
Barcode Imaging using a Light Field Camera

Xinqing Guo1, Haiting Lin1, Zhan Yu1, and Scott McCloskey2

1 University of Delaware, Newark, DE, USA
2 Honeywell ACS Labs, Minneapolis, MN, USA

Abstract. We present a method to capture sharp barcode images, using
a microlens-based light field camera. Relative to standard barcode read-
ers, which typically use fixed-focus cameras in order to reduce mechanical
complexity and shutter lag, employing a light field camera significantly
increases the scanner’s depth of field. However, the increased computa-
tional complexity that comes with software-based focusing is a major
limitation on these approaches. Whereas traditional light field rendering
involves time-consuming steps intended to produce a focus stack in which
all objects appear sharply-focused, a scanner only needs to produce an
image of the barcode region that falls within the decoder’s inherent ro-
bustness to defocus. With this in mind, we speed up image processing
by segmenting the barcode region before refocus is applied. We then es-
timate the barcode’s depth directly from the raw sensor image, using a
lookup table characterizing a relationship between depth and the code’s
spatial frequency. Real image experiments with the Lytro camera illus-
trate that our system can produce a decodable image with a fraction of
the computational complexity.
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1 Introduction

A barcode is an optical machine-readable representation of data relating to the
object to which it is attached. Nowadays the ubiquitous barcodes found on prod-
uct packaging significantly improve the speed and accuracy of computer data
entry. A traditional 1D barcode scanner uses a line of photocells to detect the
reflected light from the barcode. These linear imagers need to be well aligned
with the barcode to produce accurate results and therefore the scanning process
is not fully automatic. More recent 2D imagers address the automation issue by
capturing the image of the entire barcode and then automatically orienting the
image for decoding.

2D scanners are fundamentally low-cost cameras, and capture is limited by
well-known tradeoffs between noise and blur: if the camera uses a small aperture
to acquire the barcode image, the result will be corrupted by noise; if it uses a
wide aperture, the result will be less noisy but the depth of field is reduced.
Active illumination is used in 2D scanners using small apertures, but strict
price and power budgets typically limit this to low-power LEDs. When using
wide apertures, conventionally a user would need to manually move the barcode
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towards or away from the scanner to ensure it is within the depth of field of
the scanner. Alternatively, the scanner can conduct a focal sweep and select the
proper focal slice to decode. However, implementing focal sweep requires adding
moving parts to the scanner, which reduces robustness to mechanical shock.
The overwhelming majority of purpose-built scanners are fixed focus for these
reasons.

In this paper, we present a novel barcode scanning system by using the
recent commercial light field camera. A light field camera such as Lytro and
Raytrix uses a microlens array to capture multiple views of the scene in a single
shot. The rich set of rays captured by the light field camera enables the user
to conduct post-capture refocusing, i.e., focal stack can be synthesized after the
capture. This reduces the mechanical complexity of moving parts in exchange
for increased computational complexity in the form of a refocusing algorithm.

The focal stack defines the extended depth of field of a light field camera. A
straightforward way to utilize a light field camera for barcode scanning would
be to simply apply barcode detection and decoding to images in the focal stack.
However, synthesizing the complete focal stack requires applying computation-
ally expensive light field rendering schemes. In order to reduce the time from
capture to decoding, we present a much simpler scheme based on the frequency
characteristics of barcodes. We speed up the process by first segmenting out the
barcode region, which we detect from a sub-sampled version of the raw sensor
image. Then, we directly estimate the depth of the barcode by analyzing the
variance of pixel intensities in the lenslet images formed behind each microlens.
Finally, we conduct refocusing only at the estimated depth.

Compared to 2D imagers, our system only involves two extra steps: depth es-
timation and barcode image rendering. With little computational cost, we gain
a system with its range of depth of field nearly triples that of a conventional
camera. Comprehensive experiments demonstrate our new light-field based bar-
code scanner system is fast, accurate and robust to barcode orientation, size
variation, and lighting.

