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ABSTRACT
The optimization of Fast Fourier Transfer (FFT) problems that can
fit into GPU memory has been studied extensively. Such on-card
FFT libraries like CUFFT can generally achieve much better per-
formance than their counterparts on a CPU, as the data transfer be-
tween CPU and GPU is usually not counted in their performance.
This high performance, however, is limited by the GPU memory
size. When the FFT problem size increases, the data transfer be-
tween system and GPU memory can comprise a substantial part of
the overall execution time. Therefore, optimizations for FFT prob-
lems that outgrow the GPU memory can not bypass the tuning of
data transfer between CPU and GPU. However, no prior study has
attacked this problem. This paper is the first effort of using GPUs
to efficiently compute large FFTs in the CPU memory of a single
compute node.

In this paper, the performance of the PCI bus during the transfer
of a batch of FFT subarrays is studied and a blocked buffer algo-
rithm is proposed to improve the effective bandwidth. More impor-
tantly, several FFT decomposition algorithms are proposed so as
to increase the data locality, further improve the PCI bus efficiency
and balance computation between kernels. By integrating the above
two methods, we demonstrate an out-of-card FFT optimization
strategy and develop an FFT library that efficiently computes large
1D, 2D and 3D FFTs that can not fit into the GPU’s memory. On
three of the latest GPUs, our large FFT library achieves much better
double precision performance than two of the most efficient CPU
based libraries, FFTW and Intel MKL. On average, our large FFTs
on a single GeForce GTX480 are 46% faster than FFTW and 57%
faster than MKL with multiple threads running on a four-core Intel
i7 CPU. The speedup on a Tesla C2070 is 1.93× and 2.11× over
FFTW and MKL. A peak performance of 21GFLOPS is achieved
for a 2D FFT of size 2048 × 65536 on C2070 with double preci-
sion.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Parallel and Vector Implementa-
tion

General Terms
Algorithms, Design, Performance

Keywords
FFT, DFT, Library, GPU, CUDA

1. INTRODUCTION
FFT is the fast algorithms to compute Discrete Fourier Trans-

form (DFT), which transfers an input series from time or space do-
main to frequency domain (Inverse DFT does the opposite). FFT
reduces the complexity of a DFT from O(N2), N being the size of
input series, to O(Nlog(N)) by recursively adopting a divide-and-
conquer approach. FFT is an important tool in spectral analysis,
signal processing, data compression and many other fields. Mean-
while, it is frequently the most time-consuming part of a program.
This is particularly true for a large sized FFT due to its heavy de-
mand in memory bandwidth and computational resources.

In order to compute an FFT more efficiently, many FFT libraries
have been built on both, general purpose CPUs and computation
accelerators such as GPUs. Examples of FFT libraries on CPUs
include FFTW [1], SPIRAL [2, 3] and Intel’s MKL [4], etc. In our
tests, FFTW and MKL typically achieve about 10GFLOPS in dou-
ble precision on an Intel i7 CPU with multi-threading and vector-
ization enabled. On the GPU side, best-performing FFT libraries
include CUFFT [5], a vendor-provided implementation, and sev-
eral other research FFT libraries, [6, 7, 8]. Benefiting from GPU’s
high bandwidth of their off-chip memory and abundant ALUs,
these FFT libraries usually out-perform their counterparts on CPUs
by a large margin. For example, CUFFT can achieve more than
50GFLOPS in double precision on a high end GPU, Tesla C2070.

The impressive performance of the current GPU-based FFT li-
braries has a prerequisite, however, that is all the input and output
data of the computation must reside in the GPU’s off-chip mem-
ory. Before those libraries are called, all the input data of an FFT
has to be transferred from the system memory to the GPU by the
user. After the library is called, the output data of the FFT needs
to be transferred back as well. This prerequisite leads to two im-
plications. First of all, those libraries cannot handle very large FFT
problems, which happen to be required in many applications such
as large-scale physics simulations. The maximum problem size for
those libraries is limited by the size of the GPU memory. The lat-
est NVIDIA’s GeForce GPU, GTX480, has 1.5GB global memory
which can only hold a 3D out-of-place FFT of size 2563 with dou-
ble precision. Second, the performance advantage of those GPU
FFT libraries over their CPU counterparts will be discounted when
the data transfer is counted in. The CPU-GPU data channel, in most
cases the PCI bus, has larger latency and smaller bandwidth than
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the GPU memory. For example, PCIe 2.0 with 16 lanes has only
a theoretical peak bandwidth of 8GB/s, only 10% of the 80GB/s
bandwidth of the GPU off-chip memory.

Computing large FFTs that cannot fit into the GPU memory
needs to transfer the FFT data back and forth over PCI bus at least

2×problem_size
GPU_memory_size times. This is because each data point of an
FFT’s output mathematically depends on all the input data. There-
fore, when part of the input is copied to the GPU memory, only
intermediate results can be calculated. All the intermediate results
on the CPU need at least another round of GPU computations to
get the final FFT output. In particular, the same argument applies
to not only 1D but 2D and 3D FFTs as well. Another challenge of
the problem is that the effective bandwidth of the CPU-GPU data
channel is sensitive to the layouts of the data array. Without opti-
mization, a naive implementation of data transfer needs to transfer
the FFT data in many non-contiguous chunks in the CPU mem-
ory and each PCI transfer can be small. A large number of small
transfers is particularly inefficient for the CPU-GPU data channel.

Previous works have studied FFTs on external or hierarchical
memory. Bailey [9] proposed a two-round algorithm to compute
1D FFT on a hierarchical memory system including a solid state
disk and main memory. However, streaming technique that could
overlap the memory communication with FFT computation was not
introduced in that work. Moreover, the data transfer between the
disk and the main memory is unoptimized in the previous work,
while it could be further optimized by a blocked buffer on the disk
as suggested later in this paper.

There are cluster based works that can compute large sized
FFTs [10, 11]. Particularly, Chen et.al reported the implementa-
tion of a large 3D FFT on a 16-node GPU cluster [12]. That work
used CUFFT as their solution of in-node FFT and optimized the 3D
FFT on a particular cluster architecture. Most cluster based FFT
implementations are limited to 3D FFTs, which have abundant nat-
ural parallelism. Hence, high performance can be easily achieved
with more compute nodes. Most important, the effective PCI bus
bandwidth during the transfer of FFTs, a challenge that cannot be
bypassed for in-node FFT implementation, is not well studied nor
optimized.

