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Optimization Space Exploration

• KRIPKE is a proxy application for Sn particle transport developed at LLNL
• Highly dimensional: composed of directions, groups, zones, and moments
• Many possible nestings of data and execution. Difficult to find the best
• Solves the linear Bolzmann equation using sweeps over a 3D domain space
• Goal: find optimal execution policies for common configurations of KRIPKE

Sweep (t=1) Sweep (t=2) Sweep (t=3)
Time sequence of the sweep kernel (H-1) moving through the mesh. Multiple 
sweeps can occur at the same time. Grid contention occurs when a location has  
equal manhattan distance from two or more sources (corners).

for d in range(0,dom<IDirection>(id)):
  for nm in range(0,dom<IMoment>(id)):
    for g in range(0,dom<IGroup>(id)):
      for z in range(0,dom<IZone>(id)):   

Basic loop implementation
NestedPolicy<
 ExecList<
  seq_exec, seq_exec,
  omp_for_nowait_exec, simd_exec>,
 OMP_Parallel<
  Tile<
   TileList<
    tile_none, tile_none,
    tile_none, tile_fixed<512>>,
   Permute<PERM_JIKL>
  >
 >
>

Example RAJA Execution Policy to apply

#pragma omp parallel
for z2 in range(0,dom<IZone>(id),512):
  for d in range(0,dom<IDirection>(id)):
    for nm in range(0,dom<IMoment>(id)):
      #pragma omp for nowait
      for g in range(0,dom<IGroup>(id)):
        for z in range(z2,z2+512):

Nested Policy applied to loop

• Provides C++ abstractions to enable architecture portability
• Predefined execution policies exist for SIMD, OpenMP, and CUDA
• Nested and advanced loop transformations (tiling, reordering) are available
• Goal: use RAJA to drive optimization search space exploration for KRIPKE

Policy Search Space
• Four execution policies: sequential, SIMD, OpenMP, collapsed OpenMP
• Five tiling policies: no tiling and fixed tiles of sizes 8, 32, 128, and 512
• Considered only loop valid nests, tiles must fit in L3 cache, no nested thread 

parallelism, OpenMP clauses only with OpenMP loop nests
• Policies are generated for each independent loop nest
• Five different loop nests:

1. LTimes [ L ] -- 4-nested loop with 850K versions
2. LPlusTimes [ L+ ] -- 4-nested loop with 850K versions
3. Scattering [ Σs  ] -- 4-nested loop with 850K versions
4. Sweep [ H-1 ] -- 3-nested loop with 2.9K versions
5. Source [ Q ] -- 2-nested loop with 0.45K versions

Hill-climbing Strategy Subspace Search Strategy

Explored versions are shown by increasing speedup over OpenMP baseline. 
Subspace search does better than hill-climbing because the strategy was more 
likely to cover more tiling policies and consider non-local search spaces.

• Assume kernel executions are independent of one another
• Too costly to run each execution policy for a larger Sn transport code.
• We propose two different strategies to explore the optimization space
• Goal: find optimal execution policies of kernels without exhaustive execution

• Used the RAJA performance portability layer to explore a large optimization 
space efficiently within the KRIPKE Sn transport proxy application

• Two different search space strategies can yield results up to 98.8% of 
optimal while only exploring 20% of the total search space.

• The best known execution time of KRIPKE improves by 19.5%.

Future Work
• Expand results to include GPU execution policies (NVIDIA Kepler/Pascal) 

and nested parallelism with many-core (Intel Knight’s Landing) architectures
• Augment tiling policies to include multi-level tiling. This will be useful when 

targeting future architectures with complex memory hierarchies.
• Construct an accurate control-flow graph-based performance prediction 

model. The predictor replaces exaustive execution with only compilation.
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• Architecture: dual-socket Intel Xeon E5-2670, 32GB DDR3 RAM
• Compiler: Clang 3.8.0 with OpenMP support (-O3 -march=native)

Comparison to Exhaustive Execution
• To evaluate our search strategies, we run all generated versions of KRIPKE.
• The best discovered policies improves over the basline performance of the 

entire KRIPKE proxy application by 19.5%.
• Hill-climbing achieves up to 95.6% of optimal performance while subspace 

search achieves up to 98.8% of optimal performance.

Ψi+1 = H-1 L+ (Σs L Ψi + Q)

• Legacy physics applications need updating to run well on newer architectures 
but are not always designed for architecture flexibility

• With architectures changing frequently (multicore, many-core, GPU), 
applications need to be adaptable to many different architectures.

• Adaptive, flexible programming layers are necessary to intelligently search 
large optimization spaces

● - LTimes   ● - LPlusTimes   ● - Scattering   ● - Sweep   ● - Source
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• Limited to 10% of total search space
• Speedup up to 3.1% over baseline.

• Limited to 20% of total search space
• Speedup up to 25.3% over baseline
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V ← all versions of KRIPKE
F ← all features of a loop nest
count ← 0
do while count < threshold

p ← rand (V )
best ← p
foreach i, f ∈ shuffle (enumerate (F )) do
foreach option ∈ Fi do
pi ← option
count ← count+ 1
if time (p) < time (best) best ← p end

end
end

V ← all versions of KRIPKE
F ← all features of a loop nest
count ← 0
do while count < threshold

V ′ ← {rand (V )}
foreach i, f ∈ shuffle (enumerate (F )) do
foreach option ∈ Fi do
Voption ← {vi ← option ∀ v ∈ V ′}
count ← count+ |V ′|
V ′ ← V ′ ∪ Voption

end
remove all but top k from V ′

end

Exhaustive Execution


