
Source Code Partitioning in Program Optimization

Murat Bolat

University of Delaware
Newark, DE, USA
murat@udel.edu

Kirk Kelsey

ET International, Inc.
Newark, DE, USA

kelsey@etinternational.com

Xiaoming Li

University of Delaware
Newark, DE, USA
xli@ece.udel.edu

Guang R. Gao

University of Delaware
Newark, DE, USA

ggao@capsl.udel.edu

Abstract—Program analysis and program optimization seek
to improve program performance. There are optimization
techniques which are applied to various scopes such as a source
file, function or basic block. Inter-procedural program opti-
mization techniques have the scope of source file and analyze
the interaction and relationship between different program
functions. The techniques analyze the entire translation unit
(typically a source file) and optimize the whole translation unit
globally instead of just optimizing inside a function.

Analyzing and optimizing an entire translation unit increases
compilation time drastically because many factors need to be
considered during analysis and optimization. The translation
unit size can be quite large, containing many functions. Another
issue is that functions in different translation units can be more
closely related to each other than to the functions within their
translation unit.

The main goal of this research is grouping or partitioning
of closely related program functions into the same translation
unit. Our method profiles an application, determines relation-
ship information between program functions and groups closely
related functions together.

The source code partitioner method improves the processing
time of inter-procedural optimization techniques by applying it
to a subset of program functions. Partitioning of program func-
tions by analyzing profiling output shows dramatic decrease
in compilation time of programs. Our results show we can
improve the compiling time in all tested real world benchmarks.

Keywords-compiler; optimization; partitioning; instrumenta-
tion; betweenness; agglomerative; divisive;

I. INTRODUCTION

The goal of program optimization is to improve program

performance. There are dozens of program optimization

techniques in optimizing compilers. These optimization

techniques are categorized in four types: peephole, local,

inter-procedural and loop optimizations. The optimization

techniques in the peephole, local and loop optimization

categories are limited to function scope. Inter-procedural

optimization techniques have a larger scope, extending over

the entire translation unit [1].

Optimizing the interaction between program procedures

can have significant impact on program performance, and

today’s complex compilers utilize this optimization category

This work is funded in part by the Defense Advanced Research Projects
Agency through AFRL Contract FA8650–09–C–7915.

of inter-procedural optimization techniques. Complex pro-

gram analysis and modifications are required for using inter-

procedural program optimizations. The compile time suffers

from this complex analysis. The standard optimization level

(O3) of the GNU C compiler (GCC) [2] infrastructure con-

tains inter-procedural program optimizations as well as local

function level and basic block level program optimizations.

Because inter-procedural optimizations are applied to an

entire translation unit, an increase in the size of the trans-

lation unit also increases the complexity of the application

analysis. Achieving good performance impact requires tun-

ing the number of functions included in a file in order to

balance the impact of the optimizations with the cost of

inter-procedural analysis.

Another consideration in inter-procedural optimization

is the interaction between functions located in separate

translation units. Optimizing this interaction by applying

inter-procedural optimization techniques might have more

significant impact than applying only within single transla-

tion units. In most libraries and tools, the source files are

first compiled into object files while applying optimizations

and linked together at a later stage. The interaction between

functions in different translation units is rarely exploited.

The observation about a compiler’s processing time in

inter-procedural program optimizations raises an important

question. How can we gain a significant performance in-

crease while maintaining a reasonable compile time when

using inter-procedural program optimizations?

This paper proposes a source code partitioner which

divides the source code and creates reasonable translation

unit sizes. The final partitioned translation units can be

optimized more efficiently using the inter-procedural opti-

mizations. The partitioning of the translation units is not

done arbitrarily, rather the closely related functions are

included into same translation unit. This function-to-function

relationship is determined by application profiling.

The remainder of the paper is laid out as follows. Sec-

tion II gives high level information about our source code

partitioner, Section III talks about the source code profiler,

Section IV deals with partitioning algorithms, Section V

shows the application of the partitioner onto real world

benchmarks and Section VI concludes the paper.