This paper is the first effort to address these unique challenges
in the implementation of large out-of-card FFTs on a single GPU.
The paper makes two main contributions: (1) We propose a
Cooley-Tukey algorithm based decomposition framework that co-
optimizes both CPU-GPU data transfer and balance of on-GPU
computation for 1D, 2D, and 3D FFTs. (2) We develop a blocked
buffer technique for 1D FFTs to achieve a high effective bandwidth
on the CPU-GPU data channel. Moreover, this technique may be
applied to more general data transfer problems as well.

2. OVERVIEW AND BACKGROUND
This work targets FFT problems whose input and output data is

larger than the GPU memory and therefore is allocated in system
memory. A key difference between our work and other on-card
GPU libraries is that these libraries only need to optimize the com-
putation on GPU but our library needs to optimize the data transfer
over the PCI bus as well. The data transfer for an on-card GPU FFT
library is quite straightforward and is done by the library users. the
whole input data allocated on the CPU memory is copied into the
GPU in one pass. After the library finishes the FFT computation,
the output is transferred back to the host, again, in one pass. How-
ever, in this work, the data transfer itself needs to be optimized
along with the on-card FFT computation. The interface of our li-
brary is on the CPU side just like FFTW or MKL. Specifically, this
work deals with double precision complex 1D, 2D and 3D FFTs

with power-of-two sizes, which are the most commonly used FFT
problems. The input and output arrays of an FFT are allocated as
unpagable CPU memory, also called pinned memory, to maximize
PCI bus transfer bandwidth.

In this paper, FFT problems and the algorithm we use are de-
noted in an extended I/O tensor format [8, 13]. We use this con-
cise representation to specify an FFT of any dimension. Optimiza-
tion algorithms are described as transformations in this represen-
tation space as well. In short, an I/O dimension d1 is defined as
d1 = d(n, i, o, I,O), where n is the FFT size, i and o are the in-
put and output strides and I and O are the addresses of the input
and output arrays. One I/O dimension represents the FFT problem
on one dimension, and a sequence of I/O dimensions compose an
I/O tensor t = {d1, d2, ..., dp} which can neatly represent a multi-
dimensional FFT. The two pointers, I and O, specify where to store
the data (on CPU memory, GPU’s global or shared memory) and
whether the computation is in-place or out-of-place. However, in
this work they are not shown because it is evident that during a
PCI transfer one of the pointers is on CPU memory and the other
is on GPU memory. Moreover, we can tell that an I/O dimension
needs to be out-of-place if the input stride is not equal to the output
stride, which suggests there is a transposition. Otherwise, it does
not matter whether the I/O dimension is in-place or out-of-place.
Without showing the I/O pointers, a 2D FFT of size Y × X can be
represented as t = {d(Y,X,X), d(X, 1, 1)} in tensor format.

FFT transforms used in our method are based on the Cooley-
Tukey algorithm [14] which decomposes a single r×m sized FFT
into three steps. First, compute r number of FFTs of size m. Sec-
ond, transpose r with m and multiply a constant matrix called twid-
dle factors on the intermediate results. Finally, compute m number
of FFTs of size r. The Cooley-Tukey algorithm can be precisely
represented in tensor form in equation (1), called Decimation In
Time(DIT), or equation (2), called Decimation In Frequency(DIF),
depending on where the transposition is performed.

{d(rm, i, o)} = {d(m, ir, o)tmr d(r,mo,mo)} (1)

{d(rm, i, o)} = {d(r, im, im)trmd(m, i, ro)} (2)

Here tmr represents multiplication of twiddle factors with size m×
r. In the real computation, this part will be combined with the
adjacent computation steps. These two tensor representations are
the basic components of the Cooley-Tukey algorithm and they can
be recursively applied in all four direct FFT parts in equation (1)
and (2). Different combinations of how to apply the decomposition
will derive a DIT, a DIF or hybrid algorithm.

After decomposing a large sized FFT using the Cooley-Tukey
algorithm, the smaller sub-FFTs can usually fit into the GPU mem-
ory. A batch of such FFTs, possibly with a stride, is transferred
to the GPU and is computed using our own FFT kernels, some-
times along with the twiddle factor multiplication. In some cases,
NVIDIA’s CUFFT is used to solve small 1D and 2D FFTs with a
stride equal to one, i.e., the data is contiguous in memory, when
CUFFT is faster than our own kernel. Our FFT kernels are op-
timized using the tensor representation and the Cooley-Tukey al-
gorithm. Specifically, a FFT is recursively decomposed until it is
small enough to be directly solved efficiently. Typically, the sizes
are 4 to 16 on our tested GPUs.

We have therefore two levels of decomposition: the decomposi-
tion of large FFT problems into subproblems that can fit into a GPU
and the further decomposition of those on-card FFTs to optimize
the kernel computation. A particular way of performing these two
levels of decomposition will deliver a different implementation of
the target FFT problem. The result of the decomposition will be de-
noted as a sequence of FFTs in tensor format, which represents all
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necessary FFT computation, transposition and twiddle factor multi-
plication. Please note that a sequence of I/O dimensions implicitly
determines the number of FFTs for each I/O dimension. For ex-
ample, there are

n1·n2·...·nj

ni
number of FFTs of size ni for the I/O

dimension d(ni, i, o) in a sequence of j I/O dimensions.
We follow the same approach as is shown in paper [8]

for on-GPU optimization. To summarize, specially revised
codelets [15], [16] , which are compiler generated C programs to
solve small FFTs in FFTW, are used to compute FFTs on a GPU.
High dimensional FFTs are computed on that dimension without
being transposed to a lower dimension first. Codelets within one
FFT dimension or across multiple dimensions are grouped into the
fewest number of kernels. Each kernel has one pass of global and
multiple passes of shared memory accesses. Therefore, the overall
global memory accesses are minimized. Moreover, 16 or 32 threads
are coalesced into a single memory transfer when accessing adja-
cent data so that a higher global memory bandwidth is achieved.

