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The Scalar Helmholtz Equation

Maxwell’s equations are complicated in spherical
coordinates.
We postpone examining them for a moment and begin with
a scalar Helmholtz equation.

The Scalar Helmholtz Equation

1
r2

∂

∂r

(
r2∂ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2 +k2ψ = 0

As usual we substitute

ψ(r , θ, φ) = R(r)Θ(θ)Φ(φ)
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Separation of Variables

Multiplying the resulting equation by r2 sin2 θ, and dividing by ψ
gives

sin2 θ

R
d
dr

(
r2 dR

dr

)
+

sin θ
Θ

d
dθ

(
sin θ

dΘ

dθ

)
+

1
Φ

d2Φ

dφ2 +k2r2 sin2 θ = 0

We now let
1
Φ

d2Φ

dφ2 = −m2,

substitute, and divide by sin2 θ. This gives

1
R

d
dr

(
r2 dR

dr

)
+

1
Θ sin θ

d
dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
+ k2r2 = 0
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Separation of Variables

We may now separate the θ equation.
The strange separation constant is −n(n + 1) is chosen
because the form of Θ(θ) depends on whether or not
n ∈ Z.

1
Θ sin θ

d
dθ

(
sin θ

dΘ

dθ

)
− m2

sin2 θ
= −n(n + 1)

Substituting this into the previous equation, we find

1
R

d
dr

(
r2 dR

dr

)
− n(n + 1) + k2r2 = 0
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Separation of Variables

Thus, after separation, we are left with the

Spherical Separated Equations

d
dr

(
r2 dR

dr

)
+
[
k2r2 − n(n + 1)

]
R = 0

1
sin θ

d
dθ

(
sin θ

dΘ

dθ

)
+

[
n(n + 1)− m2

sin2 θ

]
Θ = 0

d2Φ

dφ2 + m2Φ = 0

Note that there is no separation equation here since two of the
independent variables refer to angles!
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The Harmonic Equation

The only familiar equation above is the harmonic equation

d2Φ

dφ2 + m2Φ = 0

As usual, its solutions are e±jmφ, cos mφ, and sin mφ.
Again, m must be an integer if Φ(φ) must be periodic.

D. S. Weile Spherical Waves



Wave Functions
Waveguides and Cavities

Scattering

Separation of Variables
The Special Functions
Vector Potentials

The Spherical Bessel Equation

The radial equation is of the form

d
dr

(
r2 dR

dr

)
+
[
k2r2 − n(n + 1)

]
R = 0

The solutions of this equation are called spherical bessel
functions bn(kr).
This term is general; there are Bessel functions jn(kr),
Neumann functions yn(kr), and Hankel Functions h(1)

n (kr)

and h(2)
n (kr).

The spherical functions are related to the cylindrical
functions by

bn(kr) =

√
π

2kr
Bn+ 1

2
(kr)
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The Spherical Bessel Equation

Each function has the same properties as the
corresponding cylindrical function:

jn is the only function regular at the origin.
jn and yn represent standing waves.
h(2)

n is an outgoing wave, h(1)
n is an incoming wave.

Spherical wave functions are actually expressible in terms
of more familiar functions:

j0(kr) =
sin kr

kr
y0(kr) = −cos kr

kr

h(1)
0 =

ejkr

jkr
h(2)

0 =
e−jkr

jkr

The higher order functions can be found from the
recurrence formula.
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Spherical Bessel Functions
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Spherical Neumann Functions
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The Associated Legendre Equation

The final equation is of the form

1
sin θ

d
dθ

(
sin θ

dΘ

dθ

)
+

[
n(n + 1)− m2

sin2 θ

]
Θ = 0

Defining x = cos θ (and y = Θ) we find

(1− x2)
d2y
dx2 − 2x

dy
dx

+

[
n(n + 1)− m2

1− x2

]
y = 0.

Since 0 ≤ θ ≤ π, −1 ≤ x ≤ 1.
One set of solutions is regular for n ∈ Z, we call them
associated Legendre functions of the first kind Pm

n (x).
The other set, associated Legendre functions of the
second kind, Qm

n (x), are singular at |x | = 1.

