“What the ancients called a clever fighter is one who not only wins, but excels in winning with ease” -- Sun Tsu

Machines with Human-Like Cleverness

Humans with Machine-Like Precision

E.D. (Sonny) Maynard, Jr.
Information Technology Office
UltraScale Computing Program Structure

<table>
<thead>
<tr>
<th>Swarm Computing</th>
<th>Explore The Upper Reaches Of Computer Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial Nervous System</td>
<td></td>
</tr>
<tr>
<td>Quantum Computing</td>
<td></td>
</tr>
<tr>
<td>DNA Computing</td>
<td>Enable Computation Based On Biological Material</td>
</tr>
<tr>
<td>Cellular Engineering</td>
<td></td>
</tr>
<tr>
<td>Living Neuronal Networks</td>
<td></td>
</tr>
</tbody>
</table>

- **Inorganic Machine Inference & Creativity**
- **Organic Biology That Computes**
Why Is UltraScale Computing Important to DOD?

Warrior Robots
Disposable Supercomputers
Materials That Think
Fly-By-Thought
Instant Training
Swarm Computing

Expected Results: Simulation & test show >1,000,000 cellular automata can solve partial differential equations
Swarm Computing
Two Representative Projects

Continuum Computer Architecture
California Institute of Technology

Context: Applications with very high I/O bandwidth requirements such as image and signal processing including SAR, passive and active SONAR, and satellite reconnaissance images.

Amorphous Computing
Massachusetts Institute of Technology

Context: To reliably obtain a desired behavior by engineering the cooperation of many parts, without assuming any precision interconnect or precision geometrical arrangement of the parts.
Artificial Nervous System

Expected Results:
Machine inference and creativity result from interaction with the environment
Artificial Nervous System, Raytheon/TI

Context: Construct realistic electronic nervous system that acquires a world view through sensory motor controls to provide the central nervous system for battlefield robots.

Artificial Nervous Systems
Two Representative Projects

The Inorganic world

Swarm Computing
Artificial Nervous System
Quantum Computing

NeuroModem
HNC Software Inc./Robert Hecht-Nielsen

Context: Demonstrates the ability to encode desired machine input to that region so it is correctly interpreted by the rest of the brain
The Inorganic World

Quantum Computing

Expected Results: An N-bit quantum processor solves a problem of order 2^N
Quantum Computing

(Gershenfeld and Chuang, Science 275, p.350, 1997)

- Information (qubits) = Nuclear spins
- Interactions = Chemical bonds
- Circuits = Electromagnetic field pulses

Single Molecule Quantum Computer

1 = \[
\begin{array}{c}
\uparrow
\end{array}
\]

0 = \[
\begin{array}{c}
\downarrow
\end{array}
\]
Quantum Computing

1 = ⚫

0 = ⬇

= ?
Quantum Computing

Superposition of 0 and 1!

- Two spins: four states in superposition

\[1 = \begin{array}{c} \uparrow \\ \downarrow \end{array} \quad 0 = \begin{array}{c} \downarrow \\ \uparrow \end{array} = \frac{1}{\sqrt{2}} \begin{array}{c} 0 \\ 1 \end{array} + \frac{1}{\sqrt{2}} \begin{array}{c} 1 \\ 0 \end{array} \]

\[c_0 |00\rangle + c_1 |01\rangle + c_2 |10\rangle + c_3 |11\rangle \]
Quantum Computing

1 = \ \begin{array}{c}
\text{\textbullet} \\
\uparrow
\end{array}

0 = \ \begin{array}{c}
\text{\textbullet} \\
\downarrow
\end{array}

• N spins -- 2^N states in superposition

\begin{array}{c}
\text{\textbullet} \\
\uparrow
\end{array} \quad \begin{array}{c}
\text{\textbullet} \\
\uparrow
\end{array} \quad \cdots \quad \begin{array}{c}
\text{\textbullet} \\
\uparrow
\end{array} \quad 0...00 + 0...01 + \cdots + 1...11
Why don’t we have Quantum computers today?