The new architectural features in the latest Fermi GPUs [17]
also affect optimization decisions. Compared with older GPUs,
Fermi introduces a larger shared memory size(48KB vs 16KB),
more banks in shared memory(32 banks vs 16 banks) and more
coalescing threads(32 threads vs 16 threads). Those new features
are incorporated into the optimization through the parametrization
of the algorithm. Fermi’s newly added L1 and L2 cache, is not re-
ally helpful to FFT because of its highly regular and non-repeating
data access pattern. Concurrent kernel execution is not applicable
either because the kernels corresponding to a sequence of I/O di-
mensions (or codelets) have data dependency among each other,
and therefore can not be executed concurrently.

Overall, we use FFT decomposition algorithms based on the I/O
tensor framework to maximize the data transfer PCI bandwidth and
balance computation kernels to have better overlap with commu-
nication. As we will show later, the transfer of subarrays over
the PCI bus can have an order of magnitude difference in effec-
tive bandwidth depending on the width of the subarray. With our
proposed FFT algorithms, a close to optimum PCI bus bandwidth
is achieved and computation kernels between rounds are of com-
parable size. The last key component in the optimization of large
FFTs is a blocked buffer algorithm which is applicable to a wide
class of data transfer problems. Particularly, this algorithm is used
to increase the effective PCI bus bandwidth of 1D FFTs when other
FFT related optimizations are not applicable.

3. PCI TRANSFER OF SUBARRAYS
In this section, we illustrate the general scheme of how to move

partial data of a large FFT between CPU and GPU memory. Sev-
eral methods are proposed to improve the performance of such data
movement over a communication channel such as the PCI bus.

When the FFT is larger than the GPU memory size, only a por-
tion of the whole data can be transferred each time. If we have a
large high dimensional FFT or a 1D FFT divided by the Cooley-
Tukey algorithm, a batch of the smaller FFTs will take a block of
subarrays within the original large array as input. Since these subar-
rays have the same length and a constant stride between each other,
we call them regular subarrays. Figure 1 shows C regular subar-
rays of length W and stride X between each other in a large array
of size C×X. Note that the large array is contiguous on the X di-
mension, and the regular subarrays as a whole are not contiguous in
system memory. But they need to be copied to a single contiguous
array in GPU memory, as is shown on the right side of Figure 1.

This large array in CPU memory can actually be a 1D, 2D or 3D
array but is just shown in a 2D point of view. Assume the total size

XW

C

System memory GPU memory

W

C

Figure 1: regular subarrays within a large array

of the large FFT is C×X. For a large 1D FFT, the regular subar-
rays contain a part of the small FFTs in one computation step of
the Cooley-Tukey algorithm, i.e. W FFTs of length C. If the large
FFT is a 2D problem of size Y×X, then the regular subarrays com-
prise part of the Y dimensional FFTs, where Y = C. In order to
copy the whole chunk of subarrays to or back from GPU memory,
there need to be C number of cudaMemcpyAsync() function calls
and each call copies a subarray of width W. As we want to use as
much GPU memory as possible to reduce passes of subarray trans-
fers, C×W is usually chosen to be the largest value allowed on the
GPU memory. For example, if the FFT problem has an input and
an output arrays with complex double precision data type, the max-
imum power-of-two size of C×W is 32M on a NVIDIA’s GTX480
with 1.5GB global memory,

The choice of how a large FFT problem is divided has a great
impact on the data transfer performance. In other words, even if
we know the maximal value of C×W , the different choices of C
or W can lead to almost one magnitude difference in transfer time.
As we fix the C×W = 32M , for example, and change W from
8 to 32M (C changes accordingly), the effective PCI bandwidth is
illustrated in Figure 2. The curves ‘H2D’ (host to device, i.e., CPU

 0
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 5  10  15  20  25
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Figure 2: PCI bandwidth test of subarray transfer

memory to GPU memory) and ‘D2H’ (device to host) in figure 2
show the overall effective bandwidth of the transfer with different
W. The value of W is shown in log2 scale and 16×W is the actual
width in Bytes. These two curves show that PCI bus keeps a fairly
high bandwidth (about 6GB/s out of 8GB/s theoretical peak) with
large W and a small numbers of cudaMemcpyAsync() calls. The
PCI bandwidth, however, quickly decreases by an order of mag-
nitude when W decreases to be smaller than 213 to 214. We also
consider whether the stride between two adjacent subarrays, i.e. X
value, will affect the transfer performance or not. However, test
results show that it does not have much influence on the effective
bandwidth of the PCI bus.

In order to increase the effective PCI bandwidth of the subarray
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transfer for small W values, we introduce a buffer on CPU mem-
ory. The buffer has the same total size of the regular subarrays.
All the data on the subarrays is transferred to this buffer first and
then the whole buffer is copied to GPU using a single PCI transfer.
Device to host transfer is exactly the opposite process. The ben-
efit of this approach is that the rearrangement of the subarrays to
a continuous chunk of memory using memcpy() can lead to lower
total overhead than transferring subarrays directly using additional
cudaMemcpyAsync() calls. The host to device and device to host
bandwidth with a buffer on system memory is shown as the curves
’buffered H2D’ and ’buffered D2H’ in figure 2. This method gen-
erally achieves a bandwidth of 2GB/s to 3GB/s and can improve
the performance of the direct transfer method when W is smaller
than 211.

To further increase the bandwidth, the preparation of the buffer
can be done concurrently with the the transfer of the buffer over
the PCI bus. The key issue is the synchronization between the two
steps. A further optimization we propose is that the buffer on sys-
tem memory can be divided into blocks as is shown in figure 3 and
we can overlap the preparing time of a block with the PCI trans-
fer time of another block. More specifically, when memcpy() is

X

W

C

System memory GPU memory
W

C

Buffer
W

C

memcpy

cudaMemcpyAsync

Figure 3: PCI transfer of subarrays with blocked buffer

used to transfer a block of data from the large array to the buffer,
cudaMemcpyAsync() can be used to transfer the previous block to
GPU at the same time. Additional threads are needed for the de-
vice to host subarray transfer. First, cudaMemcpyAsync() is called
to move a block of data from the GPU memory to the buffer. Then
after calling the cudaStreamSynchronize() function, a signal is sent
by the first thread and the second thread will handle the data move-
ment of the block from the buffer to the large global array. The
curves ’blocked H2D’ and ’blocked D2H’ in figure 2 show the ef-
fective bandwidth of transferring subarrays using a blocked buffer.
The optimum number of blocks for each (C,W) pair is found by
an empirical search. As a result of the overlap between the two
steps of data movement, this method can greatly increase the PCI
bandwidth to about 5GB/s when W is smaller than 212.