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.125

56

Source Profiling
Creation Partitioning

GraphGraph

Creation
Source Partitioned Source

Figure 1. The source code partitioner.

II. SOURCE CODE PARTITIONER

This section has a high level description of the source code

partitioner. The goal in our program partitioning is efficient

program compilation while having good performance.

The major contributions in our source code partitioning

approach are:

• Profile based partitioning of program files.

• Improved program compile time.

• Minimal increase in program execution time.

Our program partitioning approach implements two par-

titioning algorithms and creates new translation units as a

result of partitioning. The partitioning also improves pro-

gram compilation time. Only the partitioned source files are

compiled with the highest compilation flag. The remaining

source files are not optimized during compilation.

Our source code partitioner method has four phases:

1) Profile the application (Profiling).

2) Create an undirected, weighted graph from profiling

data (Graph Creation).

3) Partition the graph heuristically (Graph Partitioning).

4) Create translation units for each graph cluster (Source

Creation).

The flow graph of the source code partitioner is shown in

Figure 1.

The first phase in our source code partitioner determines

the interaction between program functions. The application

is partitioned based on information about function interac-

tions gathered from program profiling. We determine the

relationship between program functions based on the source

code profiler suggestions for locality optimizations (SLO) [3]

described in Section III.

The profiling output is used to determine closely related

program functions. The starting point is to create an undi-

rected and weighted graph, which is later partitioned. The

partitioning algorithms we have studied are the community
structure finding algorithm and scalable information bot-
tleneck algorithm. Section IV describes both algorithms in

more detail.

Each partitioning result creates new source files (trans-

lation units). Functions in each graph cluster are moved

into the corresponding source file. The remaining functions

which are not included into the graph will be present in the

original translation units. The created source files are later

compiled into the binary and run. The compilation time and

the run time are measured for the original program version

and the partitioned version. Section V applies the source

code partitioner onto real benchmarks and compares compile

time and run time of the original version and partitioned

version.

III. SOURCE CODE PROFILER

The source code profiler analyzes the application in order

to determine the relationship between the program functions.

The current implementation uses the source code profiler

suggestions for locality optimizations (SLO) [3]. This pro-

filer is a modified GNU C compiler (GCC) [2] which

includes profiling code while compiling the translation units.

The SLO profiler is picked in order to optimize functions

which access same memory locations.

The SLO compiler also creates additional information

files about each translation unit besides including profil-

ing code. The additional files contain information about

memory accesses. After program execution, the profiling

database contains the memory reuse distances and how many

times they occur. We can determine the distance and the

occurrence number for each memory access pair. Using

the profiling database and the additional information files,

the memory access locations in translation units can be

determined.

In our source code profiler, the memory reuse distances

are not considered. Only the number of data reuses is used

in creating the weighted, undirected graph. In the graph each

node represents a function participating in a data reuse. The

edge between two nodes represents the sum number of data

reuses between that pair of functions. Processing profiling

database creates a weighted and undirected graph. The

functions participating in any data reuse in that particular run

are shown as graph nodes. Those functions also participate

in program partitioning. The remaining functions stay in the

original translation units. The profiler determines memory

reuses at the instruction level, where memory reuse among

instructions are shown. Currently, we only look at function

level and do not go into basic block or instruction level.

Figure 2(a) shows an example program and Figure 2(b) its

corresponding undirected memory reuse graph. The profiler

determines memory reuses among memory instructions. For

example, the instruction in loop body of the function Init
has six memory reuses with the instruction in loop body

of the function Increment. The function Init stores

values onto six array elements and the function Increment
loads six of the stored values. There are two reuse cases

between functions SumUp and Decrement. In the first case

the function SumUp accesses the memory locations which

the function Decrement later decrements. The second

case is the opposite direction, where function Decrement
decrements and function SumUp accesses. Both reuses are

added together in the graph.

