
Context-aware Code Optimization

Murat Bolat
Department of Electrical and Computer Engineering

University of Delaware
Newark, DE 19716-3130, USA

murat@udel.edu

Xiaoming Li
Department of Electrical and Computer Engineering

University of Delaware
Newark, DE 19716-3130, USA

xli@ece.udel.edu

Abstract—A program segment such as a function or a basic
block sequence may display different behaviors during the
execution of the program. For example, a basic block sequence
may consistently show few cache misses during the first 10
times it is executed, while the same basic block sequence may
experience high number of cache misses when the sequence
is invoked in the next 100 times. The divergence within the
runtime behavior of program segment implies that different
optimization choices should be made even for a single code
segment if it shows different behaviors under different runtime
contexts. However, traditional compilation technique rarely, if
ever, takes advantage of that optimization opportunity. This
concept is different from the finding of hot path, which has
been done in both static compilation and dynamic optimization,
whose purpose is to find the most frequently executed code
segment and then to apply more aggressive and more expensive
optimizations on that code segment. For the most part, behavior
divergence other than execution frequency is not a factor in
the determination of which optimizations to be applied to the
segment.

In this paper, we propose a novel feedback-driven program
optimization technique that profiles and determines the run-
time behaviors of code segments in a program to find the
different patterns of behavior, correlates different runtime
behaviors of a program segment with its program source code,
and uses an empirical search method to customize the choice
of optimization for same program segments under different
runtime behaviors. We implement our optimization technique
in LLVM and test our approach with SPEC2000 and SPEC2006
benchmarks. The preliminary results show promising perfor-
mance improvement compared with the standard optimization
settings used by the benchmarks.

I. INTRODUCTION

A code segment in a program may behave differently
during the execution of the program when that code seg-
ment is invoked multiple times. The behavior difference is
reflected in not only the time of multiple executions of the
code segment, but also in the interaction between the code
segment and architectural features, for example cache misses
in the multiple instances of execution.

The behavior divergence of the same code segment can
appear not only when the code segment is invoked by
different preceding code but also can happen among multiple
invocations of the code segment by the same preceding code.
The fundamental reason for the behavior divergence is that
the execution of preceding code of a code segment might

change the execution context of the respective code segment,
hence the segment is actually executed with different set of
architectural resources. For example, one preceding basic
block can allocate and load big chunk of memory which
can result in a higher cache miss rate in the succeeding
code segment, whereas another preceding basic block does
not load any new memory which might lower cache miss
rates of the same code segment.

The behavior divergence of code segment indeed exists
in real-world programs. Figure 1 shows the profile of L2
cache misses of 14 functions, 2 functions in each of the
seven SPEC benchmarks [1] [2]. The functions are all
invoked more than twice during the execution of the whole
benchmark. We record the L2 cache misses in each invo-
cation of the functions. Figure 1(a) shows the distribution
of those record of L2 miss on each function. The bar of
each function has 10 segments, the ith segment representing
the percentage of the overall number of invocations of the
function that has L2 cache miss in between i ∗ 10% and
(i + 1) ∗ 10% of max L2 miss− min L2 miss. All the
segments add up to 100%. Figure 1(b) shows the relative
difference between max L2 miss and min L2 miss, that
is max L2 miss−min L2 miss

min L2 miss . The figures clearly show that
program segments in real-world programs not only have a
widely distributed spectrum of behaviors, but also possess a
large difference between behavior extremes.

The behavior divergence of code segment provides new
opportunities for code optimization. Intuitively, if a code
segment that shows behavior divergence could be optimized
according to its different behaviors under different contexts,
the overall performance would improve. However, that op-
portunity is unexploited in code optimization research. The
most relevant code optimization technique that tries to take
advantage of the behavior change in code segment is proba-
bly hotspot optimization [3], which applies more aggressive
code transformations when a code segment is determined to
contribute a relative large portion of overall execution time
or the segment is executed frequently. However, the selection
of optimization is not differentiated based on the possibly
different behavior of the target segment. Trace scheduling [4]
and trace-based optimization [5] are also related. This type
of code optimization find out the program segments that are