System memory GPU memory

W

C

W

Figure 4: More general case of subarray transfer

So far, we have presented multiple methods to increase the ef-
fective PCI bus bandwidth of transferring regular subarrays. The
proposed blocked buffer algorithm can be applied to communica-
tion channels other than PCI bus and much more general random-
stride subarray transfer problems as is shown in figure 4. For reg-

ular subarrays with W larger than 212, we can improve the PCI
bus bandwidth to more than 3GB/s without using any FFT re-
lated optimization. We will shown in the following sections that
we can further improve the PCI bandwidth of FFT problems to al-
most optimum by co-optimizing the Cooley-Tukey algorithm based
decomposition and the parameter tuning of the PCI transfer step.

4. LARGE 1D FFT
First, we will discuss the computation of 1D FFTs with size

larger than GPU memory. 1D FFT has no natural parallelism
that can be extracted from simple problem division. However, the
Cooley-Tukey decomposition algorithm can be applied on a large
1D FFT to get smaller sized 1D sub-problems that can fit into GPU
memory and be computed on card. As is discussed before, at least
two rounds of partial computation is needed for a large sized FFT.
The simplest way to compute a large sized 1D FFT is to decom-
pose the original problem once and compute the sub-problems with
a two-round algorithm.

4.1 Two-Round 1D FFT algorithm
A 1D FFT of size X = X1 × X2, represented as d(X, 1, 1)

in the I/O tensor format, is divided with the DIT Cooley-Tukey
algorithm represented in equation (1) by choosing m = X1 and
r = X2. Then, we have the following decomposition equation,
d(X1, X2, 1)t

X1
X2

d(X2, X1, X1). Figure 5 shows the overview of
our two-round large 1D FFT algorithm. The computation of a

S0 S1 S0 S1

X2

X1

S0

X1

X2

(a) Computation Round1

S1

S0

S1

X1 FFT & twiddle

S0 S1 S0 S1

X1

X2

X1

X2

X2 FFT

S0 S1 S0 S1

pass1 pass2

GPU

GPU

(b) Computation Round2

Figure 5: Two-round computation for large 1D FFT

large 1D FFT is divided into two rounds. Each round includes
several passes of GPU computation and the number of passes is

X×data_size
GPU_memory_size .

Each pass of GPU computation can use multiple streams to over-
lap the computation with communication. For example, figure 5
shows the case of using two streams, S0 and S1, in each round.
The relation between the stream size, the number of streams and
the number of passes is shown in equation (3).

stream_size×(#streams)×(#passes)

≤ GPU_memory_size (3)

We use empirical search to find the optimum number of streams
and the stream size.

For the host to device data transfer, round one needs
C = X1 number of PCI transfers and a width of W =

X2
(#passes)×(#streams)

for each transfer. For example, if X1 =

X2 = 213, W will be smaller than 211. The blocked buffer method
can be used to perform the host to device subarray transfer and
about 5GB/s PCI bus bandwidth is achieved according to the re-
sults in figure 2.
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On the GPU, FFTs of size X1 are further decomposed by the
Cooley-Tukey and are computed using a sequence of codelets. The
last codelet is rewritten to include twiddle factors of size X1 ×X2.
The transposition of X1 to the low dimension is performed on GPU
instead of on CPU because of GPU’s higher bandwidth. More-
over, this transposition is incorporated in the computation of the
codelets with the help of shared memory, so no explicit transposi-
tion is needed. Finally, the output of round one is copied back to the
CPU in a single PCI transfer. Close to 6GB/s PCI bus bandwidth is
achieved in this step.

In round two of the computation, a host to device and a de-
vice to host PCI subarray transfer with C = X2 and W =

X1
(#passes)×(#streams)

is performed. Similar to the host to device
transfer in round one, about 5GB/s PCI bandwidth can be achieved.
The number of passes and streams in round two need not to be the
same as for round one. No transposition is needed on the GPU in
this round.

In order to keep a high PCI bandwidth of all three transfers, we
want to keep both the W value large and the C value small. There-
fore, X2 is chosen to be equal or slightly larger than X1. Another
reason to choose equal or close X1 and X2 values is that the two
computation kernels in the two rounds will be balanced. This helps
to overlap the computation time with the PCI transfer time.

4.2 Three-Round 1D FFT algorithm
When the problem size X increases, X1 and X2 in the

above two-round algorithm will increase, and more subarrays with
smaller size need to be transferred in one pass. The decrease of
width of subarray will hurt bandwidth significantly in both rounds.
In this case, we propose another alternative algorithm using three
rounds of PCI bus transfer with higher bandwidth for each round.
If X = X1 × X2 × X3, applying the DIT Cooley-Tukey algo-
rithm (1) twice gives equation (4), which suggests a three-round
1D FFT algorithm.

{d(X1, X2X3, 1)t
X1
X2

d(X2, X1, X1)

tX1X2
X3

d(X3, X1X2, X1X2)} (4)

There are other valid decomposition schemes that can be derived
from recursively applying DIT or DIF algorithm on different parts
of the previous equation.

The three-round computation of equation (4) is illustrated in
figure 6. Different data transfer strategies are needed for the

...
S1
S0

X3

X1

X2

...
S1
S0

X1

X3

X2

X1 FFT
&

twiddle

S0
S1
...

X1

X2

X3

...
S1
S0

X1

X3

X2
X2 FFT & twiddle X3 FFT

(a) Round1

(b) Round2 (c) Round3

Figure 6: Three-round computation for large 1D FFT

three rounds of computation. In round one, reading from sys-
tem memory needs C = X1 PCI transfers, each with a width
of W = X3X2

(#passes)×(#streams)
. Writing backs in round one

and both accesses in round three have C = X3 and W =

X1X2
(#passes)×(#streams)

. To keep W large and C small, X2 is cho-
sen to be larger than both X1 and X3. Arrays that need to be trans-
ferred in round two occupy a contiguous chunk of system memory.
Only one PCI transfer is needed for round two, so it already has the
best bandwidth over the PCI bus.