57

void Init (int *A, int N)
{
 for (int i=0; i<N; i++)
 A[i] = 0;
}
void Increment (int *A, int N)
{
 for (int i=0; i<=N/2; i++)
 A[i]++;
}
void Decrement (int *A, int N)
{
 for (int i=N/2+1; i<N; i++)
 A[i]−−;
}
int SumUp (int *A, int N)
{
 int i, Sum = 0;
 for (i=0; i<N; i++)
 Sum = Sum + A[i];
 return Sum;
}
int main (void)
{
 int A[10], Sum;
 Init(A,10);
 Increment(A,10);
 Sum = SumUp(A,10);
 Decrement(A,10);
 Sum += SumUp(A,10);
 return 0;
}

(a) C Program (b) Memory reuse graph

Figure 2. Example C program to demonstrate profiling tool and its
corresponding memory reuse graph. The array locations participating in
data reuses are shown in red.

The graph resulting from processing the profiling database

is the starting point for the implemented partitioning algo-

rithms.

IV. PARTITIONING ALGORITHMS

The memory reuse graph is divided using graph partition-

ing algorithms. We have implemented the partitioning based

on the community structure finding (Community) algorithm
and the scalable information bottleneck (LIMBO) algorithm.

The partitioning algorithms use the edge weights in the

graph and find a partitioning where internal edges have

higher connection values than the external edges. The edges

represent the sum number of data reuses among connecting

node (function) pairs. The outcome will be the partitioning

of the program. Sections IV-A and IV-B talk about the work

flow of the partitioning algorithms. Section IV-C briefly

describes the extraction of source code onto separate source

files.

A. Community Structure Finding Algorithm

The community structure finding (Community) algorithm
identifies communities, or clusters, which are closely re-

lated [4]. The paper proposes the algorithm in order to find

community structures in large networks such as biological

networks or the world wide web. We will use this algorithm

in partitioning program functions into different translation

units. The community structures are clusters with closely

related parts in a graph. We want to see in our research how

such a general clustering algorithm behaves in clustering

with the goal of optimization. Wide usage of this algorithm

affected our choice.

The algorithm uses a metric called edge betweenness.

Edge betweenness calculation determines the popularity of

an edge in routes between all node pairs. Although the work

in [4] proposed the algorithm for an undirected, unweighted

graph, we generalized it for a weighted graph.

The algorithm is a divisive algorithm that starts with

the largest cluster and divides the cluster. The algorithm

proceeds iteratively, and halts when the number of functions

in each cluster is below a maximum value provided by the

user. In each iteration, a new cluster is selected.

The algorithm has the following flow:

1) Calculate betweenness scores for all edges in the

graph.

2) Find the edge with the highest score and remove it

from the graph.

3) Recalculate betweenness for all remaining edges.

4) Repeat from step 2.

The paper [4] shows two different ways to calculate edge

betweenness values which are shortest paths betweenness

and random walks betweenness. Both ways result onto

different partitioning. The source code partitioner contains

shortest paths betweenness in order to calculate the between-

ness scores.

In shortest paths betweenness all-pairs shortest paths are

calculated and the betweenness number is the number of

times an edge is taken in shortest paths. The edge with the

highest betweenness score is removed and the betweenness

values are recalculated. The paper claims that the edge

which is taken the maximum number of times is the edge

connecting communities or clusters. The paper uses breadth-

first search to determine a shortest path because the graphs

in that paper are unweighted and undirected graphs. In

the source code partitioner the Dijkstras algorithm [5] is

implemented in order to calculate shortest paths.

The algorithm stops when there are no divisible clusters

available. A cluster is considered non-divisible if the number

of nodes (functions) are less or equal to the given function

number parameter. The first drop from the function limit

number is the stopping criteria for that cluster. The algorithm

stops when all clusters reach the stopping criteria.

The processing of the Community algorithm is shown

using our example memory reuse graph in Figure 2(b) of

the example C program in Figure 2(a). The function number

parameter value for this partitioning is two.