256978-1-4244-5736-6/09/$26.00 ©2009 IEEE

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

in
fla

te
_d

yn
am

ic

pq
do

w
nh

ea
p

pr
im

al
_n

et
_s

im
pl

ex

pr
im

al
_i

m
in

us

hb
M

ak
eC

od
eL

en
gt

hs

ge
tR

LE
pa

ir

su
b_

pe
na

l

ut
em

p

m
at

ch

in
it_

td

el
em

en
t_

m
at

ric
es

sm
vp

R
es

iz
eP

la
n7

M
at

rix

D
eg

en
er

at
eS

ym
bo

lS
co

re

164.gzip 181.mcf 256.bzip2 300.twolf 179.art 183.equake 456.hmmer

(a) Distribution of behavior divergence

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

in
fla

te
_d

yn
am

ic

pq
do

w
nh

ea
p

pr
im

al
_n

et
_s

im
pl

ex

pr
im

al
_i

m
in

us

hb
M

ak
eC

od
eL

en
gt

hs

ge
tR

LE
pa

ir

su
b_

pe
na

l

ut
em

p

m
at

ch

in
it_

td

el
em

en
t_

m
at

ric
es

sm
vp

R
es

iz
eP

la
n7

M
at

rix

D
eg

en
er

at
eS

ym
bo

lS
co

re

164.gzip 181.mcf 256.bzip2 300.twolf 179.art 183.equake 456.hmmer

(b) Maximal divergence between behaviors

Figure 1: The behavior divergence of benchmarks.

consequentially executed and enable the usage of optimiza-
tions designed for straight-line code for the traces. However,
the selection of trace and the optimization are still based
on execution frequency of program segments, and does not
consider the difference in the behavior of those segments as
a relevant factor. This paper is a first effort to systematically
detect behavior divergence of code segment under different
contexts and search for compiler transformation settings that
perform best for the different contexts. A novel algorithm to
detect hot traces is introduced and the behavior divergences
of these traces are detected. Our approach to detect behavior
divergences can also be applied onto pathes determined by
path profiling [6] methods. We leave this application and
optimizations to a future work. Program slicing method [7]
is used for debugging and measuring functional cohesion. It
only considers and processes statements which are depend-
ing on interested data elements. Our approach in this paper
applies the modifications to the whole basic blocks and not
to a subset of the basic block statements.

The behavior divergence can be exploited at different
code granularity, from procedure down to basic block.
In this paper, we target at the behavior of basic block
sequences in a procedure. The main contribution of this
paper is a systematic solution to profile program so that
the behavior of basic block sequence can be determined,
to select the basic block sequences that are most likely to
benefit from context-aware optimization, and to empirically
search for the best compiler transformation settings for a
basic block sequence under different contexts. The paper
presents all the three steps, including a profiler for basic
block behavior that is built on top of the Low Level Virtual
Machine (LLVM) compiler infrastructure [8] in Section II-A,
a behavior analyzer in Section II-B and an empirical search
engine for transformation setting in Section III. We apply
our approach to a number of SPEC2000 [1] and SPEC2006

[2] benchmarks and achieve up to 17% speedup.

II. BASIC BLOCK SEQUENCE (BBS) TOOL

This section describes how we profile a program to
gather context information and how the profile information
is analyzed to determine the basic block sequences that
can benefit from context aware optimization. The whole
process is done in two phases: runtime profiling and off-
line analyzing.

A. Profiling Tool

The profiling tool is developed using Low Level Virtual
Machine (LLVM) Compiler Infrastructure [8]. Code is in-
strumented at the basic block level. The tool numbers each
function and each basic block in a program uniquely. The
profiling code is inserted into program at the intermediate
representation level. The compilation process for an appli-
cation with multiple source code files is done in multiple
stages. The compilation stages is shown in figure 2. This
tool makes use of the LLVM tools llvm-gcc, llvm-link, opt
and llc [8] and GCC compiler [9].

The instrumentation code performs two conceptually sim-
ple tasks, namely to record the sequence of basic blocks
that is executed and to book-keep the hardware counter
readings at the basic block level. We implement the two tasks
in a lightweight way so that the instrumentation code has
minimal interference with the behavior of the target program.
The profiling information can be regarded as database and
is used by the analysis tool to gather runtime properties.

B. Analysis Tool

The goal of the Basic Block Sequence (BBS) analysis tool
is to find basic block sequences that show large variance in
their runtime behavior and are executed relatively frequently.
The requirement for large variance in runtime behavior is
a natural conclusion from the definition of context-aware

257

file1.c fileN.c

llvm-gcc llvm-gcc

file1.bc fileN.bc

prof_file.c

llvm-gcc

prof_file.bc

llvm-link

program.bc

llvm-link

profprogram.bc

opt

Profiling
Tool

optprogram.bc

llc

optprogram.s

gcc

optprogram

. . .

