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Enhancing Light Fields through Ray-Space
Stitching

Xinqing Guo*, Zhan Yu*, Sing Bing Kang, Fellow, IEEE, Haiting Lin, and Jingyi Yu

Abstract—Light fields (LFs) have been shown to enable photorealistic visualization of complex scenes. In practice, however, an LF
tends to have a relatively small angular range or spatial resolution, which limits the scope of virtual navigation. In this paper, we
show how seamless virtual navigation can be enhanced by stitching multiple LFs. Our technique consists of two key components: LF
registration and LF stitching. To register LFs, we use what we call the ray-space motion matrix (RSMM) to establish pairwise ray-ray
correspondences. Using Plücker coordinates, we show that the RSMM is a 5 × 6 matrix, which reduces to a 5 × 5 matrix under pure
translation and/or in-plane rotation. The final LF stitching is done using multi-resolution, high-dimensional graph-cut in order to account
for possible scene motion, imperfect RSMM estimation, and/or undersampling. We show how our technique allows us to create LFs
with various enhanced features: extended horizontal and/or vertical field-of-view, larger synthetic aperture and defocus blur, and larger
parallax.

Index Terms—Light Field Enhancement, Image Based Rendering
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1 INTRODUCTION

A light field (LF) consists of a large collection of rays
that store radiance information in both spatial and
angular dimensions. It has been convincingly shown
to be capable of high-quality visualization of complex
scenes. Early approaches to capture LFs involve the
use of camera arrays or sequence of closely sampled
camera views. As an example, the Stanford light field
array [1] uses a 2D grid composed of 128 1.3 megapixel
firewire cameras that can stream live video to a striped
disk array. Unfortunately, such systems are bulky and
expensive, and hence not very practical. The alternative
of using closely sampled views from a single camera [2]
precludes the capture of dynamic scenes. More recent
approaches emulate a multi-camera system by using a
lenslet array. Commodity LF cameras [3] such as Lytro,
Raytrix, and Pelican chip-based cameras are poised to be
game changers on providing compact, inexpensive, and
single-shot solutions.

To date, no LF capture technique is able to satisfy
both high spatial and high angular requirements. LFs
captured by a camera array have high spatial resolution,
but its angular resolution is low. This is because of the
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large baseline between neighboring cameras (e.g., 3.3 cm
in [1]). In contrast, LF cameras that can capture at a
higher angular resolution (e.g., 14µm in Lytro and 207µm
in Raytrix) have low spatial resolution. The problem is
inherent to its design of using a 2D sensor to capture
a 4D LF: the total number of pixels (rays) that can
be captured is fixed and one has to trade off between
spatial and angular domains [4]. Even though the Lytro
camera has an 11 mega pixel sensor, it can only capture
0.11 million spatial samples and 100 angular samples on
the plane of the lenslet array. The Raytrix R11 camera
uses a 10.7 mega pixel sensor to capture 0.47 million
spatial samples, and has 23 angular samples. Image
super-resolution techniques [5]–[7] can ameliorate the
resolution problem and are complementary to our work.

The effective baselines of LF cameras also tend to
be much smaller than those of camera arrays. This is
because the effective baseline in an LF camera is limited
to the size of its aperture. Consequently, the captured LF
generally exhibits a much smaller parallax. In practice,
when using the LF camera for post-capture (virtual)
refocusing, the user will need to position the camera
close to the target object to acquire sufficient parallax for
synthesizing noticeable defocus blur effects. As a result,
it is difficult to capture the entire object within the cam-
era’s field-of-view (FoV) and simultaneously generate
significant depth-based effects.

In this paper, we present a new technique to enhance
an LF by merging multiple LFs captured using an LF
camera. This is analogous to stitching multiple 2D im-
ages into a panorama. We first derive what we call the
ray-space motion matrix (RSMM) that describes how LF
ray parametrization are transformed under different LF
coordinates. We show that under Plücker-type coordi-
nates, the RSMM is a 5 × 6 matrix analogous to the
projective transformation between two images. Further,
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Fig. 1. Enhanced light field (LF) rendering using our LF stitching framework. Examples: (a) A stitched panoramic LF
with a wide field of view (FoV); the upper/lower triangles show shallow depth of field (DoF) rendering on different focal
planes. (b) and (c) A translation-based LF mosaic with increased virtual aperture size; the upper/lower triangles show
enhanced/original synthetic defocus blurs and (c) shows larger parallax. (d) A rotation-based LF mosaic for illustrating
view-dependency of transparent scenes.