2 Related Work

Barcode Imaging Recently, there has been an emerging interest on barcode
reading using 2D imagers. Barcode reading consist of two distinct stages: lo-
calization and decoding. Tremendous efforts have been made to enhance the
performance of both stages. Muniz et.al. [9] apply hough transform to the im-
age to locate the barcode and find its optimal orientation for further decoding.
Zhang et.al. [16] jointly analyze the texture and shape information to search
for the barcode. Chai and Hock [1] improve the barcode localization by using
morphological operator to identify parallel line patterns at block level. Gallo
and Manduchi [5] employ a deformable template matching method and enforce
global spatial coherence to correctly read barcodes in difficult situations. Xu and
McCloskey [14] describe a system for localizing and deblurring motion-blurred
image using a flutter shutter camera. In contrast to their methods, our system
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features a better light efficiency and aims at reducing the defocus blur of the
barcode image.

Light Field Photography and Depth Estimation Integral or light field
photography captures a rich set of rays to describe the visual appearance of the
scene. A distinct advantage of light field photography is the ability to render an
image after exposure with a desired focal plane. Modern light field rendering is
introduced by Levoy and Hanrahan [8] and Gortler et.al. [7]. Early approaches
[12] utilize camera arrays to capture a light field with high spatial resolution.
However, the system tends to be bulky and impractical for daily use. Ng [10]
designs a hand-held light field camera where a microlens array is placed on top
of the sensor to optically sort the rays by direction onto the pixels underneath.
In addition to its refocusing capability, light field is also applicable to depth
estimation. Several methods [2, 13] exploit the epipolar-plane image (EPI) to
extract the disparity map. Others use correspondences [4] or combined with
depth from defocus technique [11] to achieve similar result. In contrast to their
methods for general scenes which are geometrically complex, our work focuses
on barcode imaging and only extract the depth of barcode region based on its
unique frequency characteristics, thus largely reducing the computational cost.
Similarly, our rendering approach also prefer speed to quality. We utilize basic ray
tracing for rendering a correct image, without using other image enhancement
techniques such as [4] since they won’t benefit barcode decoding. In this paper,
we use Lytro camera to validate our algorithm, but note that our methods apply
to most microlens-based light field camera.

3 Frequency Characteristics

Conventional barcodes are composed of high contrast black and white bars or
patches, which facilitate the localization process. Several approaches have been
proposed and optimized to take advantage of the texture information for local-
ization. However, the imaging mechanism of light field camera will distort and
deteriorate these features, making existing approaches less effective, even un-
usable. The structure of light field camera is similar to a conventional camera,
except that it adds a microlens array in front of the sensor to further diverge
the rays based on their directions. Thus, the resultant raw light field image con-
sists of hundreds of thousands of lenslet images, as shown in Fig. 1. Directly
locating the barcode on the raw light field image would be extremely challeng-
ing: each lenslet image contains at most 10 × 10 pixels; and the high contrast
in the boundary region of each lenslet image will fail gradient based detection
algorithms.

3.1 Barcode Localization

In order to address these issues, we aim to first localize the barcode on a sub-
aperture image instead of the raw image. A sub-aperture image is a normal 2D
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Fig. 1. Lenslet image pattern changes with the depth of the barcode.

image composed by stitching together the same pixels underneath each microlen-
s. It can be thought of as an image taken by a virtual camera with its center of
projection in front of the main lens. In our case, we pre-calibrate the center of
each lenslet image and pick the center pixels to generate a central sub-aperture
image. Interpolation is required since the lenslet arrangement is hexagonal.