. . .

Figure 2: The instrumentation and compilation of code.

BBP file

Function Array Creation

BB Array Creation

Sequence Creation

Best Sequence Detection

Expandable
Sequences ?

Sequence Expansion

Info File Insertion

Context Creation

yes

no

Info File

Figure 3: Flow graph of the BBS tool. This flow graph is processed
separately for each function in BBP file.

optimization. If a program segment performs identically
among its multiple executions, there is no reason to op-
timize the segment in different ways. It is necessary to
require a relatively high execution frequency for a target
program segment of context aware optimization because the
context-aware optimization has setup overhead which must
be amortized over multiple executions of the target program
segment.

We analyze the profiling file and determine basic block se-
quences for each function of an application. Inter-procedural
analysis of basic block sequence behavior is not yet sup-
ported at this stage. A length of a sequence is the number
of adjacent basic blocks in that sequence. An occurrence of
a sequence is the number of times that sequence is executed
in the profiling file. In this paper the profiling information
of a program is stored in a file called basic block profiling
file (BBP file). The file contains the basic blocks executed
in each function and their hardware counter readings.

The workflow of the analysis algorithm is illustrated in
Figure 3. The whole process is applied to each executed
function in the BBP file. The data structures and variables
of each step of the algorithm are shown in figure 4. The
first step of the analysis is the Function Array Creation

struct funcarray
{
 bool Entry;
 int basicblock
} * bblfuncarray;
int bblfuncsize;

struct adjarray
{
 std::vector<int> pos;
};
struct adjarray * bblarray;

struct adjbbl
{
 std::vector<int> pos;
 int bbl[2];
};
struct adjbbllist
{
 int number;
 std::vector<adjbbl> list;
};
adjbbllist * bbls;
adjbbllist * bbltemp;

struct adjbest
{
 int bblnumber;
 std::vector<int> pos;
};
adjbest bestbbl;

struct adjbblcontext
{
 std::vector<int> bblprev;
 std::vector<int> bblnext;
 std::vector<int> count;
 std::vector<int> firstpos;
};
adjbblcontext bestcontext;

Function Array
Creation

BB Array
Creation

Sequence Creation

Sequence Expansion

Best Sequence
Detection

Context Creation

Figure 4: Structures and variables for the steps of the BBS tool.

step, which creates an array for each function and copies
information about all basic blocks of the function to analyze
into that array (Function array). This step is needed to
make the processing of further steps efficient. The Function
array is shown as variable bblfuncarray and has the size
bblfuncsize in figure 4.

Next step in algorithm is BB Array Creation step. The
size of the array bblarray in figure 4 is the number of
all basic blocks present in the target program. Each array
element contains vector of the positions of the basic blocks
at the Function array. The order of the array element in the
array bblarray is according to the basic block numbering,
For example, the array element at the index 0 of bblarray
contains the position vector of the basic block with number
1. The next array element contains position vector of basic
block with the number 2. The array in this step is used
to determine the first elements of the basic block sequences
created at further steps. The sum of the position vector sizes
equals the size of the Function array. This array increases
the memory usage of the application and will be freed after
the next step of the application.

The next Sequence Creation step of the algorithm goes
through the bblarray and basic block sequences of length
two is created. The result of the Sequence Creation step is all
basic block sequences of length two that have been executed
at least twice during the execution of the whole program. For
instance, for basic block sequences starting with basic block
one the function of this step goes through the position vector
of this basic block and determines the basic block sequences.
After this step the variable bbls contains list of basic block
sequences of length two. This variable is modified in further
steps. The structure member number shows the length of
the basic block sequences in the member list. Each list
element contains the structure members pos and bbl. The
position vector pos contains the positions of the basic block
sequence in the Function array. In the following steps the
basic block sequences are extended with new basic blocks
and the position vector is used to go through the sequence

258

Create new adjbbllist and assign to bbls
bbls->number ← 2
for each basic block bb in the Module do

for each Function Array position PosV ec1 in BB array of basic
block bb do

if basic block in position PosV ec1 + 1 of function array is not
Entry block then

Create new Sequence newbbl and push in bbls->list
Push the position PosV ec1 into the vector of the sequence
for each position PosV ec2 in BB array located after PosV ec1
do

if basic block in position PosV ec2 + 1 is not Entry block
and basic block in position PosV ec1 + 1 = basic block in
position PosV ec2 + 1 then

Push the position PosV ec2 into the vector of the se-
quence
Delete PosV ec2 from BB array

end if
end for

end if
end for

end for
FREE BB array
DELETE Sequences with Occurrence 1 from bbls->list
Function return value is the number of available sequences

Figure 5: Pseudo code of Sequence Creation step.

