
Performance evaluation - using Parallel languages to scale

• StressWork fit to SandyBridge very efficiently (up to 55% of peak on a single core)
• Peak performance of Blue Gene/Q was much lower than anticipated
• Although the performance relative to peak performance of StressACC was very low

(3%) the raw GFLOPs performance was highest on NVIDIA GPUs.
• Application profiling showed full memory bandwidth utilization on all architectures.

conclusion
• StressWork inputs greatly vary the workload while StressAcc is consistent
• Using portable design principles results in kernel speedups on all architectures
• We apply minimal code modifications to support “write once, run anywhere”
• SIMD code generation improved execution on single-core Intel SandyBridge
• GPU speedups similar to Intel CPU speedups and computation throughput
• Applications are memory-bound on all architectures

future Work
Newer Architectures
• Current limitations of targeting the existing architectures is memory bandwidth being

fully utilized. Without reformulating the application, improvements will come from
upcoming advancements in architecture.

• Newer architectures will have additional layers of memory (eDRAM) or high-
bandwidth memory (HBM) to increase the memory bandwidth feeding computations.

Library Encapsulation
• There is already high code reuse across architectures, but seperate files are required
• A library should easily abstract away the execution policy and data transfer of a kernel
• The C++ Parallelism Technical Specification (C++ Parallelism TS) could be used as a

starting point with CUDA support added for targeting NVIDIA GPUs.

Optimize for Bandwidth
• Most optimizations target performance improvement through cache fitting and

minimizing execution time and energy.
• Considering bandwidth throughput as a guide for optimization selection could lead

to better overlap of data and compute and reshape access patterns.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-678102

exPeriment configuration and execution
Each microbenchmark has a variety of input parameters. For performance evaluation,
we consider all of the input permutations. There are 1080 versions of each workload
running on each CPU execution environment. When running on GPUs, we fixed all of
the parameters except those that change access patterns resulting in 18 versions.

We plot the speedups based on the execution environment (number of cores) on CPU
architectures to exhibit strong scaling. When running on GPUs, we adjust the domain
size to exhibit weak scaling. Box plots (median statistics) and average and standard
deviation (mean statistics) show speedups observed during execution.

stressWork - an embarrassingly Parallel multi-material kernel

Kernel Description
• 19 FLOPs for each single-material zone and 20 FLOPs for each mixed-material zone
• 18 input arrays and one output array
• Each loop iteration is independent

Performance Analysis
• Code changes yield up to 3.8x speedup on a single core supports vectorized code
• Large variance of speedup suggests access pattern greatly impacts performance
• Data transfer dominates GPU execution times
• 16x speedup on single-socket 8-core Intel, 36x on Blue Gene/Q, and 21x on GPU

stressacc - a stress tensor kernel With race conditions

Kernel Description
• 180 FLOPs for each zone, and zones update neighboring nodes (race condition)
• Because of the race condition present, independent access lists are precalculated on

CPUs. Atomic reduction operations are use when targeting GPUs
• Six input arrays and three output arrays

Performance Analysis
• 1.3x speedup observed when running on a single CPU core
• Small variance of speedup suggests varying input doesn’t impact speedup
• Real speedup still observed even with data transfer on GPU
• 9x speedup on single-socket 8-core Intel, 45x on Blue Gene/Q, and 13.4x on GPU

Portable Performance of Large-Scale Physics Applications
Toward Targeting Heterogeneous Exascale Architectures Through Application Fitting

William Killian1,2, George Zagaris2 (Advisor), Brian Ryujin2 (Advisor), Brian Pudliner2 (Advisor), John Cavazos1 (Advisor)
1 University of Delaware, 2 Lawrence Livermore National Laboratory

Lawrence Livermore
National Laboratory

College of Engineering
DEPARTMENT OF COMPUTER
& INFORMATION SCIENCES

abstract
Physics simulations are one of the driving applications for supercomputing and this trend is expected to
continue as we transition to exascale computing. Modern and upcoming hardware design exposes tens to
thousands of threads to applications, and achieving peak performance mandates harnessing all available
parallelism in a single node. In this work we focus on two physics micro-benchmarks representative of kernels
found in multi-physics codes. We map these onto three target architectures: Intel CPUs, IBM Blue Gene/Q, and
NVIDIA GPUs. Speedups on CPUs were up to 12x over our baseline while speedups on Blue Gene/Q and GPUs
peaked at 40x and 18x, respectively. We were able to achieve 54% of peak performance on a single core. Using
compiler directives with additional architecture-aware source code utilities allowed for code portability. Based
on our experience, we list a set of guidelines for programmers and scientists to follow towards attaining a single,
performance portable implementation.

three-dimensional Physics mesh aPPlication overvieW
We are optimizing two physics kernels which operate on three-dimensional structured grids. These applications
are representative of kernels found in large scale multi-physics codes.
• Each mesh consists of nodes with zones existing between the node lattice
• The mesh has many properties for each zone, such as volume, density, and position
• The mesh has a layer of ghost (or phony) zones around the entire structure
• Multi-material zones are all grouped together while single-material zones have stride-one access

aPPlication fitting on advanced architectures
There are a few critical properties of an architecture to
consider when mapping an application. We considered
the following characteristics:

Memory Hierarchy
• What is the cache configuration?
• Should we use the cache (if applicable)?

