
Leveraging the Power of GPUs

An Introduction to High 
Performance Computing



What is High Performance Computing?

Components:

u Network

u Storage

u Memory

u Compute

u Using fast, parallel systems to solve:
u Complex problems

u Social network interactions

u Large problems

u Protein folding

u Compute-intensive problems

u Physics simulations (fluid dynamics)

Amazon Web Services (aws.amazon.com/hpc)



Motivation for Parallelism

u We have traditionally programmed on single-core architectures

u Still taught predominantly about sequential programming

u Imperative, iterative, stateful programming languages: Java, C++, C#

u Parallelism is an afterthought

u With some exceptions:

u Web Programming: AJAX, responsive/reactive loading

u Computer Architecture: Instruction-level parallelism, instruction ordering

u Operating Systems: processes, threads, mutexes

u Networks: asynchronous data transfer, out-of-order packet analysis



A (Brief) History of Parallel Architectures

1. Sequential Core
• Single Instruction
• Single Data Element

2. Pipelined Core
• Single Instruction
• Multiple Instructions "In Flight"

3. Vector Machine
• Single Instruction
• Multiple Data Elements

4. Multi-core
• Many Instructions
• Multiple Data Elements

5. GPUs
• Single Program
• Multiple Data Elements
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A Modern CPU (Intel Core i7-7700K)

u Die Layout?

u How much is:

u Compute?

u Graphics?

u System I/O

u Memory I/O



A Modern CPU (Intel Core i7-7700K)

u 40% of the die is GPU

u 25% of the die is I/O

u 15% of the die is Cache

Only ~15% of the die is Compute

Focus on Latency



A Modern GPU (GTX 1070)

u Die Layout?

u ~70% is Compute

u 10% Memory I/O

u 10% Registers

u 5% Cache

Focus on Throughput



Let’s Convert a CPU to a GPU!
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Step 1: Basic CPU



Let’s Convert a CPU to a GPU!
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Step 2: Remove Unnecessary Uncore



Uncore

Let’s Convert a CPU to a GPU!
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Step 3: Remove Outer (coherent) Cache



Uncore

Let’s Convert a CPU to a GPU!

Core

L1D$

L2$

SIMD

Core

SIMD

Core

SIMD

Core

SIMD

Step 4: Make L1 and L2 cache shared



Uncore

Let’s Convert a CPU to a GPU!
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Uncore

Let’s Convert a CPU to a GPU!
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Uncore

Let’s Convert a CPU to a GPU!
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Uncore

Let’s Convert a CPU to a GPU!
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Programming in 
Parallel By Default



Programming in Parallel By Default

u Challenges:
u Identifying independence – what can/should be parallelized

u Data management – data may not exist where we need it to be

u Data hazards – modifying values potentially means overwriting

u Programming model

u How do we program for a parallel architecture

u How do we address the other challenges presented



Programming in Parallel By Default

u Case Study: Vector Addition

u Two source arrays (a, b)

u One destination array

u Addressing our challenges:

u Data independence?

for (int i = 0; i < N; ++i)  
c[i] = a[i] + b[i];



Programming in Parallel By Default

u Directive-based Parallel Programming: SIMD

u The #pragma is a hint to the compiler to tell it that it can assume ”vector” 
independence. Iteration k does not depend on iteration k-1

u This is a good first step, but we are still only on the CPU

u And still on one core!

#pragma simd
for (int i = 0; i < N; ++i)  
c[i] = a[i] + b[i];



Programming in Parallel By Default

u Directive-based Parallel Programming: OpenMP

u OpenMP is a programming model that allows a user to indicate what sections of 
code can be executed concurrently

u This is much better! We are now running on all cores of the CPU

u But can we do more?

#pragma omp parallel for
for (int i = 0; i < N; ++i)  
c[i] = a[i] + b[i];



Programming in Parallel By Default

u Directive-based Parallel Programming: OpenMP with SIMD

u We added the simd clause to the directive. This tells the compiler:

u Parallelize across all cores with “omp parallel”

u Parallelize across all vector lanes with “simd”

u This is great! We are now saturating the CPU

#pragma omp parallel for simd
for (int i = 0; i < N; ++i)  
c[i] = a[i] + b[i];



Programming in Parallel By Default

u Directive-based Parallel Programming: OpenACC

u Woah, what happened?

u OpenACC targets CPUs

u Minimal source code change

u Compiler analyzes your code

u (Optionally) implicit data transfer

u But how well does it perform?

#pragma acc kernels
for (int i = 0; i < N; ++i)  
c[i] = a[i] + b[i];



Vector Addition – Execution Time
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Vector Addition – Speedup
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Programming in Parallel By Default

u I didn’t tell you everything though…

u With every compiler, there are options that you can give:

u g++ -std=c++11 –fopenmp -O3 –march=native vecadd.cpp –o vecadd

u g++ Compiler name

u -std=c++11 –fopenmp Language flags

u -O3 –march=native Optimization flags

u vecadd.cpp Source file

u -o vecadd Output file



Programming in Parallel By Default

u Let’s have a look at what options I had to give the OpenACC compiler

u PGI Community Edition 16.10

u pgc++ -std=c++11 –acc –ta=tesla:managed,cc50 -O3 vecadd.cpp –o vecadd

u pgc++ Compiler name

u -std=c++11 –acc Language flags (-acc enables OpenACC)

u -ta=tesla:managed,cc50 –O3 Automatic memory transfer, target GPU, optimize

u vecadd.cpp Source file

u -o vecadd Output file



Memory Management

u Leveraging the Power of GPUs

u Data that you normally create is:

u Available for use on the CPU you are running on

u Not available anywhere else

u What does this mean for the programmer?

u They need to get the data onto the GPU

u … And back!



Automatic Memory Management

CPU GPUSource Code

// initialize a and b

# pragma acc kernels
for (int i = 0; i < N; ++i)  
c[i] = a[i] + b[i];

// use c for something

A B

A B

c

c



Automatic Memory Management

CPU GPUSource Code

// initialize a and b

# pragma acc kernels
for (int i = 0; i < N; ++i)  
c[i] = a[i] + b[i];

// use c for something
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Case Study 2: Matrix Multiply

u Commonly used in:

u Computer Graphics

u Physics Modeling/Simulation

u Linear Algebra Routines

u Computationally Expensive: O(N3)

u Storage Costs Relatively High: O(N2)

= X



Case Study 2: Matrix Multiply

Live Demo – Interactive Terminal

GitHub Repository

https://github.com/willkill07/gpu-programming-intro

Asciinema Recording (check back later)

https://asciinema.org/~willkill07

= X



Matrix Multiplication – Execution Time
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Matrix Multiplication – Speedup
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2D Stencil – Execution Time
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2D Stencil – Speedup
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