The shortest paths in the first iteration is shown below. The

shortest path between nodes x and y is denoted as SP(x,y).
An edge between nodes x and y is denoted as E(x,y). For

each shortest path, the taken edges are shown.

• SP(Init,Increment): E(Init,Increment)

• SP(Init,SumUp): E(Init,SumUp)

• SP(Init,Decrement):

E(Init,SumUp) → E(SumUp,Decrement)

• SP(Increment,SumUp): E(Increment,SumUp)

58

cluster 0

cluster 1

Init

Increment

6

SumUp

4

6

Dec remen t

8

(a) After first interval

cluster 0

cluster 1

Init

Increment

6

SumUp

4

6

Dec remen t

8

(b) After second interval

Figure 3. The intermediate partitionings in Community algorithm.

• SP(Increment,Decrement):

E(Increment,SumUp) → E(SumUp,Decrement)

• SP(SumUp,Decrement): E(SumUp,Decrement)

The edge betweenness value is the sum number of

times an edge is taken in shortest paths. The edge

E(SumUp,Decrement) is taken three times and has a maxi-

mum edge betweenness value of three. That edge is removed

after this interval, and the partitioning in Figure 3(a) is

created.

The cluster 1 in Figure 3(a) is not considered in next

interval because it has less or equal nodes than the function

parameter value of two. The cluster 0 will be further divided.

The shortest path calculations at the second interval are:

• SP(Init,Increment): E(Init,Increment)

• SP(Init,SumUp): E(Init,SumUp)

• SP(Increment,SumUp): E(Increment,SumUp)

All three edges in the cluster 0 are taken one time and

have an edge betweenness value of one. In this case the

edge with a minimum edge number is chosen and removed,

which is E(Init,SumUp). After this interval, the number

of nodes in the cluster 0 does not change. The Figure 3(b)

has the configuration after this interval. The shortest path

calculations in interval three after that edge is removed are:

• SP(Init,Increment): E(Init,Increment)

• SP(Init,SumUp):

E(Init,Increment) → E(Increment,SumUp)

• SP(Increment,SumUp): E(Increment,SumUp)

At this iteration both edges have betweenness value of two.

In this case the edge to remove is chosen randomly, which

is in our case the edge E(Init,Increment).
The partitioning after this interval is shown in Figure 4(a).

This is also the final partitioning because all clusters are less

or equal the function number parameter of two.

cluster 0

cluster 1

cluster 2

SumUp

Decremen t

8

Increment

6

Init

4

6

(a) Community

cluster 1

cluster 0

SumUp

Decremen t

8

Init

4Increment

6

6

(b) LIMBO

Figure 4. The final partitioning in both algorithms.

B. Scalable Information Bottleneck (LIMBO) Algorithm

In contrast to the algorithm in the previous section, the

scalable information bottleneck (LIMBO) algorithm is an

agglomerative algorithm. The algorithm starts with single

node clusters and combines clusters together. The algorithm,

which uses ideas from information theory, is described in

paper [6]. The paper applies the algorithm to decompose

large software systems. The functions which are related to

each other are included into the same cluster for better

understanding the software systems hierarchy.

The paper proposes the algorithm for an unweighted

graph which is generalized to a weighted graph in the

source code partitioner. Another difference in the source

code partitioner is that it only combines clusters which are

connected with an edge to each other; in contrast, the paper

allows combining any clusters together. The stopping criteria

for combining two clusters is the function number parameter.

The translation unit with that number is not considered in

the next combination. The algorithm stops when no further

combining for all clusters possible.

The algorithm uses an adjacency matrix M, where mij is

the node weight between nodes i and j. The weight is zero

if there is no edge between nodes. At each combination

of nodes the row number of the matrix reduces, but the

column number stays the same. The row headers are called

as the artifacts A of the graph. C is the set of clusters,

which has the size number of nodes/artifacts, initially. The

column headers are the feature set B of the clusters, which

has the size number of nodes. At each iteration, two rows

are combined together and the element values are updated.

