
William Killian, Wei Wang, Eunjung Park, John Cavazos
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF DELAWARE

Energy Tuning of Polyhedral Kernels on
Multicore and Many-Core Architectures

Introduction

Energy Measurement

Polyhedral Optimizations

Compilation Workflow

Results

Conclusion

ENERGY ANALYSIS

CROSS-ARCHITECTURE COMPARISON

Polybench
Program

Polybench
Program +

Energy Module

PoCC v1.2
Fusion

Unrolling

Tiling

Parallelization

Vectorization
Polybench
ProgramPolybench

ProgramPolybench
ProgramPolybench

Program
Polybench
Program

Code Variants

Intel Compiler
v14.0.0

Benchmarks

• Reducing application energy consumption is important in embedded systems.
• Applications are not energy-aware in its design stage.
• Tuning for energy efficiency is necessary to meet system energy constraints.
METHODOLOGY:

• We tuned for energy consumption on Intel® SandyBridge and Intel® Knight’s Corner.
• We applied polyhedral optimizations to kernels
• We found the optimization sequence yielding minimal energy consumption.

EVALUATION:
• In-depth comparison on SandyBridge of execution time and energy consumption
• Cross-architecture comparison of optimization sequences

• Used RCRtool [3] to report region-based energy consumption
• Recorded elapsed time, energy use, and average power for region + application
SANDYBRIDGE:

• RAPL hardware counter used
• 1000Hz+ update frequency
• Measures energy, computes power

KNIGHT’S CORNER:
• Built-in power measurement used (/sys/class/micras/power)
• 20Hz update frequency
• Measures power, computes energy

• Use the polyhedral model of an AST to transform loops
• Examples include loop unrolling, tiling, fusion, autoparallelization, and autovectorization
• Used the Polyhedral Compiler Collection (PoCC) [2] for automatic version generation
LOOP UNROLLING:

// no unrolling
for (int i = 0; i < n; ++i) {
 C[i] = A[i] + B[i];
}

// Unroll factor=4
for (int i = 0; i < n / 4; ++i) {
 C[4*i+0] = A[4*i+0] + B[4*i+0];
 C[4*i+1] = A[4*i+1] + B[4*i+1];
 C[4*i+2] = A[4*i+2] + B[4*i+2];
 C[4*i+3] = A[4*i+3] + B[4*i+3];
}

SAMPLE USAGE OF POCC:

$ pocc --pluto-parallel --pragmatizer --mark-par-loops
 [--pluto-prevector] [--pluto-tile N[xN]*]
 [--pluto-fuse (maxfuse,nofuse,smartfuse)]
 [--pluto-ufactor N] 2mm.c

Optimization Flag Affecting:
LOOP FUSION -- LOOP UNROLLING -- LOOP TILING
AUTOPARALLELIZATION -- AUTOVECTORIZATION

TILE SIZES: 1,16,32,64 UNROLL FACTORS: 2,4,6,8

Note: we always selected an optimization sequence with
autoparallelization. All other optimizations were optional.

• Synthetic benchmark is a subset of the Polybench kernels [1] ranging from various domains
POLYBENCH KERNELS:

• 2mm -- two matrix multiplication (D = A.B, E = C.D)
• covariance -- covariance computation (data mining)
• gemm -- matrix multiplication (C = alpha.A.B + beta.C)
• gramschmidt -- decomposition (linear algebra)
• jacobi-2d -- 2D Jacobi stencil (fluid dynamics, image processing)
• seidel-2d -- 2D Seidel stencil computation

1. Original Polybench program with no modifications
2. Change generic Polybench header file to include energy monitoring API (RCRtool)
3. Use PoCC to generate search-space versions of original polybench program
4. Use Intel® Compiler to compile the version codes targeting Knight’s Corner or SandyBridge
5. Execute all binaries and manually analyze energy/performance results

