
Discovering Optimal Execution Policies in KRIPKE using RAJA
William K. Killian1,2, Adam J. Kunen2 (Advisor), Ian Karlin2 (Advisor), John Cavazos1 (Advisor) 1 University of Delaware 2 Lawrence Livermore National Laboratory

LLNL-POST-698463This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

KRIPKE

RAJA Performance Portability Layer

Motivation Policy Description and Generation

Conclusion and Future Work

Performance Analysis

Optimization Space Exploration

• KRIPKE is a proxy application for Sn particle transport developed at LLNL
• Highly dimensional: composed of directions, groups, zones, and moments
• Many possible nestings of data and execution. Difficult to find the best
• Solves the linear Bolzmann equation using sweeps over a 3D domain space
• Goal: find optimal execution policies for common configurations of KRIPKE

Sweep (t=1) Sweep (t=2) Sweep (t=3)
Time sequence of the sweep kernel (H-1) moving through the mesh. Multiple
sweeps can occur at the same time. Grid contention occurs when a location has
equal manhattan distance from two or more sources (corners).

for d in range(0,dom<IDirection>(id)):
 for nm in range(0,dom<IMoment>(id)):
 for g in range(0,dom<IGroup>(id)):
 for z in range(0,dom<IZone>(id)):

Basic loop implementation
NestedPolicy<
 ExecList<
 seq_exec, seq_exec,
 omp_for_nowait_exec, simd_exec>,
 OMP_Parallel<
 Tile<
 TileList<
 tile_none, tile_none,
 tile_none, tile_fixed<512>>,
 Permute<PERM_JIKL>
 >
 >
>

Example RAJA Execution Policy to apply

#pragma omp parallel
for z2 in range(0,dom<IZone>(id),512):
 for d in range(0,dom<IDirection>(id)):
 for nm in range(0,dom<IMoment>(id)):
 #pragma omp for nowait
 for g in range(0,dom<IGroup>(id)):
 for z in range(z2,z2+512):

Nested Policy applied to loop

• Provides C++ abstractions to enable architecture portability
• Predefined execution policies exist for SIMD, OpenMP, and CUDA
• Nested and advanced loop transformations (tiling, reordering) are available
• Goal: use RAJA to drive optimization search space exploration for KRIPKE

Policy Search Space
• Four execution policies: sequential, SIMD, OpenMP, collapsed OpenMP
• Five tiling policies: no tiling and fixed tiles of sizes 8, 32, 128, and 512
• Considered only loop valid nests, tiles must fit in L3 cache, no nested thread

parallelism, OpenMP clauses only with OpenMP loop nests
• Policies are generated for each independent loop nest
• Five different loop nests:

1. LTimes [L] -- 4-nested loop with 850K versions
2. LPlusTimes [L+] -- 4-nested loop with 850K versions
3. Scattering [Σs] -- 4-nested loop with 850K versions
4. Sweep [H-1] -- 3-nested loop with 2.9K versions
5. Source [Q] -- 2-nested loop with 0.45K versions

Hill-climbing Strategy Subspace Search Strategy

Explored versions are shown by increasing speedup over OpenMP baseline.
Subspace search does better than hill-climbing because the strategy was more
likely to cover more tiling policies and consider non-local search spaces.

• Assume kernel executions are independent of one another
• Too costly to run each execution policy for a larger Sn transport code.
• We propose two different strategies to explore the optimization space
• Goal: find optimal execution policies of kernels without exhaustive execution

• Used the RAJA performance portability layer to explore a large optimization
space efficiently within the KRIPKE Sn transport proxy application

• Two different search space strategies can yield results up to 98.8% of
optimal while only exploring 20% of the total search space.

• The best known execution time of KRIPKE improves by 19.5%.

Future Work
• Expand results to include GPU execution policies (NVIDIA Kepler/Pascal)

and nested parallelism with many-core (Intel Knight’s Landing) architectures
• Augment tiling policies to include multi-level tiling. This will be useful when

targeting future architectures with complex memory hierarchies.
• Construct an accurate control-flow graph-based performance prediction

model. The predictor replaces exaustive execution with only compilation.

Acknowledgments and Resources
[1] A. J. Kunen, T. S. Bailey, P. N. Brown, KRIPKE - A Massively Parallel Transport

Mini-App, American Nuclear Society M&C, 2015 [https://codesign.llnl.gov/kripke.php]
[2] R. D. Hornung and J. A. Keasler, The RAJA Portability Layer: Overview and Status,

Tech Report, LLNL-TR-661403, Sep. 2014. [https://github.com/llnl/RAJA]

• Architecture: dual-socket Intel Xeon E5-2670, 32GB DDR3 RAM
• Compiler: Clang 3.8.0 with OpenMP support (-O3 -march=native)

Comparison to Exhaustive Execution
• To evaluate our search strategies, we run all generated versions of KRIPKE.
• The best discovered policies improves over the basline performance of the

entire KRIPKE proxy application by 19.5%.
• Hill-climbing achieves up to 95.6% of optimal performance while subspace

search achieves up to 98.8% of optimal performance.

Ψi+1 = H-1 L+ (Σs L Ψi + Q)

• Legacy physics applications need updating to run well on newer architectures
but are not always designed for architecture flexibility

• With architectures changing frequently (multicore, many-core, GPU),
applications need to be adaptable to many different architectures.

• Adaptive, flexible programming layers are necessary to intelligently search
large optimization spaces

● - LTimes ● - LPlusTimes ● - Scattering ● - Sweep ● - Source

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Versions in increasing order of speedup

Sp
ee

du
p

ov
er

 O
pe

nM
P

ba
se

lin
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Versions in increasing order of speedup

Sp
ee

du
p

ov
er

 O
pe

nM
P

ba
se

lin
e

• Limited to 10% of total search space
• Speedup up to 3.1% over baseline.

• Limited to 20% of total search space
• Speedup up to 25.3% over baseline

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Versions in increasing order of speedup

Sp
ee

du
p

ov
er

 O
pe

nM
P

ba
se

lin
e

● - LTimes ● - LPlusTimes ● - Scattering ● - Sweep ● - Source

V ← all versions of KRIPKE
F ← all features of a loop nest
count ← 0
do while count < threshold

p ← rand (V)
best ← p
foreach i, f ∈ shuffle (enumerate (F)) do
foreach option ∈ Fi do
pi ← option
count ← count+ 1
if time (p) < time (best) best ← p end

end
end

V ← all versions of KRIPKE
F ← all features of a loop nest
count ← 0
do while count < threshold

V ′ ← {rand (V)}
foreach i, f ∈ shuffle (enumerate (F)) do
foreach option ∈ Fi do
Voption ← {vi ← option ∀ v ∈ V ′}
count ← count+ |V ′|
V ′ ← V ′ ∪ Voption

end
remove all but top k from V ′

end

Exhaustive Execution

