An Introduction to High
Performance Computing

A

What is High Performance Computing?

» Using fast, parallel systems to solve:

» Complex problems |
. . , Components:
» Social network interactions

:ﬁ: » Network
x@#%ﬁ 7
» Storage
» Large problems g
» Memory

» Protein folding
» Compute

» Compute-intensive problems

» Physics simulations (fluid dynamics)

Amazon Web Services (aws.amazon.com/hpc)

Motivation for Parallelism

» We have traditionally programmed on single-core architectures

» Still taught predominantly about sequential programming
» Imperative, iterative, stateful programming languages: Java, C++, C#

» Parallelism is an afterthought

» With some exceptions:
» Web Programming: AJAX, responsive/reactive loading
» Computer Architecture: Instruction-level parallelism, instruction ordering
» Operating Systems: processes, threads, mutexes

» Networks: asynchronous data transfer, out-of-order packet analysis

A (Brief) History of Parallel Architectures

1. Sequential Core

« Single Instruction
« Single Data Element

2. Pipelined Core

« Single Instruction
« Multiple Instructions “In Flight”

3. Vector Machine

« Single Instruction
» Multiple Data Elements

e Many Instructions
» Multiple Data Elements

5. GPUs

« Single Program
« Multiple Data Elements

Data Elements

S/‘
%

Instructions

A Modern CPU

o it

gl 11

e ||| BT T T
| BRI BE 1 iRER

Intel Core i7-7700K

» Die Layout?

' IllllllllllIIIIIIIIIIIHIIIIIIIIIII—

» How much is:

e » Compute?
AT AT ——
IIIIIIIIII!IIlIIIIIIII[IVIIIII.IIIIII

» Graphics?
» System |/0
» Memory I/0

A Modern CPU (Intel Core i7-7700K)

System Agent w/Display, Memory Control,
1/0O Control

» 40% of the die is GPU
» 25% of the dieis I/0
» 15% of the die is Cache

o
n L

0

- |
IR idmisnugnnl

B CPU Core "“““ ,t,;,,; CP Core

AR AU
R

i ""w

ayoe) paieys

HEH
31111

o crucor

adepu] Of| pue Alowsjy

Only ~15% of the die is Compute

HEEEEEEEr—

Focus on Latency
Gpic ore +
New Media Capabilities

A Modern GPU (GTX 1070)

» Die Layout?

~70% is Compute
10% Memory 1/0

10% Registers

5% Cache

vV v VvV Vv

Focus on Throughput

Let’s Convert a CPU to a GPU!

Core Core Core Core

SIMD SIMD SIMD SIMD

L1DS L11S L1D$ L11S L1DS L11$ L1D$ L11S

L2$ L2$ L2S L2$

Step 1: Basic CPU

Let’s Convert a CPU to a GPU!

Core Core Core Core

SIMD SIMD SIMD SIMD

L1DS L11S L1D$ L11S L1DS L11$ L1D$ L11S

L2$ L2$ L2S L2$

L3$

Uncore

Step 2: Remove Unnecessary Uncore

Let’s Convert a CPU to a GPU!

Core Core Core Core

SIMD SIMD SIMD SIMD

L1DS L11S L1D$ L11S L1DS L11$ L1D$ L11S

L2$ L2$ L2S L2$

Uncore

Step 3: Remove Outer (coherent) Cache

Let’s Convert a CPU to a GPU!

Uncore

Step 4: Make L1 and L2 cache shared

Let’s Convert a CPU to a GPU!

L1D$

L2$

Uncore

Step 5: Simplify Cores

Let’s Convert a CPU to a GPU!

L1D$

L2$

Uncore

Step 5: Make SIMD Units Wider (4x)

Let’s Convert a CPU to a GPU!

L1D$

L2$

Uncore

Step 6: Replicate Cores

Let’s Convert a CPU to a GPU!

Achievement unlocked
Parallel Architectures 101

Step 6: Replicate Cores

Programming in Parallel By Default

» Challenges:
» ldentifying independence - what can/should be parallelized
» Data management - data may not exist where we need it to be
» Data hazards - modifying values potentially means overwriting

» Programming model
» How do we program for a parallel architecture

» How do we address the other challenges presented

Programming in Parallel By Default

» Case Study: Vector Addition

for (int 1 = 0; i < N; ++1i)
c[i] = a[i] + b[1i];

» Two source arrays (a, b)

» One destination array

» Addressing our challenges:

» Data independence?

