thread (NE) and the digit size
vector �r. When the radix sort runs on a GPU with
higher core frequency, the NE should be increased
because the core frequency is how fast computa-
tion operations can be executed. Faster cores re-
quire more computation operations to achieve full
utilization. More computation operations means
that more elements are needed to saturate the cores.
However, more elements in a thread means more el-
ements need to be written to the global memory in
a fixed period of time, hence increasing the global
memory bandwidth pressure. Additionally, the role
of the digit size vector �r in the performance func-
tion is that when the relative speed of the global
memory with regard to the core is higher, the radix
sort can use big ri because the un-coalesced writes
will lesser a problem for faster memory. In sum-
mary, the ideal performance tradeoff with regard to
the core frequency and the memory frequency is the
point where the time of executing computation op-
erations on GPU cores equals the time of memory
operations for each pass of radix sort. speed of

4 Empirical Tuning of Radix Sort

We have seen from the discussion of the previous
section that there are multiple factors that affect the
performance of radix sort on CUDA. The best val-
ues of the algorithmic parameters should be a func-
tion of those factors. However, it is difficult to cal-
culate the best values of parameter directly from the
given GPU architectural factors even that we know
the exact values of those architectural factors for a
specific GPU, because the relations between the al-
gorithmic parameters and the architectural factors
are interdependent with each other. The best value
of one algorithmic parameter depends on the selec-
tion of the values of other parameters.

In this paper, we use empirical search to deter-
mine the best values of algorithmic parameters of
radix sort on various GPUs. Exhaustive search is
impractical here because the number of algorith-
mic parameter is large and each parameter can be
assigned many different values, therefore the total
number of combinations makes it almost impossi-
ble to test every possible shape of the radix sort.

On the other hand, exhaustive search is also un-
necessary. Even though the global optimal value
of a parameter is determined by multiple factors,
the relation between the parameter and a single ar-
chitectural factor is easier to establish as discussed
in Section 3 and therefore we can identify the best
value of a parameter with respect to one architec-
tural factor using models that we build before. The
global optimal value can be found by searching
in the neighborhood of the range defined by those
single-factor optimals.

Our empirical search leverages the models we
build in Section 3 and is much more efficient than
exhaustive search. The empirical search is con-
ducted in 2 stages. In the first stage, we identify a
range of value that most likely contain the best val-
ues of algorithmic parameters. The range is con-
strained by the best values of the parameters with
respect to the number of cores, the global mem-
ory bandwidth and frequencies of core and global
memory. We expand the range we get by 10%
to minimize the possibility that the best value lies
outside of the native range, though that rarely hap-
pens. The ranges of all algorithmic parameters de-
fine the search space of our empirical search. Ev-
ery point in this search space represents a different
shape of the radix sort implementation on GPU, and
the search space is believed to contain the best radix

239239

sort implementation. In the second stage, our em-
pirical search engine steps through every point in
the search space that is defined from the first stage.
For every point, the search engine tests the per-
formance of the radix sort implementation whose
shape is determined by the values of algorithm pa-
rameters corresponding to that point. The point that
delivers the best performance will be selected and
its corresponding algorithm parameter values will
be used to generate our final radix sort implementa-
tion. For every GPU platform, we will conduct the
2-stage empirical search. The output on each plat-
form is the best radix sort implementation for that
specific GPU.

5 Evaluation

In this section we present the evaluation of our em-
pirically optimized radix sort on CUDA GPUs. In
Section 5.1 we describe the environmental setup
that we use for the evaluation, and in Section 5.2
we present the performance results.

5.1 Environmental Setup

We evaluated our empirically optimized radix sort
on four NVIDIA GPUs: GTX 280, 8800 GTX,
9600M GT and 9400M. The selection of the four
GPUs is representative of the spectrum of differ-
ent GPU specifications: from the high-end power-
ful GTX 280 to the low-end power efficient 9400M.
Table 1 lists for each platform the number of cores,
the size of global memory, the global memory
bandwidth, the frequency of core and the frequency
of global memory.

All experiments sort records with two fields, a
32 bit integer key and a 32 bit pointer. The rea-
son for choosing such records to sort is that for real
world applications of sorting such as the sorting in
databases, sorting is usually performed on an array
of tuples each containing a key and a pointer to the
original data record [10]. We assume that this array
has been created before our radix sort is invoked.

The training time of our empirical search engine
varies depending on the GPUs, but it ranges from 5
minutes in the fastest GTX 280 to about 15 minutes
in the slowest 9400M.

5.2 Performance Results

We compared out empirically optimized radix sort
with two other best known implementations of
radix sort on CUDA: the radix sort routine from

GTX 8800 9600M 9400M

280 GTX GT

Num. of cores 240 128 32 16

Core frequency (MHz) 602 575 600 450

Mem. size (MB) 1024 768 512 256

Mem. frequency (MHz) 2200 1800 1600 1066

Mem. bandwidth (GB/s) 142 86.4 25.6 21

Table 1: Test Platforms.

the CUDPP library [2], and the radix sort from
Satish et.al. [12]. The radix sort implementation
from Satish has been shown to outperform a num-
ber of sorting libraries on GPU including GPU-
Sort [5] and a sorting routine proposed in the book
GPU Gem3 [7]. We test all the radix sort imple-
mentations with data sizes from 4K to 6M records.