Although the sub-aperture image is of low resolution (about 328 × 378 for
Lytro) which inhibits direct decoding, it is detailed enough for barcode lo-
calization. We extend the method proposed in [5] by incorporating the bar-
code orientation into the feature computation, and analyse the shape of the
region with high average feature responses for robust localization. For each an-
gle θ ∈ {−90,−85, ..., 90}, feature response Iθe (p) = |Ixθ (p)|−|Iyθ (p)| is evaluated
at each pixel p, where Ixθ (p) and Iyθ (p) are the image gradient along orthog-
onal directions xθ(cos θ, sin θ) and yθ(− sin θ, cos θ) respectively. A box filter is
applied to Iθe to get locally averaged feature response Īθe . The potential barcode
region is identified by a connected region of constantly high average response Īθ

∗

e

with θ∗ maximizing the mean of Īθe (p)’s within the region. The shape of this re-
gion is also required to be tightly bounded by an oriented rectangle. Within this
rectangle, we compute the size of the candidate barcode as the distance between
the first and the last black bars. In order to eliminate the effects of illumination
variations, the input sub-aperture image is preprocessed using local histogram
equalization. Fig. 2 shows an example of our barcode localization algorithm.
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Fig. 2. A barcode localization example. An optimal rotation angle θ∗ is determined
maximizing the mean feature response of the potential barcode region.

Note that our localization method is designed for 1D barcode. We refer the
reader to [14] and other related work for 2D barcode localization. After we locate
the barcode in the sub-aperture image, we can continue to crop the corresponding
barcode region in the raw light field image and only process this region to speed
up our following ray tracing algorithm.

3.2 Spatial Frequency vs. Depth

We first study the correlation between the spatial frequency of the raw barcode
region and its depth. Here we assume that the barcode is approximately frontal
parallel to the camera so we only consider one depth value. As shown in Fig. 1,
barcodes positioned at different depth exhibits different lenslet image patterns.
In the first inset, each lenslet image shows uniform color, indicating the image
plane of the main lens coincides with the plane of the microlens array. As the
barcode moves nearer to the camera, increasing intensity variations are evident
in lenslet images. Therefore, our intuition is to use this statistical characteristics
of barcode for depth estimation.

To better illustrate our algorithm, we simplify the barcode as evenly dis-
tributed black and white bars. The spatial frequency of the barcode is defined as
the number of line pairs per unit length. Fig. 3 shows two cases of formation of
lenslet images. In the first case, the image plane of main lens falls in front of the
microlens array, where each lenslet image is a real image. On the contrary, when
the image plane is behind the microlens array, a virtual image will be observed.
Given the spatial frequency of the barcode X1, we apply thin lens equation to
compute the spatial frequency at the image plane of the main lens X2 as:

X2 =
a

b
·X1 =

a− F
F
·X1 (1)
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Fig. 3. Spatial frequencies of the barcode image at different image planes.

where a is the object distance and F is the focal length of the main lens. We
repeat this process to obtain the spatial frequency of the barcode image at the
sensor plane X3 as:

X3 =
z − b
f
·X2 =

a(z − F )− zF
Ff

·X1 (2)

when the main lens image plane is in front of the microlens and

X3 =
z − b
f
·X2 =

a(F − z) + zF

Ff
·X1 (3)

when the image plane is behind the microlens. Here z represents the distance
between the main lens and the microlens, b is the image distance and f is the
focal length of the microlens. In both cases a linear relationship between the
barcode’s spatial frequency at the sensor and its depth can be observed.

3.3 Variance vs. Depth

Although we can mathematically compute the sensor plane’s spatial frequency
X3, it is very challenging to robustly measure this frequency since each lenslet
image is only of size 10×10 pixels–i.e. a very small portion of the barcode, with its
boundary region corrupted by vignetting. In our experiments, we observe at most
two color transitions inside each lenslet image. Therefore, we instead use variance
to represent the spatial frequency of each lenslet image. Specifically, we define a
window around each lenslet center and measure the variance of pixel intensities
within the window. Our intuition is that the higher the spatial frequency, the
larger the chance to observe intensity transitions inside the window. We then
compute the overall variance as the spatial frequency measurement by averaging
the variances from the lenslet images inside the barcode region.

To formulate the correlation between variance and depth, we make following
assumptions based on observation that at most two intensity transitions appear
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Fig. 4. Lenslet images function as a sliding window across the barcode region.

within each lenslet image. Next, we regard the light field camera as a relay
imaging system, which consist of mainlens and microlenses as pinhole cameras.
We first analyze the image captured by the microlens, then extend our analysis
to the whole system.