we show how the RSMM is extracted through a high-
dimensional correspondence matching step without ex-
plicit knowledge or estimation of camera motion. Note
that extracting ground truth RSMM require exact ray-
ray correspondences, which could be difficult due to
undersampling and imperfect camera placement. Instead
we recover an approximated RSMM from approximated
ray-ray correspondences based on 2D SIFT matching.
Once we have aligned the LFs using the estimated
RSMMs, we then apply an additional stitching procedure
as refinement to handle misalignments caused by errors
in estimating RSMMs, slight scene motion between cap-
tures, and undersampling. This is analogous to stitching
for 2D images [8], [9], whose solution may be based on
graph-cut. Brute-force implementation of graph-cut on
the 4D LF, however, is computationally expensive. We
instead use a coarse-to-fine approach: we compute the
cut on a coarse 4D graph; when upsampling the graph
to a finer level, we effectively prune unnecessary nodes
by using the estimated coarse cut. We demonstrate our
LF stitching framework on creating LFs with various
enhanced features: extended horizontal and/or vertical
field-of-view, larger synthetic aperture and defocus blur,
and larger parallax.

2 RELATED WORK

Our work is related to image-based modeling and ren-
dering (IBMR), and image stitching. In this section, we

review representative approaches in these areas.
IBMR. Dense and uniform sampling of rays for LF ren-
dering is not easy in practice. There are many techniques
proposed to handle aliasing as a result of undersam-
pling, especially in angular dimension. Approaches such
as [10]–[13] pre-filter the LF with different kernels, but
this is done at the cost of high frequency loss. The
Lumigraph [2], [14] requires a sparser set of images
because it relies on simple scene geometry proxy for ray
interpolation. However, its rendering quality is highly
dependent on the quality of the proxy. In addition, the
input views are assumed to be accurately calibrated. As
a result, the Lumigraph is less effective for highly non-
Lambertian scenes. As an image-based modeling tool,
LFs have shown promising results in stereo matching
and 3D reconstruction [15]–[18].

Extending LFs is not without a precedent. The system
described in [19] uses a large collection of omnidirection-
al images to render views within a large space. The input
images are linked via correspondences (hence implicitly
geometry). The idea presented in [20] is to “stitch”
differently captured LFs (views captured along a 1D
path, concentric mosaics), but the stitching and transition
is based on heuristics. Lehtinen et al. [21] exploit the
anisotropy in the temporal light field to significantly
accelerate depth-of-field rendering. Our approach capi-
talizes on the commercial availability of LF cameras: we
capture a sparse set of LFs using one such camera, and
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Fig. 2. The pipeline of our proposed LF stitching algorithm. We represent each 4D LF as 2D planes for ease of
visualization.

generate a global enhanced LF for rendering effects that
are more dramatic than each input LF.
Image Stitching. Our light field stitching idea can be
thought of as an extension of 2D image stitching for
panorama generation with increased field of view. A
good survey on 2D stitching can be found in [22].
In addition to generating panoramas from a rotating
camera [8], [23]–[25], variants include strip panorama
[26], pushbroom panorama [27], and X-slit panorama
[28]. Recently, Pirk et al. [29] proposed a system to deal
with challenges of accessing appropriate parts from a
gigapixel video.

There are techniques to generate 3D panoramas, most-
ly in the context of stereoscopic images and videos.
In the angular domain, Peleg et al. [30] proposed to
generate omnistereo panoramas by mounting the camera
on a rotating arm. Shum et al. [31] use a similar rig
to create a cylindrical light field, or concentric mosaics.
Kim et al. [32] synthesize multi-perspective stereoscopy
by cutting through the LF. While simple and effective,
the strategy of capturing a light field from a single
rotating camera can lead to visible seams and unde-
sirable vertical parallax. Richardt et al. [33] correct for
perspective distortion and vertical parallax, then apply
an optical-flow-based technique to reduce aliasing. Such
image panorama techniques have also been extended
to videos [34]–[37]. We adopt their core technique, i.e.,
high-dimensional graph-cut, to resolve our LF stitching
problem.

The approach closest to ours is that of Birklbauer
and Bimber [38], [39], since it also acquires and fuses
multiple LFs. Their approach targets at registering and
transforming multiple rotated two-plane parametrized
(2PP) light fields into a global cylindrical coordinate
system (composed of two nested cylinders rather than
parallel planes). They require the camera moves pre-
cisely during light field capturing in order to minimize
registration artifacts. In contrast, our approach allows the
user to freely rotate or translate the LF camera and aligns
two 2PP light field into a common 2PP parameterization
through matrix transformation. We then conduct a high-
dimensional graph-cut to compensate for misalignmen-
t. This parameterization allows us to create LFs with
various enhanced features not restricted to panorama.