D. S. Weile Spherical Waves



Wave Functions
Waveguides and Cavities

Scattering

Separation of Variables
The Special Functions
Vector Potentials

Legendre Polynomials

If m = 0, and n ∈ Z the solutions become orthogonal
polynomials; Legendre Polynomials of degree n. These are
given by the well-known

Rodrigues Formula

Pn(x) =
1

2nn!

dn

dxn (x2 − 1)n

These polynomials are not orthonormal; they are
normalized so Pn(1) = 1.
The first few are: P0(x) = 1, P1(x) = x ,
P2(x) = (3x2 − 1)/2... How can I find the rest?
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Associated Legendre Facts

If ν /∈ Z, the functions Pν(x) and Pν(−x) are independent.
Therefore, if ν ∈ Z, the Q must be used.
The functions Pν(x) (and, for that matter, Pm

ν (x)) for ν /∈ Z
are not regular at |x | = 1 either.
When m 6= 0, they are called Associated Legendre
Functions.
Of course, in practice, we use Pm

n (cos θ) and Qm
n (cos θ).

(We call these Lm
n (cos θ).)

Finally, it is important to note that

Lm
n (x) = 0 for m > n.
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The Problem

Our normal approach uses the scalar Helmholtz equation
to solve for a vector potential component.
This generally requires choosing a Cartesian component.
In spherical coordinates, there is no Cartesian component!

One approach is to set fields to be, say, TMz anyway. Then

A = uzµψ = urµψ cos θ − uθµψ sin θ,

where ψ is a solution to the Helmholtz equation in spherical
coordinates. Why is this approach unpopular?
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A Better Approach

Our approach will look for fields TMr and TEr by letting
A = urµAr and F = ur εFr .
Our problem is that

∇2Ar 6= (∇2A)r

so that Ar is not a solution of the Helmholtz equation.
To find the equation the vector potential solves, we go back
to the beginning.

D. S. Weile Spherical Waves



Wave Functions
Waveguides and Cavities

Scattering

Separation of Variables
The Special Functions
Vector Potentials

Spherical Vector Potential

Because ∇ · B = 0 and B = µH, we define A through

H =
1
µ
∇× A

From Faraday’s Law,

∇× E = −jωµH = −jω∇× A

This implies
∇× (E + jωA) = 0

or
E + jωA = −∇Φ
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Spherical Vector Potential

Plugging this into the source-free Ampère-Maxwell law, we find

∇×
(

1
µ
∇× A

)
= jωε (−∇Φ− jωA)

or
∇×∇× A− k2A = −jωµε∇Φ.

Now assume
A = Ar ur .

Then
∇× A = uθ

1
r sin θ

∂Ar

∂φ
− uφ

1
r
∂Ar

∂θ
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Spherical Vector Potential

Now

(∇×∇× A)r = − 1
r2 sin θ

[
∂

∂θ

(
sin θ

∂Ar

∂θ

)
+

1
sin θ

∂2Ar

∂2φ

]
(∇×∇× A)θ =

1
r
∂2Ar

∂r∂θ

(∇×∇× A)φ =
1

r sin θ
∂2Ar

∂r∂φ

and

−jωµε∇Φ = −jωµε
[
ur
∂Φ

∂r
+ uθ

1
r
∂Φ

∂θ
+ uφ

1
r sin θ

∂Φ

∂φ

]
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Spherical Vector Potential

We can equate the uθ and uφ components immediately by
choosing

−jωµεΦ =
∂Ar

∂r
.