Computation Capability
• Instruction issue width: How many different

computations can be issued at the same time?
• SIMD/SIMT execution: Does the architecture support

advanced features such as vectorization?

Parallelism
• How many threads can run concurrently?
• How should work be distributed on the architecture?

code modifications toWard good architecture fitting
Data Alignment - Alignment enables better code generation and improves cache performance. We abstracted
away compiler-specific hints to a common programming model to aid with data alignment.

Decouple Loops - Removing inter-loop dependences help improve scalability. Both kernels were modified to
take advantage of independent loop iteration access.

Reduce Floating-Point Operations - We should consider elimination of sub-expressions. After modifications, we
reduce the inner loop of one kernel by 51 memory accesses and 30 floating-point operations.

Parallelize with High-Level Programming Models - OpenMP is used when running on Intel SandyBridge and IBM
Blue Gene/Q while CUDA is used when targeting NVIDIA GPUs. Code portability is maintained.

Compiler Hints and Optimizations - Manually optimizing an application can be hard. We use many best-practice
compiler optimizations specified by the vendor for each architecture.

AXU

L1DL1I

Core

Core
05

IBM BlueGene/Q A2

M
e
m
o
r
y

Core
06

Core
07

Core
08

Core
09

Core
10

Core
11

Core
12

Core
13

Core
14

Core
03

Core
02

Core
01

Core
00

Core
15

Core
16

Core
17

M
e
m
o
r
y

Network

Cr
os

sB
ar

 S
w

itc
h

Core
04

L2 Cache L2 Cache

SP SP SP DP LS SF

Interconnect

L1 / Shared Memory

Read-Only Memory

Texture Memory

 Instruction Cache
Unit

M
e
m
o
r
y

L2 Cache

M
e
m
o
r
y

SMX

NVIDIA Tesla K20Xm

SIMD Unit

L2 Cache

L1DL1I Core
L3 Cache

M
e
m
o
r
y

Core

Intel SandyBridge E5-2670

Architecture Overview for Targeted Systems

16.90%

16.58%

2.34%

3.12%

54.69%

30.20%

4.26%

2.10%

0

10

20

30

40

50

60

SandyBridge (1) SandyBridge (8) BlueGene/Q K20Xm

Pe
ak

 Ap
pl

ica
tio

n G
FL

OP
/s

 (%
 of

 Ar
ch

ite
ctu

re
Pe

ak
)

Peak Performance of Microkernels on Architectures

StressAcc StressWork

0%

5%

10%

15%

20%

25%

0

5

10

15

20

25

32 64 96 128 160 192 224 256 288 320

Pe
rce

nt
 of

 To
tal

 Ex
ec

ut
ion

 Ti
me

 as
 Co

mp
ut

ati
on

Sp
ee

du
p o

ve
r B

ase
lin

e
Se

qu
en

tia
l C

PU

Domain Size (N x N x N)

Performance on NVIDIA K20Xm

Speedup (Computation) Speedup (with Data Transfer) Percent Computation

8.0

16.0

24.0

32.0

40.0

48.0

OpenMP (16) OpenMP (32) OpenMP (64)

Sp
ee

du
p o

ve
r S

eq
ue

nt
ial

 B
ase

lin
e

Parallel Version (Number of threads)

Performance on IBM Blue Gene/Q

Median Statistics Mean Statistics

0.5

1.0

2.0

4.0

8.0

16.0

Serial OpenMP (1) OpenMP (2) OpenMP (4) OpenMP (8) OpenMP (16)

Sp
ee

du
p o

ve
r S

eq
ue

nt
ial

 B
ase

lin
e

(lo
g s

ca
le)

Parallel Version (Number of threads)

Performance on Intel SandyBridge E5-2670

Median Statistics Mean Statistics

0.5

1.0

2.0

4.0

8.0

16.0

Serial OpenMP (1) OpenMP (2) OpenMP (4) OpenMP (8) OpenMP (16)

Sp
ee

du
p o

ve
r S

eq
ue

nt
ial

 B
ase

lin
e

(lo
g s

ca
le)

Parallel Version (Number of threads)

Performance on Intel SandyBridge E5-2670

Median Statistics Mean Statistics

8.0

16.0

24.0

32.0

40.0

48.0

OpenMP (16) OpenMP (32) OpenMP (64)

Sp
ee

du
p o

ve
r S

eq
ue

nt
ial

 B
ase

lin
e

Parallel Version (Number of threads)

Performance on IBM Blue Gene/Q

Median Statistics Mean Statistics

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

0

5

10

15

20

25

32 64 96 128 160 192 224 256 288 320

Pe
rce

nt
 of

 To
tal

 Ex
ec

ut
ion

 Ti
me

 as
 Co

mp
ut

ati
on

Sp
ee

du
p o

ve
r B

ase
lin

e
Se

qu
en

tia
l C

PU

Domain Size (N x N x N)

Performance on NVIDIA K20Xm

Speedup (Computation) Speedup (with Data Transfer) Percent Computation