Move bbls to bbltemp, Create new adjbbllist and assign to bbls
bbls->number ← Sequence Length and I ← Sequence Length-1
for each sequence Sequence in previous list bbltemp->list do

for each Function Array position PosV ec1 in the position array of
Sequence do

if basic block in position PosV ec1+I of function array is not
Entry block then

Create new Sequence newbbl and push in bbls->list
Push the position PosV ec1 into the vector of the sequence
for each position PosV ec2 in position array of Sequence
located after PosV ec1 do

if basic block in position PosV ec2 + I is not Entry block
and basic block in position PosV ec1 + I = basic block in
position PosV ec2 + I then

Push the position PosV ec2 into the vector of the se-
quence
Delete PosV ec2 from position array of Sequence

end if
end for

end if
end for

end for
FREE bbltemp
DELETE Sequences with Occurrence 1 from bbls->list
Function return value is the number of available sequences

Figure 6: Pseudo code of Sequence Expansion step.

elements efficiently. Without this vector, a search of the
sequence elements in the Function array is needed. This
vector eliminated this search process. The variable bblarray
is freed after this step, because it is not needed in further
steps. Pseudo code of this step is shown in figure 5.

The Sequence Expansion step of the algorithm is an iter-
ative process. The step iterates until there is no expandable
basic block sequence, i.e. with execution frequency at least
two, left. This step uses the same structures and variables
as in previous Sequence Creation step. In this step first
the variable bbls is moved to a temporary variable bbltemp

and recreated. The temporary variable is freed at the end
of this step. The length of the basic block sequences is
increased by one at each iteration. The function of this
step goes through the position vector of each basic block
sequence and expands it with new basic blocks. The old
basic block sequence with the new inserted one has to be
present at least two times for being included into the newly
created basic block sequence list. The positions of the old
basic block sequences with same extended basic block is
copied to the newly created sequence. The newly created
basic block sequences which only differ at the last basic
block will be treated independently in the next iteration as
they are two different basic block sequences. At the end
of this step in each iteration the basic block sequences of
current iteration are available and the basic block sequences
of previous iterations are freed. The reason for deleting basic
block sequences is to prevent high memory usage which
slows down the algorithm and can cause memory overflow.
Pseudo code in figure 6 shows this process. Another step
to determine best basic block sequence follows this step at
each iteration. The iteration stops if the next Best Sequence
Detection determines that there are not any better basic block
sequences.

The Sequence Creation and Sequence Expansion steps are
always followed by Best Sequence Detection step. This step
also iterates with the Sequence Expansion step. This step
determines best basic block sequence. This step is required
to be iterated because the variable bbls is redefined at each
iteration. The criteria for best sequence is that the number
of occurrence of the basic block sequence (OoS) times the
length of the sequence (LoS) is maximum. The product of
this multiplication will further be referred as sequence value
(SV) of the basic block sequence.

SV = OoS ∗ LoS .

This step goes through the basic block sequence list of the
preceding steps and determines the best basic block sequence
which has maximum sequence value. The sequence value of
the best basic block sequence is called best sequence value.
The variable for this step is also shown in figure 4.

After the iteration through the steps Sequence Expansion
and Best Sequence Detection comes to an end, the algorithm
has determined best basic block sequence for the function.
The next step in the algorithm is Context Creation. In
this step the contexts of the best basic block sequence are
determined. If the basic block sequence shows large variance
of behavior in hardware counter contexts, we will correlate
the contexts with the preceding basic block of the selected
basic block sequence. A Context(a) of basic block sequence
a is defined as the occurrence of unique combinations
of preceding basic block and hardware counter contexts.
Ideally, the parameter that is used to distinguish and define
different hardware counter contexts should be determined
based on the benefit analysis, that is, the division of hardware

259

counter context should maximize performance improvement.
In this paper, we just empirically set the parameter. The
value can be different for different programs.