By adding one more round of GPU computation, the bandwidth
of each round is improved. However, this three-round 1D FFT algo-
rithm is only beneficial for very large 1D FFTs where a two-round
algorithm has low PCI bandwidth. Thus the overhead of adding
one round of PCI communication is justified. In our case, due to
the limitation of our system memory, the largest 1D FFT we can
test is 256M and a two-round algorithm still has a good PCI trans-
fer bandwidth for this size. So this three-round 1D FFT algorithm
should be used for even larger 1D FFTs.

5. LARGE 2D FFT

5.1 Naive 2D FFT algorithm
For a large 2D FFT of total size N = Y×X where 16N is larger

than the GPU’s global memory size, there are naturally 2 rounds of
computation by definition, i.e. Y dimensional FFTs and X dimen-
sional FFTs. One can easily takes advantage of this natural paral-
lelism and compute a batch of these smaller sub-FFTs on the GPU
if these Y dimension sub-problems or X dimensional sub-problems
can fit into the GPU memory. The data layout in system memory of
this straightforward algorithm is shown in figure 7. Y dimensional

S0 S1 ...

X

Y

S0
X

Y
S1

...

Y FFT X FFT
(a) Round1 (b) Round2

Figure 7: Naive algorithm for large 2D FFT

FFTs are computed in round one and X dimensional FFTs in round
two. Similarly, each round is divided into several passes and each
pass has a couple of streams. Round two has no PCI bandwidth is-
sue because each stream needs only one PCI transfer between host
and device. In round one, there are C = Y number of reads from
and writes to subarrays on system memory. Each access over PCI
has a width of W = X

(#passes)×(#streams)
. According to the PCI

performance curves in figure 2, when X is large and Y is small,
the data transfer pattern has a good PCI bandwidth. However, this
naive algorithm may lose up to 50% of the peak PCI performance
when Y is large. Moreover, the amount of GPU computation be-
tween two rounds is also unbalanced when Y is much larger than
X. Therefore, this naive algorithm is only used when Y is small.

5.2 Y decomposition 2D FFT algorithm
In order to increase the effective PCI bus bandwidth of round

one in the naive 2D FFT algorithm, we apply the Cooley-Tukey
algorithm once on the Y dimensional FFTs. The original 2D FFT
in tensor form, {d(Y,X,X), d(X, 1, 1)}, becomes equation (5) for
Y = Y1×Y2.

{d(Y1, Y2X,X)tY1
Y2
d(Y2, Y1X,Y X)d(X, 1, 1)} (5)

FFTs of size Y1 and Y2 are further decomposed on the GPU us-
ing the Cooley-Tukey and are eventually computed by codelets. In
particular, we rewrite the last codelet of the Y1 codelet sequence
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so that the twiddle factor computation between Y1 and Y2 can be
computed within that codelet. X dimensional FFTs are computed
using the CUFFT library due to its good on-GPU performance for
1D FFTs.

Figure 8 visualizes this decomposition in equation (5). FFTs of
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Figure 8: Y decomposition algorithm for large 2D FFT

size Y1 is computed and a transposition between Y1 and Y2 is per-
formed on GPU in round one of the algorithm. The device to host
copy of round one needs a single PCI transfer (C=1) and thus has
the best PCI bandwidth. The host to device copy in round one and
the two-way communications in round two need C=Y1 and C=Y2

number of PCI transfers. All of them have smaller C and better
bandwidth than the naive algorithm. To achieve high bandwidth
for both rounds, both Y1 and Y2 need to be small. Round one com-
putes Y1 sized FFTs and round two computes Y2 and X sized FFTs.
We want the amount of computation in two rounds to be similar so
that they can be better hidden by the PCI communication. The best
choice depends on the size of the 2D FFT and is found empirically.

Suppose there is a 2D FFT of size Y = X = 8192 with
#passes = #streams = 2, Y1 = 128 and Y2 = 64. Round one
in the naive algorithm has a copy width of W = 211 for each PCI
transfer, and roughly 4.7GB/s host to device and 4.2GB/s device to
host PCI bus bandwidth can be achieved if the blocked buffer algo-
rithm is used. Without a blocked buffer, only 3.4GB/s and 3.3GB/s
are available for direct PCI transfers. The Y decomposition 2D
FFT algorithm, however, has a copy width of W = 217 for the
host to device transfers in round one and a bandwidth of 5.6GB/s is
achieved by a direct PCI transfer. Round two of the algorithm has
a copy width of W = 218 for each PCI transfer and can achieve
5.6GB/s and 5.9GB/s for each direction. In other words, close to
theoretical peak bandwidth is achieved in all two rounds of PCI
transfers by using this Y decomposition 2D FFT algorithm.

A special case where the above 2D FFT algorithms will not work
is when the X dimension of a 2D FFT is larger than the GPU mem-
ory size. In this case, a naive algorithm needs two rounds PCI
transfer and GPU computation just for the X dimensional FFTs
and another round for the Y dimensional FFTs. The solution we
propose is to decompose the X dimensional FFT using our large
1D FFT algorithm and combine the Y dimensional FFT into one of
the two rounds of X dimensional computation. Therefore, still only
two rounds of PCI transfer are needed.

6. LARGE 3D FFT

6.1 Naive 3D FFT algorithm
Similar to the 2D FFT case, the natural parallelism in 3D FFTs

of size X×Y×Z can be translated into a straightforward way to
compute large sized 3D FFTs on a GPU if X×Z and X×Y can
fit into the GPU memory. The data layout in system memory of
the naive two round algorithm is shown in figure 9. Z dimensional
FFTs are computed in the first round and Y dimensional FFTs in
the second round. X dimensional FFTs can be combined into ei-
ther round depending on which one has less computation. Again
the on-GPU Z and Y dimensional FFTs are further decomposed
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Z FFT(& XFFT) Y FFT(& XFFT)

(a) Round 1 (b) Round 2
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Figure 9: Naive algorithm for large 3D FFT

using the Cooley-Tukey algorithm and are computed by our own
kernels. X dimensional FFTs are computed by calling CUFFT for
better performance. Each stream in round two accesses a contin-
uous chunk of data on the host memory and therefore has opti-
mum PCI bandwidth during data transfer. However, round one has
C = Z number of PCI transfers and each transfer has a data width
W = XY

(#passes)×(#streams)
. For large Z and small X×Y , this

round of PCI transfer will have a low effective PCI bus bandwidth
according to figure 2. We need to further decompose the Z dimen-
sion to avoid this scenario.