• Generated 2535 versions of each benchmark with two different dataset sizes (Small and Large)
• CPU configuration: dual-socket quad-core Intel® Xeon® CPU E5-2603 @ 1.80GHz, 32GB DDR3
• MIC configuration: 60-core Intel® Xeon® Phi Coprocessor 5110P @ 1.053 GHz, 8GB GDDR5
• Compilation configuration: CPU: -O3 -xHOST -openmp MIC: -O3 -mmic -openmp
• Ran each benchmark 5 times and took the average of the middle three executions

Speedup =
T0

Tbest
Ereduction =

E0

Ebest

1

SM LG SM LG

2mm 1.48x 1.36x 1.28x 0.77x

covar 37.86x 122.20x 25.11x 60.31x

gemm 1.46x 1.44x 1.28x 0.78x

gramschmidt 19.41x 21.64x 13.66x 11.72x

jacobi-2d 1.31x 1.48x 1.37x 1.44x

seidel-2d 7.76x 9.60x 7.68x 5.53x

Speedup Energy Reduction Factor
Benchmark

Performance and Energy Improvement on Intel® Xeon® Processor

Performance and Energy Improvement on Intel® Xeon® Phi Coprocessor
Computation for non-parallelized versions took too long to execute on the platform (> 1 hour
for the large dataset). We only used the Many-Integrated core architecture for
cross-architecture comparison

0%

100%

200%

300%

400%

500%

600%

700%

2mm covariance gemm gramschmidt jacobi-2d seidel-2d

Co
st

 C
om

pa
re

d
to

 O
pt

im
al

Benchmark

Best SandyBridge Optimization Sequences on Knight's Corner

Time
Total Energy

0%

50%

100%

150%

200%

250%

300%

350%

400%

2mm covariance gemm gramschmidt jacobi-2d seidel-2d

Co
st

 C
om

pa
re

d
to

 O
pt

im
al

Benchmark

Best Knight's Corner Optimization Sequences on SandyBridge

Time
Total Energy

These graphs indicate that good loop transformations for one architecture do not carry over to
other architectures. Performance improvements at times approached or even beat the best
optimization sequence. When analyzing total energy consumption, this trend no longer holds.

• Polyhedral optimizations yield up to 60x energy reduction and 120x speedup (28% minimum)
• Non-correlated speedup observed on dense matrix kernels
• Loop transformations do not carry over well across architectures
• Adapting energy-aware API to new benchmarks is easy with RCRtool
FUTURE WORK:

• Explore new benchmark suites and architectures (ARM, Haswell, Silvermont)
• Expand search-space to include more polyhedral optimizations; reduce search breadth
• Improve energy measurement granularity on Knight’s Corner

SOURCES / RELEVANT WORK:
[1] L. Pouchet. “Polybench/C” available: http://www.cse.ohio-state.edu/~pouchet/software/polybench/
[2] L. Pouchet. “PoCC - The Polyhedral Compiler Collection” available: http://www.cse.ohio-state.edu/~pouchet/software/pocc/
[3] Allan Porterfield, Rob Fowler, Min Yeol Lim. RCRTool: Design Document. Technical Report TR-10-01, RENCI, North Carolina, Feb. 2010
[4] A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely, “Auto-tuning for energy usage in scientific applications,” in Proceedings of the 2011

international conference on Parallel Processing Volume 2, ser. EuroPar’11. Berlin, Heidelberg: Springer- Verlag, 2012, pp. 178–187
[5] E. Park, J. Cavazos, and M. A. Alvarez, “Using graph-based program characterization for predictive modeling,” in CGO, 2012, pp. 196–206
[6] W. Wang, J. Cavazos, and A. Porterfield, “Energy auto-tuning using the polyhedral approach,” in Proceedings of the 4th International

Workshop on Polyhedral Compilation Techniques, S. Rajopadhye and S. Verdoolaege, Eds., Vienna, Austria, Jan. 2014
[7] W. Baek and T. Chilimbi. Green: A framework for supporting energy-conscious programming using controlled approximation. PLDI, June 2010
[8] J. Flinn and M. Satyanarayanan. Managing battery lifetime with energy-aware adaptation. ACM Trans. Comput. Syst., 22(2):137–179, May 2004

Metrics