In order to apply ideas from information theory, the paper

denotes A and B as two random variables, which can have

59

values of the sets. The relationship of those random variables

leads to the combining clusters.

Initially, each artifact a1, a2, . . . , an ∈ A has a probability

p(ai) = 1/n, where n is the number of nodes in the graph.

After calculating entropy and conditional entropy, the mutual

information of both random variables is calculated.

The mutual information I(A;B) for the random vari-

ables A and B is I(A;B) = H(B) − H(B/A), where

H(B) = −∑
ai∈A p(ai) log2(p(ai)) and H(B/A) =

−∑
ai∈A p(ai)

∑
bj∈B p(bj/ai) log2(p(bj/ai))

The mutual information is the amount of dependency of

one random variable from the other one. In our case the

mutual information is the information about artifacts we

can observe from the feature set. The goal is to create a

clustering with high mutual information. The initial single

clustering has highest mutual information and the combining

of all nodes together has lowest mutual information. At

each combination of rows the features set of both rows

are averaged together, so the original information content

is combined and leads to some loss of information.

The adjacency matrix M is normalized in order to get the

value p(bj/ai) =
M [ai,bj]∑
b∈B

M [ai,b]
. The normalization results

to the sum of one at each row.

Another set C is the clustering of the nodes, where C
equals A, initially. The elements c1, c2, . . . cn ∈ C equal the

elements of A. As mentioned before, the goal is to have a

high mutual information, so we need to combine two clusters

which have a low information loss δI(cx, cy). In order

to calculate the information loss, the mutual information

before combining is calculated and the mutual information

after combining is calculated. The difference of the mutual

information is the information loss. The clusters with lowest

information loss are combined. For example, two nodes

have the same number of edges, which connect to the same

neighbors with same weight. Combining those two will have

zero information loss because the resulting feature set has

same values. This phase repeats iteratively until maximum

number of nodes are reached in all clusters. That means

further combining means clusters with size greater than the

parameter maximum node number.

The formula for information loss of clusters cx and cy
is δI(cx, cy) = p(cxy) · DJS [p(B/cx), p(B/cy)], where

p(cxy) = p(cx)+p(cy) is combined probability, p(B/cxy) =
p(cx)
p(cxy)

p(B/cx) +
p(cy)
p(cxy)

p(B/cy) are combined features and

DJS [p(B/cx), p(B/cy)] is Jensen-Shannon (JS) divergence

which measures similarity between two probability distribu-

tions.

The information loss formula is used at each iteration

between all clusters. The cluster pairs with the lowest infor-

mation loss are combined together. The combined cluster has

combined probability and combined features. This process-

ing repeats until no combination possible. In our application,

the artifacts are combined onto clusters until the function

Init Increment SumUp Decrement
Init 0→0 6→0.60 4→0.40 0→0
Increment 6→0.50 0→0 6→0.50 0→0
SumUp 4→0.22 6→0.33 0→0 8→0.44
Decrement 0→0 0→0 8→1.00 0→0

Table I. Adjacency matrix for the graph in Figure 2(b). Normalized
values are in bold.

Init Increment SumUp Decrement
Init 0.2770 0.2806
Increment 0.2770 0.3392
SumUp 0.2806 0.3392 0.5000
Decrement 0.5000

Table II. Information loss between rows (clusters) in table IV-B

Init Increment SumUp Decrement
Cluster 0 0.2500 0.3000 0.4500 0
SumUp 0.2222 0.3333 0 0.4444
Decrement 0 0 1.0000 0

Table III. New normalized adjacency matrix after combining nodes Init
and Increment to cluster 0

SumUp Decrement
SumUp 0.5000
Decrement 0.5000

Table IV. Information loss between rows (clusters) in table IV-B. The
cluster 0 is not considered in this calculation.

number parameter value is reached, so we don’t want to have

bigger cluster sizes than the function number parameter. In

the original proposed algorithm, it is possible to combine

nodes which are not neighbors, but in our source code

profiler we do not combine non-neighboring nodes. These

nodes have the same relationship with other functions in the

application but do not interact with each other directly and

will not have any benefit in inter-procedural optimizations.