Plugging this into the ur equation gives

∂2Ar

∂r2 +
1

r2 sin θ

[
∂

∂θ

(
sin θ

∂Ar

∂θ

)
+

1
sin θ

∂2Ar

∂2φ

]
+ k2Ar = 0

1
r
∂2Ar

∂r2 +
1

r2 sin θ

[
∂

∂θ

(
sin θ

∂

∂θ

Ar

r

)
+

1
sin θ

∂2

∂2φ

Ar

r

]
+ k2 Ar

r
= 0

∂2

∂r2
Ar

r
+

1
r2 sin θ

[
∂

∂θ

(
sin θ

∂

∂θ

Ar

r

)
+

1
sin θ

∂2

∂2φ

Ar

r

]
+ k2 Ar

r
= 0
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Spherical Vector Potential

This equation is recognized as the

Scalar Helmholtz Equation (for TMr waves)[
∇2 + k2

](Ar

r

)
= 0

It is not to hard to imagine the

Scalar Helmholtz Equation (for TEr waves)[
∇2 + k2

](Fr

r

)
= 0

with the gauge condition

∂Fr

∂r
= −jωεµΦm.
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Spherical Vector Potential

Thus, in short, if ψa and ψf solve the Helmholtz equation, we
have

A = µψar
F = εψfr

where r = rur . In terms of these we have

The Fields

E = −∇× rψf +
1

jωµ
∇×∇× rψa

H = ∇× rψa +
1

jωε
∇×∇× rψf
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Spherical Vector Potential

The components may be written

εEr =
1

jωµ

(
∂2

∂r2 + k2
)

Ar

εEθ = − 1
r sin θ

∂Fr

∂φ
+

1
jωµr

∂2Ar

∂r∂θ

εEφ =
1
r
∂Fr

∂θ
+

1
jωµr sin θ

∂2Ar

∂r∂φ

µHr =
1

jωε

(
∂2

∂r2 + k2
)

Fr

µHθ =
1

r sin θ
∂Ar

∂φ
+

1
jωεr

∂2Fr

∂r∂θ

µHφ = −1
r
∂Ar

∂θ
+

1
jωεr sin θ

∂2Fr

∂r∂φ
D. S. Weile Spherical Waves



Wave Functions
Waveguides and Cavities

Scattering

Separation of Variables
The Special Functions
Vector Potentials

The Schelkunoff Bessel Functions

Ar and Fr do not solve the Helmholtz equation.
If ψ solves the Helmholtz equation, the vector potential
may be rψ.
It is therefore helpful to define new radial eignefunctions.
The most common (and obvious) definition is that due to S.
A. Schelkunoff

Schelkunoff Bessel Functions

B̂n(kr) , krbn(kr) =

√
πkr
2

Bn+ 1
2
(kr)
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The Schelkunoff Bessel Functions

The Schelkunoff Bessel Functions solve the equation[
d2

dr2 + k2 − n(n + 1)

r2

]
B̂n = 0

The solutions for either vector potential can now be written as∑
m

∑
n

CmnB̂n(kr)Lm
n (cos θ)h(mφ).
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Transverse Electric Modes

Consider a spherical resonator of radius a.
The field must be finite at the origin.
The field must be finite at the poles (i.e. θ = 0 and θ = π.
The field must be 2π-periodic in azimuth.

Thus we choose the

Modal Vector Potentials

Fr = εĴn(kr)Pm
n (cos θ)

{
cos mφ
sin mφ

}
(In the future we ignore the sin mφ for simplicity.)
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Transverse Electric Modes

Now Eθ and Eφ are not proportional to derivatives with respect
to r , so we need

Ĵn(ka) = 0

This will be satisfied if
ka = unp

where, as might be expected,

Ĵn(unp) = 0,

in particular, unp is the pth root of Ĵn
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Transverse Magnetic Modes

Transverse magnetic modes are similar. We start with

Modal Vector Potentials

Ar = µĴn(kr)Pm
n (cos θ)

{
cos mφ
sin mφ

}
In this case, Eθ and Eφ are proportional to derivatives with
respect to r , so we need

Ĵ ′n(kr) = 0

Therefore

k =
u′np

a
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Resonant Frequencies

Given the values for k , it is easy to find the

Resonant Frequencies

(fr )TE
mnp =

unp

2πa
√
µε

(fr )TM
mnp =

u′np

2πa
√
µε

It is important to note that many of these modes are
degenerate (i.e. have the same cutoff frequency.)
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Degeneracies