The best basic block sequence and its context information
is appended into an Info File in the step Info File Insertion.
This step concludes the analysis algorithm.

In summary, this section shows the process of creating
best basic block sequences for each function in the pro-
gram. These sequences can be understood as hot spots with
widely different behaviors during different executions of the
sequences. The resulting Info File contains the best basic
block sequences and their context information.

III. CONTEXT AWARE CODE TRANSFORMATION AND
OPTIMIZATION

This section describes the technique that we develop
to transform and optimize a program utilizing the context
information found by the analysis tool described in the
previous section. The basic idea of our context-aware code
transformation and optimization is generating multiple ver-
sions of program segments for each context and empirically
searching the best compiler transformation combination for
each version. Like the profiling tool, the code transformation
tool is also built using the LLVM framework.

The context aware code transformation and optimization
process has three stages: generate sequence functions for
contexts, find customized optimization settings for sequence
functions, and inline optimized sequence functions. The
details of these stages are described in following three sub-
subsections.

A. Generate Code Versions for Contexts

The basic block sequences and their context information
that are found by the analysis tool are first grouped based
on different sequence lengths. The basic block sequences
hat have only one context are not processed in further
steps, because it means that those sequences do not show
big variance in behavior when they are executed multiple
times and they will not benefit from further customized
optimization.

The generation of a version of a basic block sequence for
each of its contexts can be achieved simply by extracting
the basic block and duplicating it the same number of times
as the number of contexts. There is one additional step in
the approach used in this paper. That is, instead of simply
copying the basic block sequence, we first wrap each copy
into a new function. This step is necessary only because
we want to use many optimizations existing in the LLVM
infrastructure. The LLVM compiler infrastructure contains
optimization tools which can be applied onto the LLVM
intermediate representations of programs. The number of
optimization tools at basic block level is few. The majority of
the optimization tools are at loop or function level. In these
optimization tools the loop level or basic block level ones

program.bc

opt LLVM
Tool

Info_Program.bc

Info File

Figure 7: Application of the Info File onto the benchmark module.

can also be applied onto the functions, but the function level
optimization tools cannot be applied onto the loops or basic
blocks. The desire is to be able to use as many optimizations
as possible. In order to have the ability of applying more
optimization on the basic block sequences, the extraction
of these sequences in separate functions is chosen. These
functions will be referred as Sequence Functions. Following
steps show how the extraction is performed separately for
each best basic block sequence present in the benchmark.
In our analysis each function contains one sequence with
multiple contexts, therefore separate sequence functions for
each context case is created. The figure 7 shows the input
and output of the LLVM optimizer program opt in this tool.
The input to the optimizer is the program module which has
been shown in figure 2. The tool described in this section
modifies it in multiple steps based on the data in Info File
and outputs the new module with Sequence Functions. The
steps of the LLVM tool performing this extraction is shown
below.

The first step in the generation of sequence functions is the
duplication of each instruction in those basic blocks for each
context. The different contexts will have their own sequence.
The basic blocks which are executed more than one time in
each sequence is only duplicated once. For example for a
sequence, like (5 10 11 10 11 3), the basic blocks 10 and
11 is only duplicated one time, so the new functions will
only contain the basic blocks 5, 10, 11 and 3. After this
step, there are sequence functions for each context. There
will be number-of-context times sequence functions for each
function in the analysis results.

In the second step the dependencies in these duplicated
basic blocks are updated. For example, a instruction in basic
block 10 depends on an instruction in basic block 5. After
this step the instruction in duplicated basic block 10 will
depend on instruction in duplicated basic block 5. This step
also replaces the branches within the sequence basic blocks
with the duplicated ones.

The dependencies of the instructions in the sequence basic
blocks with the instructions outside sequence basic blocks
is solved in step three using function arguments. The used
function arguments are called by reference arguments and
any changes made in the sequence functions can still be
obtained after function execution.

Step four deals with branches to the basic blocks outside
the sequence. These branches are resolved by using different
return values of the sequence functions. For each branch to

260

-block-placement -loop-reduce -condprop -adce
-loop-index-split -loop-rotate -constprop -cee
-loop-unswitch -loop-unroll -gvn -die
-lower-packed -loopsimplify -gvnpre -dse
-predsimplify -lowerswitch -indvars -licm
-tailcallelim -reassociate -mem2reg -sccp
-tailduplicate -scalarrepl -reg2mem

Figure 8: Optimization flags applicable on LLVM intermediate
representation and used in optimization algorithm.

a basic block not in the sequence the function has different
return value.