Furthermore, because of our refinement technique, our
approach is more tolerant to imperfect registrations.

3 OVERVIEW OF OUR TECHNIQUE

Fig. 2 shows our system for generating enhanced LF
from multiple displaced LFs. We show that a 5×6 matrix
is sufficient to transform rays from one LF to another; we
call this matrix the ray-space motion matrix (RSMM). We
assume the LFs are captured in sequence, and we use
the first LF as the reference. The RSMM is computed for
all adjacent LFs; by chaining RSMMs, all LFs can then
be transformed to the reference coordinate system.

At each iteration after the two LFs are aligned (Sec. 4),
we refine the stitching process (Sec. 5). The refinement
is necessary to account for slight errors in estimating the
RSMMs and to handle slight scene motion, since the LFs
were sequentially captured. To stitch each pair of LFs,
we map their overlapping ray subspace to a 4D graph
and rely on hierarchical graph-cut to efficiently find a
seamless boundary.

4 RAY-SPACE MOTION MATRIX

We use the conventional two-plane parametrization to
represent an LF. Each ray r is parameterized by its inter-
section points with two planes: u, v as one intersection
with the sensor plane Πuv, and s, t as the other intersec-
tion with the (virtual) camera plane Πst. The two planes
are a unit distance apart. Since we acquire multiple LFs
using the same LF camera with fixed configuration, the
transformation between LFs is simply determined by the
change (rotation and translation) of the 2PP.

To align the LFs, we need to align all the rays. One
obvious approach would be to compute structure-from-
motion (SFM) to estimate LF motion. Unfortunately, the
stability of SFM (which is non-linear and local) is heavily
dependent on scene composition and camera motion.
Instead, to align the rays, we solve for a matrix per pair
of LFs without explicit estimation of camera motion. To
align all LFs, we start with the first LF and iteratively
go through all the LFs to estimate pairwise warping
function and subsequently align them w.r.t. the first LF.
The overall warping between an arbitrary pair of LFs can
be computed by concatenating the in-between matrices.
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Fig. 3. Our pairwise RSMM maps each ray [s, t, u, v] from
L to [s′, t′, u′, v′] in L′.

We now derive the pairwise warping function. We
start with the analysis in [40] and extend it to handle
LF alignment. Without loss of generality, we set the
coordinates of one light field L as global coordinates.
The 2PP for the second light field L′ are specified by
two points ṗ and q̇ (with one on each plane), and two
spanning vectors (u′, v′ or s′, t′ directions) d⃗1, d⃗2 of the
planes, as shown in Fig. 3. We further simplify the
derivation by using the relative coordinate σ = s−u and
τ = t− v to represent the rays. For every ray r[σ, τ, u, v]
in L, we compute r[σ′, τ ′, u′, v′] in L′. This is done by
intersecting r with the 2PP of L′:

[u, v, 0] + λ1[σ, τ, 1] = ṗ+ d⃗1s
′ + d⃗2t

′,

[u, v, 0] + λ2[σ, τ, 1] = q̇ + d⃗1u
′ + d⃗2v

′. (1)

From Eqn. (1), we have:

σ′ = s′ − u′ =
1

γ
(dx2(py − qy)− dy2(px − qx)

+ σ(dy2(pz − qz)− dz2(py − qy))

+ τ(dz2(px − qx)− dx2(pz − qz)))

τ ′ = t′ − v′ =
1

γ
(dy1(px − qx)− dx1(py − qy)

+ σ(dz1(py − qy)− dy1(pz − qz))

+ τ(dx1(pz − qz)− dz1(px − qx)))

u′ =
1

γ
(dx2qy − dy2qx + dy2u− dx2v

+ σ(dy2qz − dz2qy) + τ(dz2qx − dx2qz) + dz2(σv − τu))

v′ =
1

γ
(dy1qx − dx1qy − dy1u+ dx1v

+ σ(dz1qy − dy1qz) + τ(dx1qz − dz1qx)− dz1(σv − τu)) (2)

where superscripts indicate the components of a vec-
tor and γ is a determinant:

γ =

∣∣∣∣∣∣
dx1 dy1 dz1
dx2 dy2 dz2
σ τ 1

∣∣∣∣∣∣. (3)

Notice that [σ′, τ ′, u′, v′] are bilinear rational functions
of σ, τ, u, v. The transformation also has a singularity
where γ is zero. This happens when a ray in the original
parametrization is parallel to the new parametrization
plane, caused by a large rotation between two LFs (say

Fig. 4. Synthetic examples show the misalignment due to
undersampling (left) and ghosting artifacts due to motion
(right).

around 90◦). Such large rotations are not done in any of
our experiments.

