An Introduction to OpenACC

William Killian

Department of Computer and Information Science
University of Delaware

SITYor
[ﬁlﬁ,ﬁWARE

CISC 879 — Advanced Parallel Programming

© Introduction
@ Accelerating Applications on Various Architectures
@ About OpenACC

© The OpenACCAPI
@ Directives
@ Clauses
@ Runtime Library Routines

© compiling
@ Compiling

Q@ Examples
@ Vector-Vector Addition

@ Matrix-Matrix Multiplication
e Summary

Introduction
°

Accelerating Applications on Various Architectures

Methods of Accelerating Applications

@ Targeting Multi-core CPUs

@ Targeting Multi-node CPUs

@ Targeting GPUs

Introduction
°

Accelerating Applications on Various Architectures

Methods of Accelerating Applications

@ Targeting Multi-core CPUs

@ OpenMP
@ PThreads, QThreads, etc ...

@ Targeting Multi-node CPUs

@ Targeting GPUs

Introduction
°

Accelerating Applications on Various Architectures

Methods of Accelerating Applications

@ Targeting Multi-core CPUs

@ OpenMP
@ PThreads, QThreads, etc ...

@ Targeting Multi-node CPUs
o MPI

@ Targeting GPUs

Introduction
°

Accelerating Applications on Various Architectures

Methods of Accelerating Applications

@ Targeting Multi-core CPUs

@ OpenMP
@ PThreads, QThreads, etc ...

@ Targeting Multi-node CPUs
o MPI

@ Targeting GPUs
o CUDA

Introduction
°

Accelerating Applications on Various Architectures

Methods of Accelerating Applications

@ Targeting Multi-core CPUs
@ OpenMP
@ PThreads, QThreads, etc ...
@ OpenCL
@ Targeting Multi-node CPUs
e MPI

@ Targeting GPUs

o CUDA
@ OpenCL

Introduction
°

Accelerating Applications on Various Architectures

Methods of Accelerating Applications

@ Targeting Multi-core CPUs
@ OpenMP
@ PThreads, QThreads, etc ...
@ OpenCL
@ Targeting Multi-node CPUs
e MPI
@ Targeting GPUs

o CUDA
@ OpenCL

What’s left? ...OpenACC!

Introduction
°

Accelerating Applications on Various Architectures

Methods of Accelerating Applications

@ Targeting Multi-core CPUs
@ OpenMP
@ PThreads, QThreads, etc ...
@ OpenCL
@ Targeting Multi-node CPUs
e MPI

@ Targeting GPUs

o CUDA
@ OpenCL
@ OpenACC

What’s left? ...OpenACC!

Introduction
[1e}

About OpenACC

What is OpenACC?

@ is an APl using compiler directives that

@ allows for small segments of code, called kernels, to be run on
the GPU and

@ requires little to no modifications to the original program
@ is compatible with C/C++ and Fortran

Reason Behind Formation

OpenACC was formed to help create and foster a cross platform API
that would allow any scientist or programmer to easily accelerate
their application on modern many-core and multi-core processors
using directives.

Introduction
oce

About OpenACC

History of OpenACC

Initially collaboration between CAPS Entreprise, Cray Inc., The
Portland Group (PGl), and NVIDIA
Built from OpenMP-style directives
@ #pragma omp parallelvs. #pragma acc
parallel
@ Creators of OpenACC are all members of the OpenMP
Working Group on accelerators

Standardized in November 2011 at SuperComputing 2011

Compilers available from Cray, CAPS, and PGl

Potential API merge with OpenMP in the future?

The OpenACC API
[1e}

Directives

Directives Overview

#pragma acc directive-name [clause [[,] clause] ...] \

Possible directives are:

parallel starts parallel execution on the accelerator

kernels defines a region that should be converted to a
kernel

data defines contiguous data to be allocated on the
accelerator

host_data makes the address of accelerator data available
on the host

loop defines type of parallelism to apply to

proceeding loop

The OpenACC API
oce

Directives

Directives Overview (continued)

cache defines elements or subarrays that should be
fetched into cache

declare defines that a variable should be allocated in
accelerator memory

update update all or part of host memory from device
memory, or vice versa

wait forces program to wait for completion of
asynchronous activity

The OpenACC API
©00000

Clauses

Clauses Overview

Each directive can have zero (or more) clauses associated.
Example clauses are:

if (e) condition used to determine if command should
be executed (data transfer, accelerator
computation, etc)

async [(n)] tellsthe current command to be executed
asynchronously. Used with wai t for
synchronization.