6.2 Z decomposition 3D FFT algorithm
Similar to the Y decomposition 2D FFT algorithm, we apply the

Cooley-Tukey algorithm once on Z dimensional FFTs of a 3D FFT
when Z is large. For Z = Z1×Z2, a direct 3D FFT represented
as {d(Z,XY,XY )d(Y,X,X)d(x, 1, 1)} is transformed into the
tensor format as is shown in equation (6) after applying a DIT al-
gorithm on Z.

{d(Z1, XY Z2, XY )tZ1
Z2

d(Z2, XY Z1, XY Z1)

d(Y,X,X)d(X, 1, 1)} (6)

The system memory layout of this Z decomposition algorithm for
3D FFT with large Z is illustrated in figure 10. The PCI bandwidth
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Figure 10: Z decomposition algorithm for large 3D FFT
analysis of this algorithm is similar to that of the Y decomposition
2D FFT algorithm except that Y becomes Z and X becomes X×Y
in this case. A close to optimum PCI bandwidth is achieved for all
four transfers between the host and device if Z1 and Z2 are chosen
to be close.

Strictly following equation (6), only FFTs of size Z1 will be
computed in round one and all Z2, Y and X kernels will be in round
two. The computation will be extremely unbalanced between the
two rounds. Particularly, the computation time in round two will
be difficult to be hidden in the communication time. Instead, we
apply an optimization proposed in paper [8] to rearrange the com-
putation order. The general reorder rule is that the order of these
I/O dimensions can be adjusted as long as FFTs of size Z1 appears
before FFTs of size Z2. Therefore, we can exchange the I/O di-
mension d(Z2, XY Z1, XY Z1) and d(Y,X,X) and still have the
correct output. The result of this reordered 3D FFT is shown in
formula (7).

{d(Z1, XY Z2, XY )tZ1
Z2

d(Y,X,X)

d(Z2, XY Z1, XY Z1)d(X, 1, 1)} (7)
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Now, Y dimensional FFT is computed in the first round of computa-
tion and X dimensional in the second round as is shown in figure 10.
Moreover, size Y FFTs and size X FFTs can be exchanged as well
in order to best balance the computation between two rounds.

There are two corner cases of large 3D FFTs that can not be
handled by the above two algorithms. One is that X×Y is larger
than the GPU’s memory size (but X is still smaller). The other
one is that X alone is larger than the GPU memory size. In the
first case, the Y dimensional FFT can be decomposed and, in the
second case, X can be decomposed using the Cooley-Tukey.A two-
round decomposition algorithm can be derived using the I/O tensor
representation to achieve a good bandwidth over PCI. These two-
round decomposition schemes are similar to our large 1D FFT and
the large 2D FFT algorithms and therefore are not further discussed
here.

7. EVALUATION
In this section, we present the performance of our large 1D,

2D and 3D FFT implementations on three NVIDIA GPUs, i.e.
GeForce GTX480, Tesla C1060 and Tesla C2070. Of the three
GPUs, the GTX480 and the C2070 are based on the latest
GF400/Fermi architecture while the C1060 is based on the slightly
older GT200 architecture. Details of the three NVIDIA GPUs and
the related configurations of their host systems are listed in table 1.

The host machine of the GTX480 and C2070 has a high-end
Intel i7 920 CPU. The performance of FFTW and MKL on this
CPU is compared with that of our FFT library on the two Fermi-
based GPUs. The host CPU for the C1060 is an Intel server CPU
Xeon E5405. The configuration of the CPUs and the CPU based
FFT libraries are listed in table 2. In FFTW, the support of the
Single Instruction Multiple Data (SIMD) extension is enabled to
take advantage of the vector instructions (SSE2) on the Intel CPUs.
FFTW’s patient level, choices of search method and search space
size, is set as ’MEASURE’. This method takes around 30 minutes
on searching for large sized FFTs in our test but it provides much
better performance than a lower patient level, ’ESTIMATE’. Since
all host CPUs are multi-core processors, multithreading is enabled
and the performance with different number of threads is shown for
both FFTW and MKL. In short, the performance of FFTW and
MKL is configured to be their best on our test systems.

Currently this work handles 1D, 2D and 3D FFTs with power-of-
two sizes, and other sizes can be easily included by adding codelets
of different sizes. The FFT computation is performed out-of-place,
which preserves the input array. The input and output are complex
number and can be in either double precision or single precision.
Only double precision results are shown due to its higher accuracy,
which is valuable particularly for large FFT sizes. The correctness
of our FFT’s output is checked by a comparison with FFTW and
MKL on the same input.

The range of the FFT size in our test is determined by both the
size of the system memory and the size of the GPU memory. The
smallest test case is the smallest FFT problem that cannot fit into
GPU memory or computed by CUFFT, and the largest test case is
the largest power-of-two FFT that can fit into pinned system mem-
ory. For a D dimensional out-of-place complex FFT with dou-
ble precision, the total number of elements M = N1·N2·...·ND

should be equal or larger than 32M for GTX480, 64M for C1060
and 128M for C2070 and should be equal or smaller than 256M
due to the available CPU memory on our system. In fact, our al-
gorithm is able to handle much larger FFTs if given more system
memory. Finally, as a convention, the performance of FFT is re-
ported in GFLOPS defined in equation (8) where t is the execution

time in seconds.