We rewrite Eqn. (2) in a matrix format:
γσ′

γτ ′

γu′

γv′

γ

 =


m00 m01 0 0 0 m05

m10 m11 0 0 0 m15

m20 m21 m22 m23 m24 m25

m30 m31 m32 m33 m34 m35

m40 m41 0 0 0 m45




σ
τ
u
v
λ
1

(4)

where m00 = dy2(pz − qz) − dz2(py − qy), m01 = dz2(px −
qx)− dx2(pz − qz), m05 = dx2(py − qy)− dy2(px − qx), m10 =
dz1(py − qy)− dy1(pz − qz), m11 = dx1(pz − qz)− dz1(px − qx),
m15 = dy1(px − qx) − dx1(py − qy), m20 = dy2qz − dz2qy ,
m21 = dz2qx − dx2qz , m22 = dy2 , m23 = −dx2 , m24 = dz2,
m25 = dx2qy−dy2qx, m30 = dz1qy−dy1qz , m31 = dx1qz−dz1qx,
m32 = −dy1 , m33 = dx1 , m34 = −dz1, m35 = dy1qx − dx1qy ,
m40 = dy1d

z
2−dy2d

z
1, m41 = dx2d

z
1−dx1d

z
2, m45 = dx1d

y
2−dx2d

y
1 ,

and λ = σv − τu. We call this 5 × 6 matrix transform
the Ray Space Motion Matrix (RSMM). It determines the
warping from L′ to L and has 21 non-zero entries.

In Eqn. (4), by replacing γ in the first four rows by
its value expressed in the fifth row, we obtain 4 linear
equations for each pair of corresponding rays. To com-
pute the RSMM between L and L′, we need a minimum
of 6 pairs of ray correspondences. For robustness, we
use a much larger set of correspondences. Specifically,
we find potential ray correspondences based on ray
features, and then apply RANSAC to remove outliers.
While ideally, a SIFT-like feature defined on 4D ray space
should be used, in our case, it may not be robust due
to the relatively coarse angular sampling. For the Lytro
camera (which we use), the sampling is 10×10. Hence we
assume small camera motions between two consecutive
LF’s and directly use 2D SIFT features extracted from
sub-aperture views as the ray features. If we group
SIFT features according to their sub-aperture views, one
group of features only matches to a group of features in
the other LF. In other words, one group of features can
not match to the features across different groups of the
other LF. This implies that there should be no out-of-
plane rotation or a translation normal to the 2PP plane.
However, our graph-cut refinement step compensates for
the errors caused by these small motions. The detailed
algorithm is in Algorithm 1.
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Algorithm 1 RSMM Estimation
Require: feature ray r′i from L′ and ri from L (i ∈ N )

1: Minimum error Errmin = ∞.
2: Best warping matrix Mmin = all zero matrix.
3: Iteration it = 0.
4: Assign K, T , D and Errthresh empirically.
5: while it < K do
6: Initialize the set of corresponding rays C with

randomly selected m ≥ 5 pairs of feature rays from
L and L′ with color distance smaller than T .

7: Estimate warping matrix M via SVD from current
set C.

8: for every ray rj in L not selected in C do
9: Warp rj onto L′ with M .

10: if it corresponds with a ray r′j in L′ with aver-
aged difference on RGB channels smaller than T
then

11: Add r′j , rj to C.
12: end if
13: end for
14: if the number of pairs in C is larger than D then
15: Recompute the warping matrix M via SVD from

C.
16: Measure the current error E by warping each

ray ri onto r′i and measure the color distance.
17: if E < Errmin then
18: Errmin = E.
19: Mmin = M .
20: end if
21: if Errmin < Errthresh then
22: break
23: end if
24: end if
25: end while

In our experiments, to guarantee the best estimation,
we set K to be infinity and the algorithm runs until the
error is less than a sufficiently small value Errthresh.
Since raw Lytro images are usually rather noisy, we set
T to a relatively high value of 20

255 . We choose D as 30%
of the total number of the rays associated with the SIFT
features. On average, it took slightly under 1.5 minutes
to extract the RSMMs for two LFs with a resolution of
10× 10× 800× 800 on a 3.2 GHz CPU.