As in Section IV-A we show the processing of this

algorithm for the example graph in Figure 2(b). Creating

the adjacency matrix M is the first step of the algorithm

(Table IV-B). The matrix is normalized and each row sums

up to one. The normalized matrix values are in bold.

This matrix is used for calculating information losses in

Table IV-B. The original algorithm considers all clusters

in calculating information losses, but the modified version

in this paper calculates only information losses between

clusters with connecting edges. The information loss in

Table IV-B shows combining nodes Init and Increment
will lead to minimum information loss, so these nodes are

combined into one cluster. In this example, function number

parameter is two, and the new cluster has the size two, so

it will not be considered in next combination process. This

combination leads to the normalized matrix in Table IV-B.

The information loss of this new normalized matrix is

also calculated and the clusters to combine are determined

(Table IV-B). There are only two single clusters SumUp and

60

Decrement left and they are combined together.

The final partitioning of the example data reuse graph in

Figure 2(b) is shown in Figure 4(b). The final partitioning

contains two clusters with two nodes. The cluster 0 contains

the functions Init and Increment and the cluster 1
contains the functions SumUp and Decrement.

As can be seen in our example graph, both algorithms

lead to different partitioning of the original data reuse graph

for function number parameter of two.

C. Source Code Extraction

The partitioning algorithms create clusters, which group

a subset of function (nodes) together. After program parti-

tioning, the clusters are included in their own source files

(translation units). This is the last phase in our source code

partitioner. The functions in each cluster are extracted and

included in their corresponding translation unit. The remain-

ing functions still stay in their original translation unit. In

each translation unit the required function prototypes, type

(enum, struct and typedef) definitions and global variable

declarations are included in the translation units.

For our example program in Figure 2(a), all functions

but function main participate in partitioning. The main
function stays in the original source file, and the other

functions are moved to their corresponding source files.

The outcome of the Community algorithm in Figure 4(a)

indicates three additional source files wih corresponding

functions. The partitioning of the LIMBO algorithm creates

two additional source files for each cluster in Figure 4(b).

The function number parameter given by the user also

has an effect on the partitioning outcome. In our example

program, the function number parameter was two for both

algorithms. Both algorithms determined different partition-

ing for that parameter value. For the case, we modify the

parameter to three, both algorithms will determine same

partitioning of the graph. The partitioning will result in the

same clustering as the one in Figure 3(b).

V. EXPERIMENTAL RESULTS

The impact of applying inter-procedural program opti-

mizations on a partitioned subset of application functions is

also measured on real world benchmarks. The source code

partitioner is tested on six benchmarks. Those benchmarks

are 401.bzip2, 429.mcf, 433.milc, 458.sjeng, 464.h264ref
and 470.lbm of SPEC CPU2006 benchmark suite [7].

The compile and run time of the benchmarks are measured

for the original, unpartitioned version, and for the partitioned

version after the source code partitioner has been applied.

The benchmarks are compiled and run for two cases:

1) Unpartitioned translation units compiled with standard

optimizations (Original Version).

2) Partitioned translation units compiled with standard

optimizations and remaining translation units without

optimization (Partitioned Version).

D()

E()

F()

file2.c

A()

B()

C()

file1.c

G()

H()

I()

file3.c

gcc −O3 gcc −O3 gcc −O3

file1.o file2.o file3.o

gcc −O0

executable

Figure 5. Compilation of an application (Original Version).

D()

E()

F()

file2.c

A()

B()

C()

file1.c

G()

H()

I()

file3.c

file1.o file3.o

gcc −O0 gcc −O0gcc −O3gcc −O3

A()

E()

I()

pfile1.c

B()

D()

F()

pfile2.c

pfile2.opfile1.o

gcc −O0

executable

A

I

E

D

B

F

Movement of functions to cluster 2

Movement of functions to cluster 1

Figure 6. Partitioning of an application and compilation after partitioning
(Partitioned Version) .