Cutoff frequencies in spherical waveguides do not depend
on m or on whether they are even or odd.
The lowest order TE modes have n = p = 1, unp = 4.493

The following modes have the same cutoff:

(Fr )0,1,1 = Ĵ1

(
4.493

r
a

)
cos θ

(Fr )even
1,1,1 = Ĵ1

(
4.493

r
a

)
cos θ cosφ

(Fr )odd
1,1,1 = Ĵ1

(
4.493

r
a

)
cos θ sinφ

In this case, the reason for the degeneracy is clear; these are
all the same mode, rotated in space. How many modes have
n = 2, p = 1?
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Conical Waveguide

Consider the cone θ = θ1. Let’s find the field:
The field should be outwardly travelling.
The field should be 2π-periodic in azimuth.
The field should be finite at the poles:

If θ1 > π/2, the field must be finite at θ = 0.
If θ1 < π/2, the field must be finite at θ = π.

Either way, if we choose TMr functions and assume outward
propagation and cos mφ dependence,

(Ar )mν = Pm
ν (cos θ) cos(mφ)Ĥ(2)

ν (kr)
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Conical Waveguide

To satisfy the boundary condition, we need Er = Eφ = 0.
Neither Er nor Eφ is proportional to a derivative of Ar with
respect to θ.

To make the field vanish at θ = θ1 we need

Pm
ν (cos θ1) = 0.

This is an equation in ν!

For TE modes, we have

(Fr )mν = Pm
ν (cos θ) cos(mφ)Ĥ(2)

ν (kr)

subject to [
d
dθ

Pm
ν (cos θ)

]
θ=θ1

= 0
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Conical Waveguide

To satisfy the boundary condition, we need Er = Eφ = 0.
Neither Er nor Eφ is proportional to a derivative of Ar with
respect to θ.

To make the field vanish at θ = θ1 we need

Pm
ν (cos θ1) = 0.

This is an equation in ν! For TE modes, we have

(Fr )mν = Pm
ν (cos θ) cos(mφ)Ĥ(2)

ν (kr)

subject to [
d
dθ

Pm
ν (cos θ)

]
θ=θ1

= 0
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Biconical Waveguide

Consider now the waves in the region between θ = θ1 and
θ = θ2.
Here, neither θ = 0 or θ = π is involved, so we can (and
must) use either Qn(x) or Pn(−x).
We still have azimuthal 2π-periodicity, so m ∈ Z.
We assume outward travel, and cos mφ dependence.

Then we may write

(Ar )mν = [Pm
ν (cos θ)Pm

ν (− cos θ1)− Pm
ν (− cos θ)Pm

ν (cos θ1)]

× cos(mφ)Ĥν(kr)

Note that this function vanishes already at θ = θ1 by design.
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Biconical Waveguide

The vector potential must also vanish at θ = θ2. This implies

Pm
ν (cos θ2)Pm

ν (− cos θ1)− Pm
ν (− cos θ2)Pm

ν (cos θ1) = 0

This is an (awful, transcendental, obscure) equation for ν.
Similar considerations apply to the TE modes.
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The TEM Mode

The bicone is a two-conductor waveguide, and therefore
supports a TEM mode.
The easiest way to study it is to consider a special
formulation of the TM00 mode.

Thus, let

(Ar )00 = −jµQ0(cos θ)Ĥ(2)
0 (kr) = ln cot

θ

2
e−jkr .

(The extra factor of j is included just to make the expression
real.)
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The TEM Mode

Now, we first note that

d
dφ

cot
θ

2
= tan

θ

2
csc2 θ

2

(
−1

2

)
=

−1
2 sin θ

2 cos θ
2

= − csc θ

This implies

Eθ = − 1
jωεµr

∂2Ar

∂r∂θ
=

ke−jkr

ωεr sin θ

Similarly,

Hφ = −1
r
∂Ar

∂θ
=

e−jkr

r sin θ
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The TEM Mode Voltage

Notice
Eθ
Hφ

= η.