Programming in Parallel By Default

» Directive-based Parallel Programming: SIMD

#pragma simd
for (int 1 = 0; 1 < N; ++1)
c[i] = a[i] + b[i];

» The #pragma is a hint to the compiler to tell it that it can assume "vector”
independence. lteration k does not depend on iteration k-1

» This is a good first step, but we are still only on the CPU

» And still on one core!

Programming in Parallel By Default

» Directive-based Parallel Programming: OpenMP

#pragma omp parallel for
for (int 1 = 0; 1 < N; ++1)
c[i] = a[i] + b[i];

» OpenMP is a programming model that allows a user to indicate what sections of
code can be executed concurrently

» This is much better! We are now running on all cores of the CPU

» But can we do more?

Programming in Parallel By Default

» Directive-based Parallel Programming: OpenMP with SIMD

#pragma omp parallel for simd
for (int 1 = 0; 1 < N; ++1)
c[i] = a[i] + b[i];

» We added the simd clause to the directive. This tells the compiler:
» Parallelize across all cores with “omp parallel”

» Parallelize across all vector lanes with “simd”

» This is great! We are now saturating the CPU

Programming in Parallel By Default

» Directive-based Parallel Programming: OpenACC

#pragma acc kernels
for (int 1 = 0; 1 < N; ++1)
c[i] = a[i] + b[i];

» Woah, what happened?
» OpenACC targets CPUs
» Minimal source code change
» Compiler analyzes your code

» (Optionally) implicit data transfer

» But how well does it perform?

Vector Addition - Execution Time

Execution Time (

120

100

80

60

4

o

2

o

o

mSequential ®SIMD ®=QOpenMP ®QOpenMP+SIMD ®QpenACC

Vector Addition - Speedup

14

12

10

[e]

o

N

o

Speedup over Sequential

mSequential ®SIMD ®=QOpenMP ®QOpenMP+SIMD ®QpenACC

Programming in Parallel By Default

» |didn’t tell you everything though...

» With every compiler, there are options that you can give:

» g++ -std=c++11 -fopenmp -03 -march=native vecadd.cpp -o vecadd

> g++ Compiler name

» -std=c++11 -fopenmp Language flags

» -03 -march=native Optimization flags
» vecadd.cpp Source file

» -0 vecadd Output file

Programming in Parallel By Default

» Let’s have a look at what options | had to give the OpenACC compiler

» PGl Community Edition 16.10

» pgc++ -std=c++11 -acc -ta=tesla:managed,cc50 -03 vecadd.cpp -o vecadd

> pgc++ Compiler name

» -std=c++11 -acc Language flags (-acc enables OpenACC)

» -ta=tesla:managed,cc50 -03 Automatic memory transfer, target GPU, optimize
» vecadd.cpp Source file

» -0 vecadd Output file

Memory Management

» Leveraging the Power of GPUs

» Data that you normally create is:
» Available for use on the CPU you are running on

» Not available anywhere else

» What does this mean for the programmer?
» They need to get the data onto the GPU
» ... And back!

Automatic Memory Management

Source Code

// initialize a and b

pragma acc kernels
for (int 1 = 0; 1 < N; ++1)
c[i] = a[i] + b[i];

// use c for something

Automatic Memory Management

Source Code CPU

A Achievement unlocked

— Heterogeneous Programming 102

pras
for (int 1 = 0; 1 < N; ++1i)
c[i] = a[i] + b[i];

// use c for something

Case Study 2: Matrix Multiply

» Commonly used in:
» Computer Graphics
» Physics Modeling/Simulation
» Linear Algebra Routines

» Computationally Expensive: O(N3)
» Storage Costs Relatively High: O(N2)

Case Study 2: Matrix Multiply

Live Demo - Interactive Terminal

GitHub Repository
https://github.com/willkillO7/gpu-programming-intro

Asciinema Recording (check back later)
https://asciinema.org/~willkill07

Matrix Multiplication - Execution Time

25000

20000
15000
10000
B . .

Execution Time (ms)

o

mSequential ®SIMD ®=QOpenMP ®QOpenMP+SIMD ®QpenACC

Matrix Multiplication - Speedup

1000

100
10
1 e

Speedup over Sequential

mSequential ®SIMD ®=QOpenMP ®QOpenMP+SIMD ®QpenACC

2D Stencil - Execution Time

400

350

300

250

200

150

100

50

o

Execution Time (

mSequential ®SIMD ®=QOpenMP ®QOpenMP+SIMD ®QpenACC

2D Stencil - Speedup

Speedup over Sequential

12

10

[e]

o

N

N

o

mSequential ®SIMD ®=QOpenMP ®QOpenMP+SIMD ®QpenACC