The figure 5 shows the compilation of the original version

of an application with three files (file1.c, file2.c,
file3.c) and nine functions (A, B, C, D, E, F,
G, H, I). The files are compiled with the GCC compiler

version 4.4.3 [2] using the highest standard compilation

flag O3. This flag contains inter-procedural program op-

timization techniques as well as local function level and

basic block level program optimization techniques. The

resulting object files (file1.o, file2.o, file3.o)

are linked together and compiled to executable without

applying optimizations which is the standard flag O0. After

creating the undirected reuse graph, the application func-

tions are partitioned as in the top part of the figure 6.

The bottom part of the figure shows the modified com-

pilation for the partitioned version. The functions in each

cluster are moved from their original translation units to

their corresponding cluster translation units (pfile1.c,

61

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

401.bzip2 429.mcf 433.milc 458.sjeng 464.h264ref 470.lbm

S
pe

ed
 U

p

Original Compile
Community Compile

LIMBO Compile

Figure 7. Compile time speed up for the five benchmarks. Partitioning
time is also included in the compile time.

pfile2.c) and removed from their original translation

units. The file file1.c contains only function C, and

file file3.c contains the functions G and H. The cluster

translation units (pfile1.c, pfile2.c) are compiled

with the standard compilation flag and remaining translation

units without applying any optimizations. The file file2.c
is not compiled because all the functions are removed from

it. The resulting object codes are linked and compiled to

executable similar to the original version. The partitioned

version has four files, two of them compiled with standard

flag and two of them without optimizations.

The compile time and run time speed up can be seen in

Figures 7 and 8. The speed up is shown for six benchmarks

and for both algorithms. The compile time and run time

speed up of the original benchmark is also shown. The com-

pile time also includes the partitioning time. All values are

normalized to the original benchmark values, which leads

to speed up of one for the original case. The Community

algorithm of Section IV-A is indicated as Community. The

LIMBO algorithm of Section IV-B is indicated as LIMBO.

The benchmarks are run with their training input data.

The table V shows summary of the clustering for the six

benchmarks. The summary is shown for six benchmarks

and for both algorithms. The column Partitioning indicates

the fraction of partitioning time in total compilation of

the partitioned version. The last two columns show how

many clusters with the given corresponding number of

functions exists. For example for the Community algorithm

in benchmark 401.bzip2, there are two clusters with six

functions/nodes.

The compilation speed up for the benchmark 401.bzip2
is 100% for the Community algorithm and 110% for the

LIMBO algorithm. There is no run time slow down for both

partitionings.

The benchmark 429.mcf has a compilation speed up of

42% for the Community and 75% for the LIMBO algo-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

401.bzip2 429.mcf 433.milc 458.sjeng 464.h264ref 470.lbm

S
pe

ed
 U

p

Original Run
Community Run

LIMBO Run

Figure 8. Run time speed up for the five benchmarks.

rithm. The run time slow down is 3% for the Community

algorithms and 2% for the LIMBO algorithm.

There is speed up in compilation and run time for the

benchmark 433.milc. The compilation speed up is 47%

for the Community algorithm and 76% for the LIMBO

algorithm. The runtime improves 2% for the Community and

1% for the LIMBO. There are 68 files in this benchmark,

with only functions from 48 files participate in partitioning.

The remaining 20 files are compiled without applying opti-

mization techniques, which lead to total compilation speed

up. Grouping of the closely related functions from the 47

files reduces analysis time of the compiler and leads to

compilation time reduction. The run time performance of

the partitioned versions for both algorithms shows intelligent

grouping of the program functions for big benchmarks

improves the compilation time while having reasonable run

time performance.

The benchmark 464.h264ref has a compilation speed up

of 29% for the Community algorithm and 71% for the

LIMBO algorithm. The Community algorithm has 2% and

the LIMBO algorithm 1% run time slow down. The com-

pilation speed up is 18% for both algorithms in benchmark

470.lbm and no run time slow down.