First we want to define variance σ2. Suppose our target is evenly distributed
black/white bars. Our pinhole camera has N pixels and the captured image
contains m white pixels and n black pixels. And we further denote the intensity
of the white pixel as 1 and that of black pixel as 0. Then we can get

µ =
m

m+ n
(4)

σ2 =
1

N

N∑
i=1

(xi − µ)2 =
mn

(m+ n)2
(5)

where µ is the mean value of the image and xi is the pixel value.
Next we only consider the lenslet image. As each lenslet image only observes a

very small portion of the barcode, its variance changes with its relative positions
with the bar. As shown in Fig. 4, we denote the bar width of the image as w, the
sensor size at the barcode image plane as l and the distance between the starting
point of the lenslet image and a intensity transition as s. Then we continue our
analysis in two cases:1) If l ≤ w, then

σ2 =

{
0, s ≤ w − l
−s2+(2w−l)s+lw−w2

l2 , w − l < s ≤ w
(6)

We only compute the variance σ2 as a function of s ranging from 0 to w because
it is a periodic function. Since the lenslets are hexagonally arranged, their images
can be considered as a sliding windows across the entire barcode image. From
the distribution of σ2, we can get the average variance σ̄2 as:

σ̄2 =

∫ w
0
σ2ds

w
=

1

w
(

∫ w−l

0

σ2ds+

∫ w

w−l
σ2ds) =

l

6w
(7)

It is evident that average variance σ̄2 is linearly relates to l. We can further map
l through the mainlens to the real barcode as L. By using similar triangles, we
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have L = al
b = A

Ff [(z−F )a− zF ]or A
Ff [(F − z)a+ zF ] and l =

A(z− aF
a−F )

f , where
A is the size of the sensor and a, b, F, f, z are defined in last section. Therefore,
each lenslet image covers an area of l on the barcode image through mainlens,
and an area of L on the real barcode. Because l increases monotonically with
the increase of a, we can obtain a one-on-one mapping between the depth a and
average variance σ̄2.

2) if w < l ≤ 2w, we have

σ2 =

{
−s2+(2w−l)s+lw−w2

l2 , 0 < s ≤ 2w − l
lw−w2

l2 , 2w − l < s ≤ w
(8)

Similarly, we compute its average variance σ̄2 as:

σ̄2 =

∫ w
0
σ2ds

w
=

1

w
(

∫ 2w−l

0

σ2ds+

∫ w

2w−l
σ2ds) =

w2

3
l−2 − 1

6w
l−wl−1 + 1 (9)

To prove σ̄2 monotonically increases with l, we compute its first and second

order derivative as (σ̄2)′ = − 2w2

3 l−3 − 1
6w +wl−2 and (σ̄2)′′ = 2w2 − 3wl. Since

w < l ≤ 2w, (σ̄2)′′ < 0. We further examine the value of (σ̄2)′ at l = w and
l = 2w, they are both larger than 0. Therefore, we can prove that (σ̄2)′ > 0, so
σ̄2 monotonically increases with l. Similar to the first case, we can also obtain a
one-to-one mapping between the depth and average variance.

4 Efficient Refocusing

Our analysis above reveals that we can quickly use the variance to determine the
depth of the barcode. This allows us to conduct refocusing with high efficiency.