Clauses found in either kernels or parallel directives:
reduction (op:list)

private (list)

firstprivate (list)

The OpenACC API
©00000

Clauses

Clauses Overview

Each directive can have zero (or more) clauses associated.
Example clauses are:

if (e) condition used to determine if command should
be executed (data transfer, accelerator
computation, etc)

async [(n)] tellsthe current command to be executed
asynchronously. Used with wai t for
synchronization.

Clauses found in either kernels or parallel directives:
reduction (op:list)

private (list) similar to OpenMP
firstprivate (list)

The OpenACC API
0®0000

Clauses

Clauses — parallel and loop

Clauses — parallel directive

num_gangs (e) specify the number of gangs to execute in
the region

num_workers(e) specify number of workers to launch in
each gang

vector_length(e) definevector length to use
Clauses — loop directive
collapse(n) specifies # of loops associated

gang(e) distribute across gang

worker (e) distribute across worker (within gang)
vector (e) operate in SIMD (within gang or worker)
seq execute sequentially on the accelerator

independent tell the compiler loops are data-independent

Clauses

Clauses — Data Operations (optional with most directives)

The OpenACC API
00@000

copy (list)
copyin(list)
copyout(list)
create(list)
present(list)

deviceptr(list)

device_resident(list)

transfer to/from device
transfer to device
transfer from device
allocate on device

data which is already on the
device

used to inform which
variables are device pointers
(opposed to host)

allocate on device instead of
host

Clauses

Clauses — Data Operations (optional with most directives)

The OpenACC API
00@000

pcopy (list)

pcopyin(list)
pcopyout(list)
pcreate(list)
present(list)

deviceptr(list)

device_resident(list)

transfer to/from device
transfer to device
transfer from device
allocate on device

data which is already on the
device

used to inform which
variables are device pointers
(opposed to host)

allocate on device instead of
host

Checks for presence before issuing data command

The OpenACC API
000@00

Clauses

Clauses — host_dataand update

Clauses — use with host_data directive

use_device (list) makethe device address data available
in host code

Clauses — use with update directive
host (list) variables to copy from device to host
device (list) variables to copy from host to device

The OpenACC API
0000e0

Clauses

Data Clauses

We mentioned data clauses such as copy and create but never
went over what we do when the memory was dynamically
allocated (using malloc).

What should we do?

We can specify the size of the data!

Ais our array of size n but we need to provide a hint to OpenACC

Solution:

#pragma acc kernels copyin(A[0:n])

This will also work for 2-dimensional arraysi.e. A[@:m*n]) \

The OpenACC API

O0000e

Clauses

Combining Clauses

Similar to OpenMP, we can combine directives
@ #pragma acc parallel loop [clause [[,]

clause]...]
@ #pragma acc kernels loop [clause [[,]

clause]...])

A loop must directly follow, similar to parallel for in OpenMP \

The OpenACC API
€00

Runtime Library Routines

Runtime Routines

Runtime calls allow the programmer to obtain information about
the host and accelerators during runtime, instead of compile time.

List of library routines:

int acc_get_num_devices (acc_device_t);
gets number of devices of passed type
int acc_set_device_type (acc_device_t);
sets device type to use
acc_device_t acc_get_device_type ();
gets current device type
void acc_set_device_num (int, acc_device_t);
sets device based on index and type
void acc_get_device_num (acc_device_t);
gets current device number

The OpenACC API
(o] 1]

Runtime Library Routines

Runtime Routines — Synchronization

int acc_async_test tests to see if a specified async.

(int); tasks are completed

int acc_async_test_all teststo seeifall async. tasks are
O completed

void acc_async_wait waits until specified async. task
(int); is completed

void acc_async_wait_all waits until all async. tasks are
03 completed

The OpenACC API
ooe

Runtime Library Routines

Runtime Routines — Setup and Teardown

void acc_init
(acc_device_t);

void acc_shutdown
(acc_device_t);

int acc_on_device
(acc_device_t);

void* acc_malloc
(size_t);

void acc_free (voidx);

initialize OpenACC runtime
for passed device type

shut down connection to
passed device type

tells the program whether it’s
executing on passed device
type

allocates memory on the
device

frees memory on the device

Compiling
®00

Compiling

Compiling OpenACC

There are a few different compilers available for OpenACC.