Figure 1 shows the performance of our empiri-
cally optimized radix sort, the CUDPP radix sort
and the Satish radix sort on the four GPU platforms.

The performance results show that our empiri-
cal optimization techniques for radix sort is very
effective. Our empirically optimized radix sort
implementation outperforms the best known radix
sort implementation by 17.1%, 15.9%, 15.7% and
23.1% on average on four different NVIDIA GPUs,
GTX 280, 8800 GTX, 9600M GT and 9400M. The
maximal speedup on the four platforms are 33.4%,
28%, 27.9%, 32.6% respectively

6 Conclusion

GPUs that support general purpose programming
are promising platforms for high-performance com-
puting. However, the fundamental difference be-
tween the architecture of GPU and the architecture
of CPU make the tradition program optimization
technique not directly applicable on the new GPUs.
Furthermore, the vast diversity of GPU specifica-
tion requires that a program optimization technique
developed for GPU must be able to be tuned for dif-
ferent GPU configurations.

In this paper, we propose an efficient empiri-
cal optimizing technique to tune the most impor-
tant sorting routine on GPU, the radix sort, for a
variety of GPU platforms. Our empirical optimiz-
ing technique identifies the algorithmic parameters
of the radix sort and the GPU architectural factors
that determine the best values for those parameters,
and employs efficient searching method to find the
best performing radix sort on four representative
NVIDIA GPUs. Our empirical optimizing tech-

240240

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000 100000 1e+06 1e+07

So
rt

in
g

R
at

e
(m

ill
io

n
pa

ir
s/

se
c)

Input Size

GeForce GTX 280
CUDPP

GPU Radix Sort
Our Empirically Tuned Radix Sort

 0

 10

 20

 30

 40

 50

 60

 70

 1000 10000 100000 1e+06

So
rt

in
g

R
at

e
(m

ill
io

n
pa

ir
s/

se
c)

Input Size

GeForce 8800 GTX
CUDPP

GPU Radix Sort
Our Empirically Tuned Radix Sort

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 10000 100000 1e+06 1e+07

So
rt

in
g

R
at

e
(m

ill
io

n
pa

ir
s/

se
c)

Input Size

GeForce 9600M GT
CUDPP

GPU Radix Sort
Our Empirically Tuned Radix Sort

 0

 2

 4

 6

 8

 10

 12

 1000 10000 100000 1e+06 1e+07

So
rt

in
g

R
at

e
(m

ill
io

n
pa

ir
s/

se
c)

Input Size

GeForce 9400M
CUDPP

GPU Radix Sort
Our Empirically Tuned Radix Sort

Figure 1: Performance of our empirically tuned

radix sort compared with two other radix sort im-

plementations from CUDPP and Satish et.al.

nique is very effective and efficient. On average,
our empirically tuned radix sort outperforms the

best radix sort implementation by 17.1%, 15.9%,
15.7% and 23.1% with the maximal speed up of
33.4%, 28%, 27.9%, 32.6% on four widely differ-
ent GPUs.

References

[1] Open64. http://www.open64.net.

[2] Cudpp: Cuda data parallel primitives library.
http://www.gpgpu.org/developer/cudpp/, 2008.

[3] G. E. Blelloch. Vector Models for Data-parallel Com-
puting. MIT Press, Cambridge, MA, USA, 1990.

[4] M. Frigo and S. Johnson. ”the fftw web page.”
http://www.fftw.org, 2008.

[5] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
Gputerasort: high performance graphics co-processor
sorting for large database management. In SIGMOD ’06:
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 325–336, New
York, NY, USA, 2006. ACM.

[6] K. Group. Opencl 1.0 specification.
http://www.khronos.org/registry/cl, 2008.

[7] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix
sum (scan) with cuda. GPU Gems 3, 2007.

[8] X. Li, M. J. Garzarán, and D. Padua. Optimizing sort-
ing with genetic algorithm. In International Symposium
on Code Generation and Optimization (CGO), pages 99–
110, 2005.

[9] C. NVIDIA. Compute Unified Device Architecture Pro-
gramming Guide. NVIDIA: Santa Clara, CA, 2007.

[10] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and
D. Lomet. Alphasort: a risc machine sort. SIGMOD
Rec., 23(2):233–242, 1994.

[11] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic,
Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. Proceed-
ings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, 93(2):232– 275, 2005.

[12] N. Satish, M. Harris, and M. Garland. Designing efficient
sorting algorithms for manycore gpus. Proc. 23rd IEEE
Intl Parallel & Distributed Processing Symposium, 2009.

[13] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for gpu computing. In GH ’07: Proceedings
of the 22nd ACM SIGGRAPH/EUROGRAPHICS sym-
posium on Graphics hardware, pages 97–106, Aire-la-
Ville, Switzerland, Switzerland, 2007. Eurographics As-
sociation.

[14] R. Whaley, A. Petitet, and J. Dongarra. Automated em-
pirical optimizations of software and the ATLAS project.
Parallel Computing, 27(1-2):3–35, 2001.

241241