GFlops =
5M

∑D
d=1 log2Nd

t
∗ 10−9 (8)

7.1 Performance of Large 1D FFTs
Figure 11 shows the performance of 1D FFTs of size 32M to

256M in log2 scale on GTX480 and C2070. FFTW and Intel
MKL’s performance on the host system with an Intel i7 920 CPU
is listed as a comparison. FFTW shows good scalability when the
number of threads is within 4. FFTW with 8 threads has simi-
lar performance to 4 threads on this 4-core CPU, and both achieve
around 6 to 7.5GFLOPS. MKL has similar scalability but performs
significantly worse than FFTW on sizes of 128M and 256M. Our
large 1D FFT on the GTX480 achieves 11GFLOPS, on average,
and is 62% faster than FFTW and 2.4× faster than MKL with 4
threads. Compared with a single thread on a CPU, our GPU FFT
is 4.5× faster than FFTW and 3.3× faster than MKL. Our peak
performance of 15.5GFLOPS is achieved on the size of 32M. This
problem size can actually fit into the GPU but CUFFT is somehow
unable to compute it. In this particular case, our approach needs
only one round of PCI transfer although a global synchronization
in between two rounds of computation remains necessary.

A Tesla C2070, on the other hand, supports duplex communica-
tion on the PCIe bus, which theoretically has bi-directional band-
width of 16GB/s. However, its 1D FFT performance is only 10% to
15% faster than that of GTX480. A possible reason is that duplex
PCI transfers cannot properly overlap with a memory-bound ker-
nel like FFT, because host to device transfer, device to host transfer
and kernel accesses on global memory may result in a bottleneck
in global memory bandwidth or its memory control unit. For the
two largest 1D FFTs, the C2070 achieves 11GFLOPs and is 1.7×
times faster than FFTW and 3.55× faster than MKL with 4 threads.
Compared with a single CPU thread, the C2070 is 4.5−4.8× faster.

Figure 12 shows the performance of 1D FFTs of size 64M
to 256M on a Tesla C1060. Intel MKL crashes when per-
forming a 1D FFT of size 256M and therefore this point is not
shown. On the Intel Xeon E5405, FFTW with 4 threads achieves
3.6GFLOPS and MKL achieves 3.0GFLOPS for large 1D FFTs
on average. Our library on the C1060 achieves 4.2GFLOPS,
which is 16.7% faster than the 4-thread FFTW but is much
worse than our library on Fermi GPUs. This is because the
C1060 has much fewer double precision ALUs compared with
the Fermi cards. The double-precision performance of pre-Fermi
GPUs is about only 10% of the single-precision performance.
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Figure 11: 1D FFT on GTX480 and Tesla C2070
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GPU Global Memory CUDA Driver Nvcc & Cufft PCI System Memory
GeForce GTX480 1.5GB 260.19.21 3.2 PCIe2.0 x16 12GB
Tesla C2070 6GB 260.19.21 3.2 PCIe2.0 x16 12GB
Tesla C1060 4GB 256.53 3.1 PCIe2.0 x16 9GB

Table 1: Configuration of GPUs

CPU Frequency Cores GCC FFTW MKL System Memory
i7 920 2.66GHz 4 4.4.3 3.2.2 10.2.6 12GB
Xeon E5405 2.00GHz 4 4.1.2 3.2.2 10.2.6 9GB

Table 2: Configuration CPUs and FFT libraries
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Figure 12: 1D FFT on Tesla C1060

Moreover, C1060’s best PCI bandwidth of a single array trans-
fer (when C=1 and W=64M) is only 5.6GB/s for host to de-
vice and 4.3GB/s for device to host transfers, which is much
worse than that of Fermi GPUs. As a result, our blocked buffer
algorithm achieves lower PCI bus bandwidth on the C1060 as
well.

7.2 Performance of Large 2D FFTs
This section shows the performance of 2D FFTs with size

Y × X, where 32M ≤ Y×X ≤ 256M . Due to a large
number of test points, the results on GTX480 are divided into
two figures. Figure 13 shows the 2D FFTs where Y×X ≤
64M and figure 14 shows those Y×X ≥ 128M . Differ-
ent Y×X sizes are indexed in an increasing order of Y. Sim-
ilar to 1D, FFTW shows a good scalability up to 4 threads in
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Figure 14: 2D FFT Y×X ≥ 128M on GTX480 and Tesla C2070

both figures. FFTW with 8 threads has almost the same perfor-
mance as 4 threads, and therefore is not shown. As we can see,
FFTW’s performance decreases dramatically from 10GFLOPS to
less than 3GFLOPS with the increase of Y due to the loss of
data locality in the Y dimensional computation. However, MKL
with 2 threads and 4 threads suffers less from the loss of Y di-
mensional locality on this Intel CPU and performs better than
FFTW.

Because we divide the Y computation into two rounds, our
2D FFTs on a GTX480 has a much smaller performance de-
crease with the increase of Y than FFTW. We achieve an aver-
age of 10.9GFLOPS, which is 64% and 69% faster than FFTW
and MKL with 4 threads. Since CUFFT on the C2070 can com-
pute 2D FFTs with size Y × X ≤ 64M , our FFT results on
C2070 are only shown in figure 14. The fluctuation in figure 14
is because 2D FFTs of size Y×X = 128M can fit into the
6GB global memory on the C2070 but somehow cannot be han-
dled by CUFFT. For these sizes, we only need the host to de-
vice transfer of round one and the device to host transfer of round
two in our algorithm, and can eliminate the PCI transfer of inter-
mediate results. The best 2D FFT performance on the C2070 is
21GFLOPS for a size of 1024×65536. On average, the C2070
achieves 15.2GFLOPS and is 2.3× faster than FFTW and 2.4×
faster than MKL with 4 threads on an Intel i7. C2070 has four times
more double precision ALU than GTX480, however its speedup
over GTX480 is not big for a communication bound problem like
FFT.