We will be using HMPP Workbench 3.2.1 by CAPS Entreprise

In addition to OpenACC, HMPP Workbench also supports another
directive-based accelerator language, HMPP (and consequently
OpenHMPP).

Compiling
oeo

Compiling

Compiling using Built-in (supplied) Makefiles

Obtain HMPP Workbench 3.2.1 (see website for details)
Extract the tarball

Extract the OpenACC Labs tarball

Navigate to the OpenACC_Labs/CUDA/C/ directory
Copy an existing lab

Edit the code

Invoke “make”

Compiling
ooe

Compiling

Compiling using the command line

Sample Invocation

hmpp --openacc-target=CUDA --codelet-required
gcc -02 -o mvmult mvmult.c

Compiling
ooe

Compiling

Compiling using the command line

Sample Invocation

hmpp --openacc-target=CUDA --codelet-required
gcc -02 -o mvmult mvmult.c

@ hmpp compiler

Compiling
ooe

Compiling

Compiling using the command line

Sample Invocation

hmpp --openacc-target=CUDA --codelet-required
gcc -02 -o mvmult mvmult.c

@ hmpp compiler
@ specify OpenACC codelet target (CUDA or OPENCL)

Compiling
ooe

Compiling

Compiling using the command line

Sample Invocation

hmpp --openacc-target=CUDA --codelet-required
gcc -02 -o mvmult mvmult.c

@ hmpp compiler
@ specify OpenACC codelet target (CUDA or OPENCL)
@ force proper codelet creation for compilation

Compiling
ooe

Compiling

Compiling using the command line

Sample Invocation

hmpp --openacc-target=CUDA --codelet-required
gcc -02 -o mvmult mvmult.c

@ hmpp compiler

@ specify OpenACC codelet target (CUDA or OPENCL)
@ force proper codelet creation for compilation

@ compiler to use for host code

Compiling
ooe

Compiling

Compiling using the command line

Sample Invocation

hmpp --openacc-target=CUDA --codelet-required
gcc —-02 -o mvmult mvmult.c

@ hmpp compiler

@ specify OpenACC codelet target (CUDA or OPENCL)
o force proper codelet creation for compilation

@ compiler to use for host code

o flags for host compiler

Compiling
ooe

Compiling

Compiling using the command line

Sample Invocation

hmpp --openacc-target=CUDA --codelet-required
gcc -02 -o mvmult mvmult.c

@ hmpp compiler

@ specify OpenACC codelet target (CUDA or OPENCL)
o force proper codelet creation for compilation

@ compiler to use for host code

o flags for host compiler

@ specify output file

Compiling
ooe

Compiling

Compiling using the command line

Sample Invocation

hmpp --openacc-target=CUDA --codelet-required
gcc -02 -o mvmult mvmult.c

@ hmpp compiler

@ specify OpenACC codelet target (CUDA or OPENCL)
o force proper codelet creation for compilation

@ compiler to use for host code

o flags for host compiler

@ specify output file

@ source file(s)

Examples
©0000

Vector-Vector Addition

Problem Overview

Given two vectors, A and B, each of size n, we wish to compute the
per-component addition and store the result into C.

Pseudocode

int 1

for (i = 0; i < N; ++1i) {
C [i] A [i] + B [i];

}

| A\

\

Examples
0®000

Vector-Vector Addition

C Implementation

1
2
3
4
5
6
7
8
9

I el =l N = N S S ey
~No b WNEHEO

const int N = 1000;
float A [N];

float B [N];

float C [N];

int 1

// Initialization Loop
for (i = 0; i < Nj; ++1) {
A [i] = 1;
B [i] = 2% i - 1;
1

// Computation Loop
for (i = 0; i < N; ++i) {

C [i] = A [1] + B [1];
}

Examples
[e]e] Yolo)

Vector-Vector Addition

OpenACC Implementation

1 const int N = 1000;

2 float A [N];

3 float B [N];

4 float C [N];

5 dnt 1;

6

7 // Initialization Loop

8 for (i = 0; i < N; ++i) {
9 A [i] = 1;

10 B [i] = 2x 1 - 1;

1}

12

13 // Computation Loop

14 #pragma acc kernels loop 1independent copyin(A,B), copyout(C)
15 for (i = 0; i < Nj; ++i) {
16 C [i] = A [i] + B [i];
17 }