Note that when the motion between two LFs is pure
translation or z-plane rotation (dz1 = 0, dz2 = 0), the RSM-
M reduces to a 5 × 5 matrix where the original column
5 is removed. For robustness, we always compute 5× 6
RSMM in our experiments.

Given image noise as well as quantization in space
and angle, it is likely the computed RSMMs are not
perfect. Fig. 4 (a) shows a view of the warping result
of two sparsely sampled LF with 5 × 5 views each.
The two light fields have large overlapping subspace
but the rays do not match exactly between the two LFs
due to undersampling. Therefore our estimated RSMM

is not perfect. In addition, since we are capturing LFs
sequentially, the scene may have changed a little over
time (e.g., in the case of capturing a human scene). As
shown in Fig. 4, even the perfect RSMM still could not
represent the shifting on temporal domain. All these
factors will cause noticeable ghosting artifacts if we
choose to blend the rays from both LFs. To reduce these
artifacts, we add a stitching refinement step by choosing
from one of the LFs.

5 SEAMLESS STITCHING

By applying the RSMM transformation, two LFs are
registered under a same 2PP coordinate. The stitching of
two LFs is then performed by searching for an optimal
4D cut in the overlapped region that minimizes the
inconsistency along the cutting boundary. This problem
can be solved precisely by graph-cut. As shown in Fig
2, we warp L towards L′ using the estimated RSMM
and denote the overlapped LF space as L̂. Within L̂, we
assign each ray r a binary label lr, specifying if it belongs
to L or L′. To do so, we construct a 4D graph on the
new LF L̄ and map the inconsistencies along spatial and
angular dimensions as edges. We formulate the problem
of finding the cut as to minimize the following energy:

E =
∑
r̄∈L̄

E(lr̄) +
∑

r̄,r̃∈N
E(lr̄, lr̃), (5)

where r̄ denotes a ray in L̄ and N defines the 8 direct
neighbors from 4 dimensions. lr̄ = 0 for r̄ is assigned
to L and lr̄ = 1 for r̄ to L′. E(lr̄) denotes the cost of
assigning r̄ with label lr̄ and forces rays lying outside
the overlapped regions to keep their original label:

E(lr̄) =

∞ , r̄ ̸∈ L̂∧
((r̄ ∈ L ∧ lr̄ = 1) ∨ (r̄ ∈ L′ ∧ lr̄ = 0))

0 , otherwise
(6)

E(lr̄, lr̃) denotes the cost of assigning labels lr̄ and lr̃
to r̄ and its adjacent ray r̃. The key observation here is
that to reliably stitch two LFs, we need to measure the
differences of adjacent rays in both spatial and angular
dimensions. We adopt the following energy function
similar to [26], [34], [41] as:

E(lr̄, lr̃) =
|Ir̄ − I ′r̄|+ |Ir̃ − I ′r̃|
|Gu(r̄)|+ |Gv(r̄)|

, (7)

where | · | denotes the norm (e.g., L1 or L2) and (Ir − I ′r)
is the radiance difference between the two LFs for ray
r. In the denominator, Gx(r̄) measures the gradient of r̄
on dimension x. This gradient prior [34] leads the cut
through high frequency regions where the inconsistency
will be less noticeable.

Notice that it is necessary to conduct high-dimensional
(4D) graph-cut which incorporates the consistency re-
quirement along angular dimension. Individually stitch-
ing corresponding 2D images in the LFs will not pro-
duce comparable results. Without angular coherence,
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Fig. 5. The importance of enforcing angular coherence.
Top row: Two 3D LFs from the Tsukuba dataset. The
red and blue slices are the EPIs (v, t slices) of each LF.
Second row: The labeling of the stitched LF, the stitched
LF by enforcing only spatial coherence, labeling of EPIs,
and stitched EPIs. Third row: The labeling of the stitched
LF, the stitched LF by enforcing both spatial and angular
coherence, labeling of EPIs, and stitched EPIs.

two angularly adjacent stitched images may appear sig-
nificantly different. Fig. 5 shows an example on stitching
two 3D LFs (in this case, Πst is a 1D line) from the
Tsukuba dataset. Compared with our result, stitching
with only spatial coherence introduces discontinuities
along angular dimension (see stitched EPIs).