• Coupling between quantum computation medium and physical world
 • Must be isolated during computation
 • Must be coupled for input/output

• Error correction

• Large scale packaging
Quantum Computing
Two Representative Projects

Quantum Information Computation
CalTech, U-Southern California, MIT

Context: Quantum computers solve problems impossible for classical computers; quantum computation impacts cryptographic security; quantum communication enables new secure cryptographic protocols

Bulk Quantum Computation with NMR
Stanford, MIT, U-California-Berkeley

Context: Desktop quantum computer with NMR I/O.
DNA Computing

Expected Results: Data has been stored & retrieved from DNA & a simulated problem, order $>2^{56}$, is solved.
Theoretical & Experimental Aspects of Biomolecular Computing
University of Southern California

- Draw a path from the first city to the last while passing through all cities only once
 - This is known to be a hard problem
- When the number of cities is > 70, the problem is too complex for even a supercomputer to solve

- Generate all possible paths
- Keep only those paths that go from “start” to “end”
- Find the ones passing through 7 cities
- Isolate paths with 7 different cities
DNA Mk 1
The Stickers Model

- **Memory Strand for Breaking DES**
 - 11580 bases in length
 - Subdivided into 579 non-overlapping regions, 20 bases long

- **Stickers**
 - Each sticker is 20 bases long
 - Complementary to one and only one of the 579 memory regions

- **Each Region is One Bit**
 - Bit On: Sticker is annealed to memory strand
 - Bit Off: No sticker

The Organic world
DNA Computing
Cellular Engineering
Living Neuronal Networks

1 0 1

<table>
<thead>
<tr>
<th>Sticker</th>
<th>On</th>
<th>Off</th>
<th>On</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGCCAATTGCCTCCTAGGGT</td>
<td>ACGGTTAACGCAGGATCCCCAATACACTGACTCCCAATAGGCCCTGCAAGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GGACGTTCGATTGCAATCGG</td>
<td>ACGGTTAACGCAGGATCCCCAATACACTGACTCCCAATAGGCCCTGCAAGC</td>
<td>TACGTTAGCC</td>
<td></td>
</tr>
</tbody>
</table>

Memory Strand
Context: If the biochemical error rate is <1:10,000 and unit operation is one second, then a computer of <1m³ breaks DES in 2 hours.
Cellular Engineering

Expected Results:
Finite state machines implemented via gene expression & transcription of a bacterium
Create and exploit a novel technology for information processing and manufacturing by controlling processes in living cells

Programming Technology

FSM

New Computational Paradigms

Embedded Process-control Computation

engineered cell

novel, patterned materials
Cellular Engineering
Two Representative Projects

Gene Regulatory Modeling
Stanford University
Context: Model the interior processes of bacteria to demonstrate external control of internal computation.

Oscillating Channels and Sensors
Harvard University
Context: Establish the viability of an implantable electrical to chemical transducer.
Living Neuronal Networks

Expected Results: Hybrid information appliances, such as computers, peripherals, and storage devices.
Living Neuronal Networks
Two Representative Projects

Interfacing Directed Neuron Systems with Silicon Electronics
Cornell University, Wadsworth Center, and U-Va

Context: Form neuronal circuits connected to electronics so that powerful, cheap signal processing is enabled.

A Hybrid Neuron-Silicon Computational System
University of Southern California

Context: Develop novel, hybrid neuron-silicon technology to harness computational capacity of cultured networks of hippocampal neurons for temporal and spatio-temporal pattern recognition applications.
Interfacing with Large-Scale Neuronal Ensembles
Massachusetts Institute of Technology

Context: Deliver synthetic inputs directly into sensory and memory systems of the brain; demonstrate direct, remote access to the outputs of these systems in biological organisms performing high level information processing.

Decoding patterned neural activity for location

Detection of novel environment through neural monitoring

Responses of 80 monitored hippocampal cells
How Can DoD Use UltraScale Computing?

- Warrior Robots
- Disposable Supercomputers
- Materials That Think
- Fly-By- Thought
- Instant Training