Examples
00000

Vector-Vector Addition

Execution time of Vector-Vector Addition

’ —e— GPU —=— GPU+Transfer —e— CPU

. 10*E
[%2] =
= r
[J) 3L
g 107
— 2:
g0
- [
= [
o 10t E
X B
i F
IOO§

L I N NS A AN NS NN (N N S S S S

D OV A D O L ad (D A0 > o A0 OV N

VAP NV DD DY AL P\ VAN AP A DY

NV 9V RQVAQT Q7N (PP 2R AY vV AN WD

ML AR AR ISINC s

SCG AN RS

Problem Size

Examples
0000e

Vector-Vector Addition

Speedup of Vector-Vector Addition

’ —e— GPU —=— GPU+Transfer

[\
)

—
@)

Speedup over Sequential

Problem Size

Examples
[JeleleYolo)

Matrix-Matrix Multiplication

Problem Overview

Problem

Given two matricies, A and B, with A having dimensions m x p and B
having dimensions p x n, we wish to compute the row-column inner
product into C, a matrix with dimensions m x n.

Pseudocode
int i, j, k;
for (i = 0; 1 < M; ++1)
for (3 = 0; j < Nj ++j) {
C [i11[3] = o3
for (k = 0; k < P; ++k)
C [i1[0J] += A [i]1[k] = B [k][j];

| A

Examples
0®0000

Matrix-Matrix Multiplication

C Implementation (Initialization)

#define INDEX(M,N,i,3) (i + j * M)

int main() {

o ~N o »

9 floatx A; floatx B; floatx C;

10 int i, j, k;

11

12 A = (float*) malloc (M * P *x sizeof (float));

13 B = (float*) malloc (P * N * sizeof (float));

14 C = (floatx) malloc (M * N * sizeof (float));

15

16 for (i = 0; 1 < P; ++1i) {

17 for (3 = 05 3 < M; ++])

18 A [INDEX(M,P,i,j)] = (float) rand () / RAND_MAX;
19 for (k = 0; k < Nj; ++k)

20 B [INDEX(P,N,k,i)] = (float) rand () / RAND_MAX;

21}

Examples
00@000

Matrix-Matrix Multiplication

C Implementation (Computation)

22 for (i = 0; i < M; ++i) {
= <

23 for (3 0; j N; ++j) {

24 float sum = 0.0f;

25 for (k = 05 k < Pj ++k) {

26 sum += A [INDEX(M,P,i,k)] * B [INDEX(P,N,k,j)1;
27 }

28 C [INDEX(M,N,7,3)] = sum;

29 }

30 }

Examples
000@00

Matrix-Matrix Multiplication

OpenACC Implementation (Computation)

23 int m, n, p;

24 m=M; n=N; p=P;

25 // computation

26 #pragma acc kernels copyin(A[0:mxp],B[0:pxn]), copyout(C[O:m*xn
27 {

28 #pragma acc loop independent

29 for (i = 0; i < M; ++1i) {

30 #pragma acc loop independent

31 for (3 = 05 j < Nj; ++j) {
32 float sum = 0.0f;

33 for (k = 0; k < P; ++k) {
34 sum += A [INDEX(M,P,i,k)] * B [INDEX(P,N,k,j)];
35 }

36 C [INDEX(M,N,i,j)] = sum;
37 }

38 }

39 3

40

Examples
0000@0

Matrix-Matrix Multiplication

Execution time of Matrix-Matrix Multiplication

]+ C1060 = K20 e CPU \

106 |

Execution Time (us)

100 |

Problem Size

Examples
00000e

Matrix-Matrix Multiplication

Speedup of Vector-Vector Addition

’ —e— C1060 —m— K20

60

40

Speedup over Sequential

Problem Size

Summary

Summary

@ OpenACC makes targeting accelerators much easier
@ Designed for use by scientists to make GPGPU much easier
@ Syntax similar to OpenMP

@ Compiling with HMPP Workbench 3.2.1 can target CUDA or
OpenCL

OpenACC Reference API

http://www.openacc.org/sites/default/files/
OpenACC.1.0_0.pdf

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

	Introduction
	Accelerating Applications on Various Architectures
	About OpenACC

	The OpenACC API
	Directives
	Clauses
	Runtime Library Routines

	Compiling
	Compiling

	Examples
	Vector-Vector Addition
	Matrix-Matrix Multiplication

	Summary