Since our graph construction requires adding edges in
both angular and spatial dimensions, the resulting 4D
graph using the raw resolution can be ultra-large. For
example, a graph constructed by two LFs at a resolution
of 10× 10× 800× 800 with 50 percent overlap can result
in 32 million nodes and 0.25 billion edges. Applying the
max-flow/min-cut algorithm on such a graph would be
computationally prohibitive. For efficiency reasons, we
opt for a coarse-to-fine version of graph-cut [35]. Our
strategy is to first construct a graph at a low resolution
and compute the cut. We then go one level finer and
use the interpolated cut to eliminate unnecessary nodes
in the higher resolution graph and find a new cut.
Specifically, we build a Gaussian pyramid of the LFs in
the spatial domain (i.e., we only down sample uv but not
st as the angular sampling is generally sparse). Starting
from the top level, we find the optimal 4D boundary

(a) Spatial Enhancement (b) Angular Enhancement

Fig. 6. Acquisition setups. (a) To increase the FoV, we
pan and tilt the LF camera. (b) To enhance synthetic
aperture and parallax, we translate the LF camera (white
arrow); To enhance rotational parallax, we rotate the
camera around the object.

and map it to the initial boundary at the next level. All
nodes within a radius of R (R = 20 in our experiments)
are marked as new active nodes. Next we refine the
boundary with a new cut and go one level further.

6 EXPERIMENTAL RESULTS

In this section, we show results of enhancing vari-
ous light field rendering effects: extended horizontal
field-of-view, larger synthetic aperture, and larger spa-
tial/angular parallax. All experiments are conducted on
a PC with Intel i7-3930 CPU and 64GB memory. We use
the Lytro LF camera to capture LFs at a spatial resolution
of 328 × 378 and an approximate angular resolution of
10×10. Since ray mapping is focal length dependent for
the Lytro camera, we use a fixed focal length throughout
the capture of a scene.

We use the toolkit by Dansereau et al. [42] to extract
the raw LF data, calibrate each microlens, and perform
vignetting correction and demosaicing. Since we know
the intrinsics of the LF camera for each image (from the
image profile), we can compute the ray equation for each
pixel. To stitch the Lytro LFs, we find that using a three-
level pyramid is sufficient. The average time taken to
stitch a pair of LFs is about 20 minutes. For N LFs, the
time is about 20× (N − 1) minutes.

6.1 Extending the Horizontal and Vertical FoV

LFs captured typically have narrow FoVs. For example,
the Stanford LF array produces a horizontal FoV of
57◦ and the Lytro camera has an even narrower FoV
of about 40◦. Our first task is to apply the stitching
technique to significantly increase the horizontal FoV.
This is analogous to producing a panorama from a
sequence of narrow FoV images. We therefore also call
this application panoramic LFs. To capture panoramic
LFs, we mount the Lytro camera on a tripod and rotate
it horizontally to capture and then stitch consecutive LFs
(Fig. 6 (a)).
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Fig. 7. A panoramic LF generated from a 5 × 4 grid of LFs. Left: full view focusing at a plane close to the foreground
flower. Right 2× 2 images: close-up views of highlighted regions focused at the background (top row) and foreground
(bottom row).

The garden scene shown in Fig. 1 (a) is challenging
as it contains wide depth variations and complex occlu-
sions. To capture an enhanced FoV of the scene, we shoot
7 horizontal LFs to cover about 150◦ FoV. Note that the
fountain on the right is visible in one LF but not the
others. Fig. 7 shows an example of stitching a 2D grid
of LFs, where the FoV is extended in both horizontal
and vertical directions. The capture is done by panning
and tilting the Lytro camera to acquire a 5 × 4 array
of LFs. For this dataset, we ensured that the fountain
is visible in multiple LFs. The appearance of the water
is inconsistent across the LFs due to its motion, but our
graph-cut technique is still able to stitch them to produce
a visually acceptable panoramic LF.

Given the Lytro’s small FoV, using it to capture a
people scene significantly constrains how people can
be positioned and still appear in the image. With our
LF stitching technique, we can allow the locations of
people to be more spread out by acquiring and then
stitching multiple LFs. Fig. 9 shows an example of 4
people standing apart at different depths. Notice that
for such a scene, it would be hard for people to keep
completely stationary between the shots. Our graph-cut
technique is able to compensate for small motions and
the resulting panoramic LFs exhibit minimal ghosting
artifacts. The green curves show the cuts and the bottom
row shows an autostereoscopic rendering of the stitched
LF which can be directly used as input to autostereoscop-
ic 3D displays. (Here we assume the display consists of
vertical cylindrical lens array.)