4.1 Barcode Depth Estimation

To validate our use of variance as a depth cue, we measure the average variance
of several randomly selected UPC-A barcodes over a range of distances from
the camera. Fig. 5(a) shows the average results using different window sizes for
variance computation. Clearly we can see valley shaped curves with two approx-
imately linear regions. The bottom of the curve indicates the main lens image
plane falls on the microlens, so the lenslet image gets uniform intensity which
results in a minimum overall variance. Here one variance value may correspond
to two different depths. To resolve this two-fold ambiguity, we only use the left
linear region in our experiments, as barcodes of practical sizes at depths in the
right linear side are resolution limited even when properly focused. If necessary,
the right linear side can be used similarly to estimate another depth in the case
that the depth from the left side leads to a undecodable result. Note that due
to defocus blur and resolution limitation [6] in the lenslet image, the curve fluc-
tuates in both ends, making these regions unusable. For robustness reasons, we
estimate three depth values independently based on different window sizes 3×3,
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Fig. 5. (a) The average variances of the barcode image using different window sizes vs.
its depth. (b) The depth of the barcode region is determined jointly by the variance
and the size of the detected barcode region.

5× 5 and 7× 7, and compute the mean of the corresponding depths as the final
estimation.

The variance vs. depth curve in Fig. 5(a) is for standard 13 mil barcodes.
Scaling the size of the overall barcode will change the underlying spatial fre-
quency X1, and change the relationship between depth and variance. This is
inevitable since product manufacturers tend to adjust the size of the barcode
to suit the package. Our solution is first to build a look-up table indexed by
variances per barcode size. Then we jointly determine the final depth based on
both the variance and the size of the detected barcode region in the central sub-
aperture image. From projective geometry, we obtain the relationship between
the barcode image size s and the depth d as s ∝ S/d, where S is the original
size of the barcode. Fig. 5(b) illustrates our depth determination strategy. Given
a detected barcode size, the larger the barcode’s original size, the further its
distance. Given a measured variance, another size vs. depth curve is formed by
collecting depths from the look-up tables for corresponding barcode sizes. The
ground truth original barcode size and the depth are therefore indicated by the
intersection of these two lines/curves.

4.2 Refocusing

The final step in our light field barcode imaging system renders a focused image
of the barcode region, using the depth estimated from the variance and size of
this region. We set out to perform ray tracing to generate the in focus barcode
image. Ray tracing mimics the physical process of image formation. The intensity
of a point on the target image plane (virtual plane) is computed by integrating
all the rays of different directions passing through it.

As shown in Fig. 6(a), adopting two parallel plane parameterization (2PP) [8],
a ray can be indexed by (s,u), where s and u are the 2D intersections with the
target image plane Πs and the microlens plane Πu respectively. The formation
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Fig. 6. (a)High quality barcode rendering by ray tracing. (b)Results from two imple-
mentations of refocusing algorithm.

process of the target image I ′ can be summarized as:

I ′(s) =

∫
r(s,u)du, (10)

where r(s,u) is the irradiance of the corresponding ray and is recorded by the
sensor. As shown in the Fig. 6(a), the directions of the rays are discretized
through the lenslets. Let si denote the location of the optical center of lenslet
mi, a

′ the distance from Πs to Πu and b′ the distance from Πu to the sensor
plane, Eq. 10 can be rewritten discretely as:

I ′(s) =
∑
i

I((si − s)
b′

a′
+ si), (11)

where I is the raw image on the sensor.

In our experiments, we first adopt the method proposed by [3] and use pre-
loaded white images from Lytro camera to locate the lenslet centers si according
to the camera’s focal length setting. The target image plane is then determined
based on the estimated depth and is discretized into pixels. Next we conduct
ray tracing for each pixel s to gather the recorded irradiance of the rays and
apply bilinear interpolation to achieve a better approximation of the pixel value.
Note that there is a tradeoff between the resolution of the barcode image and
its computational cost. The ray tracing technique provides the flexibility to vary
the resolution by simply changing the sampling rate on the virtual plane. In our
experiments, we render a barcode image of approximately 200 × 200 pixels to
balance these two factors. Compared to the shift-and-add refocusing algorithm
in [10], which requires rectified light field images (lenslet images arranged on
grids), our method produces sharper rendering results as shown in Fig. 6(b).
The blur artifacts in the shift-and-add result is due to the interpolation opera-
tion conducted when generating the rectified light field image from Lytro data.
Generating images with even higher quality is still possible [15, 13], but imprac-
tical due to its high computational cost.
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Fig. 7. Barcode images captured at variant depths using different devices. Light field
camera largely extends the decodable range while keeping the noise level low.