In step five context times new basic blocks inside original
benchmark functions are created. Each new basic block
contains one call instruction to their respective sequence
function and a switch instruction. The switch instructions
contain branches to different basic blocks based on the
return value of the functions. The predecessor basic block
in each context contains a branch to the first basic block of
the sequence. These branches are replaced with branches to
their respective new basic block, which calls that particular
context’s sequence function.

After the creation of the sequence functions, different
optimization algorithms can be applied onto the sequence
functions and optimize the best basic block sequences.

B. Finding Customized Optimizations

The step following the generation of sequence functions
is the customization of compiler optimizations for each se-
quence function. Ideally, the selection of compiler optimiza-
tions can be analytically determined from the context. In this
paper, we use an existing algorithm that empirically search
for the best compiler optimization setting for programs. The
algorithm, Iterative Elimination (IE), is proposed in [10].
That algorithm is implemented and modified slightly. In
the original paper the algorithm starts by turning on all
optimizations and uses it as baseline. New optimization
combination is found by turning off optimizations. In this
paper the algorithm inverts this processing and starts by
turning off all optimizations and customized optimization
is found by turning on optimizations.

The LLVM compiler infrastructure contains a number
of optimizations for the LLVM intermediate representation.
Our implementation uses optimizations at function, loop and
basic block level. Interprocedural optimizations is not used
because the goal is to find customized optimizations for
each sequence function uniquely. The optimizations used
for the algorithm is shown in figure 8. The compilation of
the benchmarks with different optimization flags is demon-
strated in figure 9. The compilation process is executed for
each optimization combination and a performance value is
obtained. The performance of the benchmarks is measured
using PAPI performance counter library [11].

The implemented algorithm gets baseline information of
the particular function and at each iteration it finds combina-

Info_Program.bc

Counter_Functions.bc

Counter_Functions.c

llvm-gcc

llvm-link

optLLVM
Optimizations

Optm_Program.bc

New_Program.bc

optCall Counter
Functions

Count_Program.bc

llc -march=c

Count_Program.c

gcc -O3

Count_Program

Figure 9: Finding Customized Optimizations for each function.
The optimizations for the current processed function is applied at
the box LLVM Optimizations

tion which includes combination of previous interval plus an
additional optimization that deliver better performance than
the current iteration. For example, the first iteration will find
single optimization which has better performance than other
optimizations. In the second iteration, it finds combination
of the single optimization with one more optimization which
results to best performance. After second interval, two
optimizations are turned on. This process continues until
there is no performance improvement by adding further
optimizations into the combination. This combination is
referred in this text as Customized Optimizations for that
particular function. This process is repeated for each inter-
ested function which are in our case the sequence functions
and the functions calling them. The performance counter
PAPI TOT CYC which measures total cycles, is used for
determining the performance value. The performance value
for the whole benchmark is measured, so the customized
optimizations are best combination of that function that
improves benchmark performance.

This algorithm is applied onto sequence functions and
customized optimizations for each sequence function is
determined.

C. Inline Sequence Functions

Sequence functions and the basic blocks calling these
functions add overhead to the original benchmark functions.
Therefore the optimized sequence functions are inlined to
their original benchmarks. Application of the customized op-
timizations changes the structure of the sequence functions
from its non-optimized structure, so the changed structure
has to be considered in inlining those functions.

The form of unoptimized sequence functions can be seen
in figure 10(a). In inlining of this form the branches to
the basic blocks containing return instructions is replaced
to the branches to the basic blocks in original functions.
In the original benchmark functions there are branches in

261

Instructions

Instructions

Instructions Instructions

ret i32 2

Instructions

ret i32 1

(a) Unoptimized Form

Instructions

Instructions

Instructions Instructions

Instructions

retval = phi i32 ...
ret i32 retval

(b) Unified Ret. Block

Instructions

Instructions

Instructions Instructions

ret i32 2
Instructions

ret i32 1

(c) Motion of Return

Figure 10: Different Forms of Sequence Functions

predecessor basic blocks to the basic blocks containing the
call instructions to the sequence functions. These branches
are replaced with branches to the first basic blocks in the
sequence functions.