This is to be expected from TEM waves.
We can also define

Voltage

V (r) =

θ2∫
θ1

Eθrdθ = η ln
cot θ1

2

cot θ2
2

e−jkr
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The TEM Mode Current

Similarly we have

Current

I(r) =

2π∫
0

Hφr sin θdφ = 2πe−jkr

We can also compute the

Transmission Line Characteristic Impedance

Z =
V
I

=
η

2π
ln

cot θ1
2

cot θ2
2
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Plane Wave Expansion

A wave traveling in the −z-direction must have the expansion

ejz = ejr cos θ
∞∑

n=0

anjn(r)Pn(cos θ)

Multiplying both sides by sin θ and integrating from 0 to π gives

π∫
0

ejr cos θPn(cos θ) sin θdθ =
2an

2n + 1
jn(r)

after invoking orthogonality. Computing the integral yields

an = jn(2n + 1)
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Plane Wave Expansion

We thus have the

Spherical Expansion of a Plane Wave

ejr cos θ =
∞∑

n=0

jn(2n + 1)jn(r)Pn(cos θ)

Similar theorems can translate cylindrical Bessel functions into
spherical harmonics, etc.
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Addition Theorem

We know that the solution to

∇2ψ + k2ψ = δ(r− r′)

is

ψ(r) =
e−jk |r−r′|

4π|r− r′|
=
−j
4π

h(2)
0 (kr)

We can write this in terms of origin centered spherical
harmonics in two ways.
The difference centers on the special nature of the z-axis.
The solution must have rotational symmetry with respect to
the r′ axis.

Let the angle with r′ be ξ.
It can be shown geometrically that

cos ξ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′)
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Addition Theorem

We also know from
Our study of spherical coordinate special functions, and
Symmetry,

that the solution can be written as

ψ =
−j
4π

∞∑
n=0

cnjn(r<)h(2)
n (r>)Pn(cos ξ)

By interpreting ξ as θ and, say, µψ as Az we find

The Addition Theorem

h(2)
0 (|r− r′|) =

∞∑
n=0

(2n + 1)jn(r<)h(2)
n (r>)Pn(cos ξ)
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The Other Addition Theorem

If we do not invoke the polar symmetry we just used, we can
solve the problem using associated Legendre functions in their
full glory. This leads to

The Legendre Function Addition Theorem

Pn(cos ξ) =
n∑

m=1

εm
(n −m)!

(n + m)!
Pm

n (cos θ)Pm
n (cos θ′) cos m(φ− φ′)
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The Set Up

Consider a sphere of radius a, illuminated by the

Incident Wave

E i
x = E0e−jkz = E0e−jkr cos θ

H i
y = E0

η e−jkz = E0
η e−jkr cos θ

Our wave is not TEr or TMr .
We need to expand it as a combination of these types of
modes.
To do this, we need the r components of E and H.
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The Incident Field

Let us work with E i
r and find the TM part.

E i
r = cosφ sin θE i

x = E0
cosφ

jkr
∂

∂θ
(e−jkr cos θ)

Plugging in the plane wave expansion we find

E i
r = E0

cosφ
jkr

∞∑
n=0

j−njn(kr)
∂

∂θ
Pn(cos θ)

This can be simplified using the Schelkunoff functions and
derivative formula for Legendre functions:

E i
r = − jE0 cosφ

(kr)2

∞∑
n=1

j−n(2n + 1)Ĵn(kr)P1
n (cos θ)
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The Incident Field

We want to derive this radial field from Ar . We thus write

Ai
r =

E0

ω
cosφ

∞∑
n=1

anĴn(kr)P1
n (cos θ)

By deriving E i
r from this potential and setting it equal to E i

r from
the previous slide, we can find the an. We find

E i
r = − jE0 cosφ

(kr)2

∞∑
n=1

ann(n + 1)Ĵn(kr)P1
n (cos θ)

Setting this equal to the previous E i
r we find

an =
j−n(2n + 1)

n(n + 1)
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The Incident Fields