Note that the panoramic LF can be viewed as a form
of concentric mosaics [31]. The main difference is that
each view captured is actually an LF consisting of 2D
grid of views, while the inputs to the concentric mosaic
are views from a rotating single camera.

6.2 Extending Rotational Parallax
To enhance the rotational parallax in LF rendering, we
place the target object on a rotation table with a constant

View at 0° View at 30°

Fig. 8. A stitched LF with increased rotational parallax.
The top row shows two views from the stitched LF. The
horizontal strip at the bottom is a composite of the profile
along the red line as the object is virtually rotated. Notice
the coherency in the strip.

color background. The Lytro camera is used to capture
the object at different rotated views. With a constant
background, the acquisition process emulates rotating
the camera around the object (Fig. 6 (b)).

For the example shown in Fig. 8, we acquired 60 LFs to
cover around 30◦ around the object. In this case, each LF
is a piecewise linear approximation of the rays captured
along a circle around the object. With the stitched LF, we
can then synthesize any view point around the object
within a range of about 30◦ (while only a small motion
is permitted for a single LF).

Extending rotational parallax is particularly useful
for visualizing view-dependent features such as trans-
parency. In Fig. 1 (d), we captured 60 LFs to cover
about 30◦ around a transparent glass containing specular
and translucent dices. Since the scene is highly non-
Lambertian, 3D reconstruction based methods are not
expected to be reliable. In contrast, our RSMM based
on ray-ray correspondences is (in principle) insensitive
to view-dependency effects. In practice, however, the
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LF 1

Autostereoscopic Rendering

LF 2 LF 3 LF 4

Fig. 9. A panoramic LF of a people scene. Top row: reference (central) views of 4 LFs and the cuts (projected from
4D to 2D). Bottom row: an autostereoscopic rendering of the stitched LF.

acquired LFs are generally undersampled in the angular
dimension. As a result, slight changes in ray directions
can still lead to large appearance changes, e.g., on spec-
ular highlights. The issue is effectively addressed using
RANSAC that helps pick more Lambertian features of
the scene and remove most view-dependent outliers.
The resulting RSMM is usually quite accurate, producing
stitched LFs with satisfactory rotational parallax effects
as shown in Fig. 1 (d) and in the supplementary video.

6.3 Increasing Synthetic Aperture and Parallax

A common problem in LF acquisition is the choice
of baseline between view cameras. To reduce angular
aliasing, Lytro uses a small baseline but the resulting
virtual aperture is also small and synthetic defocus blurs
are less obvious. In contrast, a large baseline (as used
in an LF array) can synthesize more significant defocus
blurs; however, it also introduces severe aliasing due
to undersampling. Our LF stitching provides a natural
solution to resolve this problem by covering more space
and therefore increase the synthetic aperture.

In our setup, we mount the Lytro camera on a manual
translation stage and move it horizontally at an interval
of roughly 0.5 mm, as shown in Fig. 6 (b). Fig. 1 (b)
shows a chess set scene captured by 20 LFs using this
setup. The lower triangle of (b) shows the refocusing
result with a single LF. Due to the small virtual aperture,
the Bokeh effect appears rather small and the parallax of
the chess pieces is barely noticeable. In contrast, applying
refocusing on the stitched LF produces much larger

(horizontal) Bokeh and parallax effects, as shown in the
upper triangle of (b) and supplementary video. In fact,
using the stitched LF, we can dynamically control the
magnitude of refocusing by integrating over different
angular spans of rays, as shown in (c).

As with the case of increased translational parallax,
the extended virtual aperture also helps to better vi-
sualize view-dependent effects (Fig. 10). Here, 20 LFs
were also captured. More results can be found in the
supplementary video. Notice that the our current setup
only increases the virtual aperture in the horizontal
direction and can be easily extended to both horizontal
and vertical direction.

6.4 Comparisons to Other Approaches

Recently, Birklbauer et al. [39] have presented a LF
stitching technique that requires the LF camera to rotate
precisely around an axis parallel to the sensor. The
rotation axis should also intersect with the camera’s
optical axis and the sequence should be acquired with an
approximately identical rotation angle. In contrast, our
technique supports much more flexible camera move-
ment. Specifically, we can handle rotation sequences that
do not share a common rotation axis, i.e., the sequence
can exhibit combinations of rotational and translational
motions. This is because we set out to automatically
obtain the general LF registration matrix RSMM that can
simultaneously handle rotation and translation.