5 Experiments

We use Lytro camera as our prototype light field camera. The raw images are
preprocessed according to the metadata from Lytro’s proprietary file format [3]
and the vegnetting effects are removed using the pre-stored calibration images in
Lytro camera. Demosaicing is then applied to get the final raw light field image.
While capturing, we keep both the focal length and focal plane unchanged to
simulate a light field camera without active parts.
Depth of Field Our first experiment is to determine the amount of extended
depth of field the light field camera has over a conventional camera. We collect
a set of images of the barcode positioned at 60 mm to 420 mm from the camera
with a incremental step of 6.9 mm. Using Lytro’s desktop application, we gen-
erate two groups of images using the same focal length and aperture size: 1) one
with focal plane coincides with the moving barcode and 2) the other one with a
fixed focal plane simulating the conventional scanner. We test the decodability
of the barcode images with a proprietary decoder. Results show that images
from conventional camera is only decodable within a range of 80 mm due to
the defocus blur. On the contrary, the images from light field camera features
extended depth of field, with a decodable region of 240 mm, which nearly triples
the range of conventional camera. Fig. 7 shows the comparison of the decodable
range of 2D scanner and the light field camera, as well as the sharpness of their
resultant images.
Depth Estimation and Image Rendering Our subsequent experiments are
to validate our barcode localization and depth estimation algorithm. We set our
recognition target to be the standard 13 mil UPC-A barcode with 1.0x, 1.15x,
1.3x, 1.45x and 1.6x magnifications. Our variance vs. depth look up tables and
size vs. depth curves are calibrated based on training data of random UPC-A
codes. Barcodes with codes different from the training data are used for test.
Fig. 8 shows the comparison between the estimated depths and the ground truth
depths for barcodes of different sizes. The estimation errors are less than 50
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mm which is within the decodable range. Fig. 9 shows our rendering results
for barcodes on real products. Note that our algorithm is robust to different
sizes, orientations and nonuniform lighting conditions. Although we assume the
barcode is approximately frontal parallel to the camera, our algorithm is tolerant
of slight projective distortion as shown in the last example in Fig. 9. However
severe distortions result in failure cases as shown in Fig. 10. The main reason for
this failure case is that our barcode localization algorithm detects a rectangle
rather than a tight parallelogram only encloses the barcode. The non-barcode
region inside our rectangle pollutes the variance estimation for depth estimation.
Running time We compare the processing speed/time of our system and a 2D
scanner. A 2D scanner directly locates and decodes the barcode after exposure,
while our system requires two extra steps: depth estimation and rendering of
the barcode region. In our C++ implementation, the extra steps take around
0.2s for each light field image. Note that the result is not fully optimized. With
application-specific integrated circuit (ASIC), as is implemented in most scan-
ners, the overall processing time can be further reduced.

6 Conclusions and Future Work

In this paper, we present a novel, extended depth of field barcode scanning sys-
tem based on a commercial light field camera. While a purpose-built light field
scanner would likely use a smaller aperture than the Lytro camera, our empha-
sis has been on algorithmic improvements that would apply to such hardware.
Our efficient, high quality barcode image rendering technique first segments the
barcode and then estimates its depth in order to render only the necessary fo-
cal slice. The depth estimation is based on the spatial frequency and the size
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Fig. 9. Rendering results of real barcodes using our scanning system. The full image on
the left of each barcode example is the in focus image at the ground truth depth. Our
rendering results are shown with orange boundary, while the ground truth are shown
with green boundary for comparison.
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Fig. 10. An example where our algorithm fails.

of barcode region, and is implemented by employing calibrated look up tables.
Real barcode imaging experiments demonstrate the effectiveness of our scanning
system. Depending on the size of the barcode in the image, and on the depth
complexity of the scene, these improvements can dramatically reduce the amount
of time needed to produce a decodable image. We will extend our system to 2D
barcode scanning for our future work.
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