Using duality, we can thus write the

Incident Wave Vector Potentials

Ai
r =

E0

ω
cosφ

∞∑
n=1

anĴn(kr)P1
n (cos θ)

F i
r =

εE0

k
sinφ

∞∑
n=1

anĴn(kr)P1
n (cos θ)

Each of these “incident waves” generates a scattered wave
independently.
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The Scattered Fields

We can also write expressions for the

Scattered Wave Vector Potentials

As
r =

E0

ω
cosφ

∞∑
n=1

bnĤ(2)
n (kr)P1

n (cos θ)

F s
r =

εE0

k
sinφ

∞∑
n=1

cnĤ(2)
n (kr)P1

n (cos θ)

Remember: the an are known. The two sets of unknowns (bn
and cn) are from the independent TMr and TEr waves.
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The Solution

Computing the Eθ and Eφ components from the vector
potentials given and forcing them to vanish gives the
coefficients:

The Solution

bn = −an
Ĵ ′n(ka)

Ĥ(2)′
n (ka)

cn = −an
Ĵn(ka)

Ĥ(2)
n (ka)

Now we can easily find the scattered field. Indeed, we can find
the far field from

Ĥ(2)
n (kr)

kr→∞−→ jn+1e−jkr
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The Far Scattered Field

Plugging this in and retaining only the fields that decay as r−1,
we find

The Far Field

Es
θ =

jE0

kr
e−jkr cosφ

∞∑
n=1

jn
[
bn sin θP1′

n (cos θ)− cn
P1

n (cos θ)

sin θ

]

Es
φ =

jE0

kr
e−jkr sinφ

∞∑
n=1

jn
[
bn

P1
n (cos θ)

sin θ
− cn sin θP1′

n (cos θ)

]

We are most interested in the backscattered field

Es
θ (θ = π, φ = π)
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An Aside: Radar Cross Section

We can get an idea of the size of something by how much
energy it scatters.
This idea is formalized in the radar cross section (RCS) or
echo area Ae.
This is, or course, a far field quantity.

Definition
The RCS is that area which intercepts an amount of power,
which, when reradiated isotropically, produces a power at the
receiver equal to that actually observed.
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An Aside: Radar Cross Section

If the power in the incident wave is Si, the power that would
be intercepted is AeSi.
If this power, reradiated isotropically, creates the power
received, then

Sr =
AeSi

4πr2

We thus have the

Radar Cross Section

Ae = lim
r→∞

(
4πr2 Sr

Si

)
= lim

r→∞

(
4πr2 |Es|2

|E i|2

)
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The RCS

Plugging our scattered fields into the RCS formula, and using
the wonderfully obscure formulas

P1
n (cos θ)

sin θ
θ→π−→ (−1)n

2
n(n + 1)

sin θP1′
n (cos θ)

θ→π−→ (−1)n

2
n(n + 1)

and using the Wronskian of Schelkunoff Bessel functions, we
find

The Radar Cross Section of a Metal Sphere

Ae =
λ2

4π

∣∣∣∣∣
∞∑

n=1

(−1)2(2n + 1)

Ĥ(2)
n (ka)Ĥ(2)′

n (ka)

∣∣∣∣∣
2
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RCS (m2) of a 1m Radius Sphere vs. Frequency (Hz)
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RCS (m2) of a 1m Radius Sphere vs. Frequency (Hz)
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Observations

At low frequencies

Ae
ka→0−→ 9λ2

4π
(ka)6

In other words, for small spheres

Ae ∝ λ−4

This law was first invoked by Lord Rayleigh to explain the
blueness of the sky.
What happens for high frequencies?

Ae
ka→∞−→ πa2
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Observations

At low frequencies

Ae
ka→0−→ 9λ2

4π
(ka)6

In other words, for small spheres

Ae ∝ λ−4

This law was first invoked by Lord Rayleigh to explain the
blueness of the sky.
What happens for high frequencies?

Ae
ka→∞−→ πa2
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