For comparison, we apply the source code [39] pro-
vided by the authors to stitch our garden LF data.
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Focusing at the Background Focusing at the Foreground

20 LFs 20 LFs

Leftmost View Rightmost View

1 LF1 LF

Fig. 10. A stitched LF with increased translational paral-
lax and Bokeh. The top row shows shallow DoF rendering
at the background (left) and the foreground (right). In
both cases, the upper triangle uses the stitched LF and
the lower uses a single LF. The Bokeh is significantly
increased using the stitched version. The middle and bot-
tom rows show close-up views of synthetically changing
the view points around the glass.

Figure 11 compares the refocused rendering results on
the stitched LFs produced by our method vs. [39]. Recall
that this LF dataset was captured by manually rotating
the LF camera where the rotation axis exhibits slight
translations across the LFs. Such translational motions,
even though very small, violate the assumptions in
[39]. As a result, the refocused results exhibit strong
ghosting (aliasing) artifacts due to misalignment. Our
solution accounts for both rotation and translation and
it further corrects potential registration errors via a high-
dimensional graph-cut. Therefore, our refocused render-
ing results are nearly aliasing free and preserve sharp
details. More importantly, our approach frees the user
from precise LF acquisition.

6.5 Failure Cases

The main limitation of our technique is that the adjacent
LFs have large overlaps, to ensure reliable RSMM esti-
mations. If the estimated RSMM contains small errors,
graph-cut can still effectively eliminate inconsistency
and produce visually pleasing results. In this case, how-
ever, the stitched result is not a “real” LF: corresponding

rays are not guaranteed to intersect at common 3D
points. Such artifacts are best illustrated in synthetical
aperture rendering. Top row of Fig. 12 uses the rotational
parallax setup to capture 20 LFs of a human eye. Due
to errors in RSMM, the shallow DoF rendering result
exhibits blurs when focusing at the pupil even though
each view in the stitched LF is sharp. If the motion
between adjacent LFs are too large, there will not be
sufficient corresponding rays for computing the RSMM.
Fig. 12 shows a typical example. Although graph-cut can
partially eliminate inconsistencies, the resulting stitched
LF exhibits large errors, e.g., part of the highlighted
flower is missing in the final stitched result.

7 CONCLUDING REMARKS
We have presented a simple but effective LF stitching
technique to enhance a number of LF tasks. We derived
a linear method to align the LFs using what we call
the ray-space motion matrix (RSMM). The use of RSMM
obviates the need for explicit camera motion and scene
depth estimation. To account for imprecise alignment
and possible scene changes across the input LFs, we
refine the output LF by stitching using multi-resolution,
high-dimensional graph-cut. Using the commodity Lytro
camera, we showed how we can enhance LFs through
extended horizontal and/or vertical FoV, larger synthetic
aperture and defocus blur, and larger parallax.

As discussed in Section 6.5, our approach requires
significant overlap between adjacent LFs. To handle
larger motions, we plan to explore the joint use of
RSMM and SfM to compute LF camera motion. Here,
the RSMMs may be estimated to initialize SfM so as
to reduce the possibility of bad local minima. Although
our RSMM estimation can, in principle, be applied to
any LF sampling (regular or irregular), in practice, dense
sampling of each LF is required for reliable results.

Another interesting possibility is to reconstruct the
ray space without warping and stitching by making
use of the recent simplex-based ray space approach
[17] (which generates a triangulated ray space from ray
samples). Our RSMM could potentially be used as the
ray-ray correspondence constraints. However, currently
the 4D Constrained Delaunay Triangluation is still an
open problem in computational geometry and the 3D
approximation might fail to interpolate complex ray
geometry.

Like any local registration technique, our current pair-
wise LF registration method is subject to drift. While this
is less of an issue for the relatively short LF sequences
in our work, we plan to investigate global alignment
approaches for much longer sequences. In addition, by
using the principles of plenoptic sampling [43], it may be
possible to plan a minimal capture configuration while
minimizing aliasing effects due to undersampling.
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Fig. 11. Comparisons of refocused rendering using our method vs. [39] on the garden LF data. Our method is
able to stitch the input into a ghosting free panoramic light field while [39] produces strong ghosting artifacts due to
translational motions across the input LFs.

LF 2 Stitched LF

Focus at PupilLF 2

LF 1

LF 1

Fig. 12. Failure cases. Top row: the depth-of-field render-
ing on the in-focus region (the pupil) exhibits blurs due
to errors in RSMM estimation. Bottom row: the flower is
incorrectly stitched due to large displacement between
the two LFs.
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