Our partitioning shows the Community algorithm creates

one or two clusters with many nodes (dominating clusters)

and many single node clusters. Applying inter-procedural

optimizations on only those dominating clusters will further

reduce compilation time while having similar run time

performance. The functions in dominating clusters have a

high degree of interaction with each other but the single node

clusters create many translation units. Further improvement

could be found by combining the single node clusters.

The LIMBO algorithm creates clusters with a more evenly

distributed number of nodes. The overall partitioning leads

to a reasonable number of translation unit sizes and number

of translation units.

The results show smaller translation unit sizes with closely

62

Benchmark Algorithm Partitioning # Clusters # Functions
401.bzip2 Community 1.09% 2 6

3 3
9 1

LIMBO 0.14% 2 6
2 5
3 3
2 1

429.mcf Community 2.34% 1 3
2 2

12 1
LIMBO 0.32% 2 4

3 3
1 2

433.milc Community 12.45% 1 12
2 6
1 5
2 4
1 3
4 2

19 1
LIMBO 0.64% 1 13

1 12
2 11
1 6
1 5
1 3
3 2

458.sjeng Community 11.34% 1 8
1 6
1 3
5 2

20 1
LIMBO 0.61% 2 8

1 7
1 6
1 5
1 4
1 3
3 2

464.h264ref Community 24.26% 1 21
1 8
1 7
1 6
3 4
2 3
7 2

44 1
LIMBO 0.72% 2 23

1 21
1 19
1 16
1 10
1 4
1 2

470.lbm Community 0.15% 1 2
4 1

LIMBO 0.08% 3 2

Table V. Summary of clustering for the six SPEC benchmarks.

related functions improve the compilation time of inter-

procedural optimizations and gathers similar run time per-

formance. We have shown that optimizations do not need

to apply to all functions. We have grouped the highly

interacting program functions together and have shown

optimizing those highly interacting program functions can

improve compilation time.

The run time of partitioned versions of the six benchmarks

has slight slow down in most of the benchmarks. The

main reason for this slight slow down is optimizing only

a subset of program functions. In the partitioned version,

only the translation units which are the outcome of parti-

tioning algorithms are optimized. The remaining functions

are not optimized and compiled with the flag O0. Also the

optimization techniques at local function and basic block

level are not applied to those remaining functions.

VI. CONCLUSION

This paper introduces a new approach in program opti-

mization. Instead of applying standard program optimization

on entire program translation units, the approach focuses on

a subset of translation units. The optimized translation units

are created using profiling information.

Our approach is tested on six benchmarks. The compi-

lation and run time of the partitioned version is compared

to the original un-partitioned version. The compilation time

improves in all benchmarks while having similar run time

performance compared to the original benchmark version.

Our approach makes use of the standard optimization

flag to optimize the translation units. One possible future

research is the determination of different optimization set-

tings for each translation unit using iterative optimization

orchestration algorithms as depicted in the paper [8].

REFERENCES

[1] S. S. Muchnick, Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann Publishers, Inc., 1997.

[2] GCC, the GNU Compiler Collection. [Online]. Available:
http://gcc.gnu.org/

[3] K. Beyls and E. D’Hollander, “Refactoring for data locality,”
Computer, vol. 42, no. 2, pp. 62 –71, feb. 2009.

[4] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Phys. Rev. E, vol. 69, no. 2,
p. 026113, Feb 2004.

[5] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271,
1959.

[6] P. Andritsos and V. Tzerpos, “Information-theoretic soft-
ware clustering,” IEEE Transactions on Software Engineering,
vol. 31, pp. 150–165, 2005.

[7] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
SIGARCH Comput. Archit. News, vol. 34, pp. 1–17, September
2006.

[8] Z. Pan and R. Eigenmann, “Fast and effective orchestration of
compiler optimizations for automatic performance tuning,” in
Proceedings of the International Symposium on Code Gener-
ation and Optimization. CGO 2006. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 319–332.

63