After the application of customized optimization the func-
tion’s structure changes. One example is shown in figure
10(b). In this case the values in phi instruction has to be
considered. First the basic blocks in original function for
those values is determined and later the branches to this
return block is replaced with branches to the basic blocks
in original function. The unified return block can be deleted
thereafter.

In another optimized form the return instruction is moved
from return basic block to the blocks which contain further
instructions. This kind of example is shown in figure 10(c).
In this case the basic block containing the moved return
instruction is kept at the inlining of sequence function, but
the return instruction is replaced with a branch to the basic
block in original function.

The optimized sequence functions whose return value is
determined by a memory load could not be inlined in this
tool, because the value at the memory location cannot easily
be determined at compile time. This condition, however, has
not occurred in the SPEC benchmarks used in this paper.

IV. EXPERIMENTAL RESULTS

In this section we present the results of applying our
context-aware code transformation and optimization to nine
SPEC CPU2000 [1] and five SPEC CPU2006 [2] bench-
marks of the Standard Performance Evaluation Corpora-
tion (SPEC). All the benchmarks we use are in C lan-
guage. The benchmarks programmed in Fortran are not
used because the LLVM compiler infrastructure does not
contain a Fortran frontend. As it is shown in the figures
the CPU2000 benchmarks are 164.gzip, 175.vpr, 181.mcf,
255.vortex, 256.bzip2, 300.twolf, 179.art, 183.equake and
188.ammp. The CPU2006 benchmarks are 429.mcf, 456.hm-
mer, 462.libquantum, 470.lbm and 458.sjeng.

The benchmarks are tested on a multicore platform. The
information of the machine is shown below:
Processor: Intel(R) Xeon(R) CPU 8 X 2.00GHz Cores
L1 cache size: 6,144KB RAM: 9,015MB
Operating System: 64 Bit Linux 2.6.23

0

5

10

15

20

25

30

16
4.

gz
ip

17
5.

vp
r A

17
5.

vp
r B

18
1.

m
cf

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

42
9.

m
cf

45
6.

hm
m

er

46
2.

lib
qu

…

47
0.

lb
m

45
8.

sj
en

g

Length: 2-4

Length: 5-7

Length: 8-9

Length: 10-15

Length: 16-20

Length: > 20

Figure 11: The number of sequences for different length ranges.

A. Result of the Analysis Tool

We first show the result of the analysis tool, that is, how
many basic block sequences are found to have multiple
contexts and how long are the sequences. Functions in
the analysis results where the sequences have only one
context are excluded, because those sequences will not be
further processed. All the sequences shown in the figure 11
contain more than one contexts. It is also not shown the
functions whose processing do not have effect on the overall
benchmark performance. As shown in the figure, all the
benchmarks have basic block sequences that have moderate
length and multiple contexts.

B. Benchmark Performance

In this section we present the performance results. We
call the original benchmark version without modification as
Original Version and the second version created after using
our context-aware code transformation and optimization
technique is defined as the Inlined Version. The performance
of the inlined version and the original version is compared
below.

The multicore features of the test platform is not used
in the experiments. Only one core is used for testing the
benchmarks. PAPI performance counter library is utilized
to measure the performance [11]. The process of applying
the optimizations is shown in figure 9. As it is shown in
chapter III-B, the optimizations are applied in the box LLVM
Optimizations of that figure.

In the original version standard LLVM optimization -std-
compile-opts for the original benchmark functions is applied.
The performance for the optimized version is measured and
is used for comparison.

In the inlined version first customized optimizations are
found and applied to the sequence functions. At the second
step the sequence functions are inlined to the original bench-
mark functions. Third step is determination and application

262

20.0%

15.0%

5 0%

10.0%

0 0%

5.0%

5.0%

0.0%

64
.g

zi
p

5.
vp

r
A

5.
vp

r
B

81
.m

cf

.v
or

te
x

6.
bz

ip
2

0.
tw

ol
f

17
9.

ar
t

eq
ua

ke

am
m

p

29
.m

cf

hm
m

er

an
tu

m

70
.lb

m

8.
sj

en
g

10.0%

16 17
5

17
5 18

25
5.

25
6

30
0 1

18
3.

e

18
8. 4 2

45
6.

h

46
2.

lib
qu 47

45
8

15.0%

4
Figure 12: The Relative Performance of the Inlined Versions with
applied customized optimizations compared to Original Versions
with standard LLVM optimization.

of customized optimizations to the original benchmark func-
tions.

