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Abstract— Parallelism helps performance but at the same time
stresses computer resources that are shared among threads. In
this paper, we propose a low-overhead hardware counter based
profiling method to accurately identify time-relevant contention
locations in the program, then these contentions are mitigated so
that performance of multithreading tasks can be boosted by the
reduction of unnecessary contention cycles. In our preliminary
experiment using NAS Parallel Benchmark (NPB), the contention
searching algorithm is able to find an severe memory contention
loop in FT code. After contention mitigation, more than 10% of
the total cycles is eliminated, and the execution time of FT is
reduced by 3% at the same time.
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I. INTRODUCTION

All threads running on a multicore processor share resources

such as the last-level cache, memory bandwidth, prefetcher

etc.. It is not hard to envision that the resource sharing can

cause contentions among threads. This resource contention

problem has been addressed in prior researches such as [1]–[4]

with the optimal scheduling methods. However little research

has been done on contention mitigation from the perspective

of code transformation within multithreaded programs. That

is, prior works mostly accept the executables of programs

as they are and try to react to resource pressures by opti-

mizing process scheduling. However, the deeper problem is

the interaction among threads that belong to one task, whose

solution is critical to achieve the best overall performance for

a multithreaded task that runs on a multicore architecture.

This paper makes three main contributions:

1) Resource Pressure Profiling. We developed a hardware

counter based profiler to track several key hardware

events that help identifying the most contentious parts

in a multithreaded program in a portable way.

2) Identifying Resource Contentious Code and Type. Using

information gathered from profiling, we developed a

searching algorithm to back-project the contention spot

to the program code precisely and help identifying the

type of resources that threads compete for.

3) Contention-mitigating Transformations. We developed

two prototype transformations to mitigate resource con-

tentions. One purposefully reduces the number of con-

current threads on the most contentious program spot.

The other converts the pressure on cache capacity to the

utilization of memory bandwidth. These methods do not

require programmer intervention, and can be standalone

or be integrated into compilers as one of the feedback

directed optimization.

The rest of this paper is organized as follows. Section II

presents program metrics profiled and how profiling is per-

formed with little overhead. Section III tells how we organize

profiling output in a meaningful way and derive precise con-

tention characteristics. Section IV presents experiment results.

Finally, we draw conclusions in section V.

II. PMU BASED PROFILING

To make our method work with whichever parallel program-

ming model or compiler is used, PMU profiling is the best

choice in that it does not require code instrumentation. The

first task is to find a set of desirable PMU events that help

identifying contentions, at the same time, preserve portability

across architectures. We argue that commonly available events

“CPU Cycles” and “Instructions Retired” are these desirable

events that would enable us to find every nontrivial contention

spot in the program. “CPU Cycles” and “Instructions Retired”

are portable in that almost all architectures define these two

hardware events. They are effective in finding contention spots

in that any contention caused execution inefficiency will be

reflected in the increase of “CPU Cycles” for some sequence

of instructions.

Our profiler runs a program twice. The first run is called

“sequential” run, in which we deliberately leave exactly one

core visible to the program, so that at any moment during

the program execution, only one thread can have all the chip

resource. The second run is called “parallel” run, in which

the multithreaded program will run in the same environment

as it does in production stage. Fig 1 shows the result of our

profiling method testing on NPB benchmark. 19 executables

in the benchmark are tested. Some executables share the same

program code but with different problem sizes. In 13 of

19 examples, total cycles of the process are increased when

the program executing in parallel; for the other 6 examples,

total cycles of the process does not change much. Another

observation is that total number of instructions retired does

not change, which is within our expectation as the workload

remains the same for both runs.
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III. CONTENTION SITE IDENTIFICATION

To compare performance of same thread under different

chip resource allocation setups, we need a base metric that

makes the comparison valid and effective. We propose using

“Instructions Retired” as the base metric, since it is very stable

from run to run for most programs.

Our contention site identification algorithm works in six

steps:

1) All samples are grouped according to their thread id.

2) For each thread id, samples are subgrouped according to

their event number and sorted by timestamp.

3) For each event of each thread, hardware event values are

changed from non-cumulative to cumulative.

4) Cycle interpolation is done for each “Instructions Re-

tired” sample.

5) For “sequential” run, cycle interpolation is done for each

“Instructions Retired” sample relative to the interpolated

cycle from last step.

6) A summary of cycles difference contribution list is gen-

erated.
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Fig. 1: Sample Output of the Profiling Tool
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Fig. 2: FT Contention Overhead - Parallel vs. Sequential

IV. EXPERIMENT

First, we did a simple test to see how much contentions exist

in NPB benchmark. The test result is shown in Fig 1. The X

axis is the test programs in NPB benchmark. The Y axis is

the ratio of hardware counter value of “parallel” run to that

of “sequential” run. Event “Instructions Retired” is used to

show that the number of instructions retired keeps almost the

same between “parallel” run and “sequential” run. Event “CPU

Cycles” indicates how much contention exists. The larger ratio

of “CPU Cycles” is, the more contentions there are.

Next, we use NPB benchmark to test our contention spot

identification algorithm. The test result of FT is shown in

Fig 2. The X axis, event “Instructions Retired”, serves as

the base on which “parallel” run and “sequential” run can

be compared. Each point in X axis maps to two cycle values

for each run respectively. A periodical development of cycle

difference in Fig 2 reveals that a specific code location has

caused the contention. To reduce the amount of contentions,

only two threads, instead of four as specified in the original

benchmark code, are needed to execute this section of code on

our four-core machine, even though other parts of the program

are still running with 4 threads. As shown in Fig 2, 10% of

total cycles can be attributed to this contention. Those wasted

cycles are spent on competing for memory bus, and no useful

work is done with those cycles. This case shows that our

contention identification algorithm is effective in identifying

the contention hotspot.

V. CONCLUSION

In this paper, we propose a method to relieve the contention

on shared resources in multithreaded programs and translate

the reduced contention into higher overall performance. The

method has three main components: a profiler to identify

the most resource contentious spots, a micro scheduler that

selectively reduces the number of concurrent threads in those

contentious spots, and a transformation to shift the pressure on

shared cache capacity to usage of memory bandwidth. This is

a work in progress, and we verify the effectiveness of our

approach with several programs in NPB benchmark and a

matrix-multiplication based synthetic benchmark.
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