Figure 15 shows our large 2D FFT test results on the Tesla
C1060 and the performance of FFTW and MKL on the In-
tel Xeon machine. FFTW’s performance decreases with the
increase of the Y dimension but MKL is much better for
these sizes. Our 2D FFT achieves 7.88GFLOPS and is
2.66× faster than FFTW and 2.13× faster than MKL with 4
threads.
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Figure 15: 2D FFT Y×X on C1060
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Figure 16: 3D FFT Z×Y×X ≤ 64M on GTX480
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Figure 17: 3D FFT Z×Y×X ≤ 128M on GTX480 and Tesla
C2070

7.3 Performance of Large 3D FFTs
Figures16 and 17 illustrate the performance comparison of our

large FFT library with FFTW and MKL for 3D FFTs of size N =
Z×Y×X, where 32M ≤ N ≤ 256M . FFTW with 4 threads
performs slightly better than our GPU library for small Z values,
but its performance decreases quickly as Z increases. MKL’s 3D
FFTs with 4 threads have similar performance with FFTW and is
better than FFTW for large Z. Our high dimensional decomposi-
tion algorithm shows a big advantage when the highest dimension
of the FFT is larger than 2048. FFTW and MKL quickly lose data
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Figure 18: 3D FFT Z×Y×X ≤ 64M on C1060

locality for these sizes and therefore perform much worse than our
GPU library. Overall, our library has an average of 10.6GFLOPS
on the GTX480 and is 27% faster than FFTW and 52% faster than
MKL. The C2070, on the other hand, achieves 12.7GFLOPS for
large 3D FFTs which can be attributed to its duplex PCI communi-
cation ability.

The performance of FFTW and MKL on the Xeon E5405 and
our 3D FFTs on the Tesla C1060 is shown in figure 18. Compared
with the Fermi GPU cards, 3D FFTs on the C1060 have an ob-
vious performance decrease with the increase of the Z dimension.
Our Z decomposition algorithm decreases the number of PCI trans-
fers from Z to Z1 and Z2. However, with the increase of Z, the
number of PCI transfers still increases slowly. The effective PCI
bus bandwidth for the C1060 card decreases faster than for Fermi
based GPUs. This leads to an obvious decrease in performance for
3D FFTs on the C1060 when Z is large. Overall, the C1060 still
achieves 6.4GFLOPS, on average, and is 72% faster than FFTW
with 4 threads and and 64% faster than MKL’ best performance.

Overall, our GPU based large FFT library is faster than mul-
tithreaded FFTW and MKL on almost all 1D, 2D and 3D FFT
sizes. The performance of the Tesla C2070 is slightly better than
the GeForce GTX480 and both Fermi cards are much faster than the
GT200 based Tesla C1060. Across 1D, 2D and 3D sizes, the C1060
has an average performance of 7GFLOPS, a GTX480 achieves
11GFLOPS and the C2070 achieves 14GFLOPS. As a compari-
son, both FFTW and MKL achieve only 3.5GFLOPS on the Xeon
and about 7GFLOPS on i7. We also tested our library with single
precision data. Because FFT is a communication bounded prob-
lem, both the performance of our large FFT library and CPU based
libraries have 50% to 100% speedup over their double precision re-
sults. The speedup of our GPU FFT library over the CPU libraries
is similar to the double precision case. We do not show these single
precision results here simply due to limited space.

7.4 Precision of Our Large FFTs
The correctness of our large GPU FFT library is verified by a

comparison with FFTW and MKL. All three libraries are tested
with the same double precision pseudo-random input data in the
range of [−0.5, 0.5) and the difference in output is quantized as
root mean square error (RMSE) over the whole data set. Let us as-
sume there are two complex FFT output arrays of length N, (xi, yi)
and (Xi, Yi). The RMSE between these two output arrays is cal-
culated as shown in equation (9)

RMSE =

√∑N
i=1 ((xi −Xi)2 + (yi − Yi)2)

N
(9)
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The RMSE is a widely used metric to measure the relative ac-
curacy of two computations. Lower RMSE value means the two
computation routines produce more similar result. The RMSE re-
sults of the 1D, 2D and 3D FFTs between our GPU FFT and FFTW
are shown as the solid bars in figure 19. Overall, the RMSE is
extremely small and is in the range of (1.4×10−12, 3.6×10−12).
With the increase of FFT size, the RMSE increase almost linearly.
The RMSE between MKL and our GPU FFT library, shown as the
shadowed bars in figure19, is of the same order of magnitude as the
FFTW results.
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Figure 19: Precision of 1D, 2D and 3D FFTs on GTX480

8. CONCLUSION AND FUTURE WORKS
This is the first work that enables GPUs to efficiently compute

FFTs of such large sizes on a single compute node. So far, CUFFT
and many other CUDA based FFT libraries have mostly been fo-
cusing on FFT’s on-card performance. There are at least two lim-
itations of the FFT performance they have achieved. First, their
FFT size is limited by the GPU on-card memory. Second, a user
has to transfer the FFT’s input and output data between CPU and
GPU memory via PCI bus. When the data transfer over PCI bus is
counted in, this transfer time can easily eliminate the majority of
the GPU’s on-card performance advantage. This work is the first
step in attacking the above two realistic problems in the case of
FFT and has achieved success in the comparison with CPU based
FFT libraries.

In this paper, we propose a computation framework for GPUs
to efficiently compute large 1D, 2D and 3D FFTs that do not fit
into GPU memory. Unlike on-card FFT problems, whose perfor-
mance depends on the speed of the GPU memory and the number of
ALUs, the dominant performance factor for such large FFTs is the
PCI bus bandwidth and the balance of computation. Specifically,
we propose a couple of FFT related decomposition algorithms and
a general blocked buffer algorithm to maximize the effective PCI
bus bandwidth and best hide the computation time. The FFT com-
putation kernels on GPUs are generated following an on-card FFT
computation work proposed in paper [8]. For a high-end GPU,
NVIDIA’s GTX480, our algorithms achieve a speedup of 1.62× for
1D, 1.65× for 2D and 1.28× for 3D over FFTW with multithread-
ing enabled on an Intel i7 CPU. Even higher speedup is achieved
on a Tesla C2070, i.e. 1.5×, 2.3× and 1.53×, over FFTW.

This work can be easily extended to higher dimensional FFTs,
FFTs with non power-of-two sizes and multi-GPU architectures.
The idea behind our decomposition algorithm is to maximize the
data locality of arrays to be transferred over the PCI bus, through

both algorithmic manipulation and implementation optimization,
so that a better bandwidth can be achieved. This FFT decompo-
sition framework and the algorithms proposed in this paper may
also be applied to FFTs in other hierarchical memory or commu-
nication bound problems other than FFT, where high performance
can also be achieved by maximizing the memory or network band-
width.
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