The performance counter PAPI TOT CYC is used to
determine performance information. A relative performance
increase of the inlined version compared to the original
version is shown in figure 12. In this figure the customized
optimizations are applied to the inlined version of the
benchmarks and their performance measured. The standard
optimization is applied onto the original version. The Rela-
tive Performance Increase of the inlined version compared
to the original version is shown in the figure. The formula
used for the relative performance increase RI is

RI =
SOOV

COIV
− 1 ,

where SOOV is the performance of the standard optimized
original version and COIV is the performance of the cus-
tomized optimized inlined version.

The test result in figure 12 shows that optimizations based
on the proposed technique have performance improvement
in 10 of the 14 tested SPEC benchmarks. The benchmarks
with negative performance effect are 255.vortex, 183.equake
and 456.hmmer. The functions in these benchmarks have
much longer basic block sequences compared to the bench-
marks with positive performance. They have more branch
instructions. Another feature of theses sequences are that
the performance difference of different contexts have lower
variance. The sequence of one context usually dominates the
other context cases. Hence the intrinsic overhead of context
aware optimization is not amortized well.

Another reason for the negative performance of the bench-
mark 255.vortex is that it was not possible to use the GCC
flag -O3 in this benchmark, because it lead to obsolete
output. The optimization at the last level of our compilation
was modified for this benchmark. The optimization flag used

was -O1. Therefore, global, interprocedural optimizations
could not be applied onto the inlined version. The standard
optimization of the LLVM -std-compile-opts contains inter-
procedural optimization, so these optimizations were applied
onto the original version. In order to conceive the effect of
these optimization, another step of optimization is included
into the inlined version. After the customized optimizations
are applied onto the duplicated and original functions, the
standard optimization of the LLVM is applied onto the
whole benchmark. The result show a 1.87% performance
improvement compared to the original version.

V. CONCLUSION

In this paper, we proposed a novel feedback-driven pro-
gram optimization technique that customizes the optimiza-
tion of a program according to its behavior divergence un-
der different contexts. Our technique determines frequently
executed basic block traces that have different runtime
behaviors, and optimizes the traces individually for different
contexts. We applied our method onto 14 SPEC [1] [2]
benchmarks. The contexts are optimized using an empirical
optimization algorithm. The preliminary result we gathered
in using our method show that we get performance increase
in 10 of the 14 benchmarks. Our future work will include
more precise benefit analysis for our optimization technique,
the detection of behavior divergence at different granulities,
and an analytical model to select optimizations based on
different contexts.

REFERENCES

[1] SPEC CPU2000 V1.3. http://www.specbench.org/cpu2000
[2] SPEC CPU2006. http://www.spec.org/cpu2006
[3] J. Lau, M. Arnold, M. Hind, and B. Calder, “Online per-

formance auditing: using hot optimizations without getting
burned,” SIGPLAN Not., vol. 41, no. 6, pp. 239–251, 2006.

[4] J. Fisher, “Trace scheduling: A technique for global mi-
crocode compaction,” Computers, IEEE Transactions on, vol.
C-30, no. 7, pp. 478–490, July 1981.

[5] P. P. Chang and W. W. Hwu, “Trace selection for compiling
large c application programs to microcode,” in MICRO 21:
Proceedings of the 21st annual workshop on Microprogram-
ming and microarchitecture. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1988, pp. 21–29.

[6] T. Ball and J. R. Larus, “Efficient path profiling,” in MICRO
29: Proceedings of the 29th annual ACM/IEEE international
symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 1996, pp. 46–57.

[7] M. Weiser, “Program slicing,” in ICSE ’81: Proceedings of
the 5th international conference on Software engineering.
Piscataway, NJ, USA: IEEE Press, 1981, pp. 439–449.

[8] The LLVM Compiler Infrastructure. http://llvm.org/
[9] GCC, the GNU Compiler Collection. http://gcc.gnu.org/

[10] Z. Pan and R. Eigenmann, “Fast and effective orchestration
of compiler optimizations for automatic performance tuning,”
in CGO ’06: Proceedings of the International Symposium on
Code Generation and Optimization. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 319–332.

[11] Performance Application Programming Interface (PAPI).
http://icl.cs.utk.edu/papi/

263

