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Wave Functions Separation of Variables

The Special Functions
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The Scalar Helmholtz Equation

@ Maxwell's equations are complicated in spherical
coordinates.

@ We postpone examining them for a moment and begin with
a scalar Helmholtz equation.

The Scalar Helmholtz Equation

1.0 (L0 1 o 1 0% 5
r28r<r ar>+r2sin909<s 080) entgagR ¥ =0

As usual we substitute

0(r,0,9) = R(NO(0)®(9) o
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Separation of Variables

Multiplying the resulting equation by r2 sin? 4, and dividing by v

gives
sin6 d [ ,dR\ sind d L) 1d%¢ 0 . 5.
B dr (r dr>+ o d&( 0d0>+¢(w2+k resin©g =0
We now let

100 >

77:_””’

¢ dg?

substitute, and divide by sin? ¢. This gives
1d [ ,dR 1 d oY M .,
Rar (f dr> i @sin9d9< 0d€> sinzg T =0
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Separation of Variables

@ We may now separate the 6 equation.

@ The strange separation constant is —n(n+ 1) is chosen
because the form of ©(6) depends on whether or not

nez.
1 d . doe m?
@Sin9d€<3m0>_s|n 29 —n(n+1)

Substituting this into the previous equation, we find

d [/ ,dR 20
Rd(r d)—n(n+1)+kr =0



Wave Functions Separation of Variables
The Special Functions
Vector Potentials

Separation of Variables

Thus, after separation, we are left with the

Spherical Separated Equations

d <r2dR>+[k2r2—n(n+1)}R =0

dr \' dr
1 d /. do m?
sin@d@(Smed9>+[n(n+1)_sin29]e =0
e,
W%—mcb =0

Note that there is no separation equation here since two of the
independent variables refer to angles! o

i
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The Harmonic Equation

The only familiar equation above is the harmonic equation

e

@ As usual, its solutions are ™, cos m¢, and sin mé.
@ Again, m must be an integer if ®(¢) must be periodic.
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The Spherical Bessel Equation

The radial equation is of the form

<r R) + [kzrz—n(n+1) R=0

@ The solutions of this equation are called spherical bessel
functions by (kr).

@ This term is general; there are Bessel functions j,(kr),
Neumann functions y,(kr), and Hankel Functions hff)(kr)
and h? (kr).

@ The spherical functions are related to the cylindrical

functions by
T
bn(kr) = \/;Bn—s-;(kr) o)
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The Spherical Bessel Equation

@ Each function has the same properties as the
corresponding cylindrical function:
@ j is the only function regular at the origin.
@ j, and y, represent standing waves.
° hf,z) is an outgoing wave, hg) is an incoming wave.
@ Spherical wave functions are actually expressible in terms
of more familiar functions:

. sin kr cos kr
.IO(kr) - kl‘ yO(kr) - kr
jkr —jkr
m_ " @ _¢
ho” = Jjkr fo” = Jkr
@ The higher order functions can be found from the -
[

recurrence formula.
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Spherical Bessel Functions
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Spherical Neumann Functions
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The Associated Legendre Equation

The final equation is of the form

1 d /. do m?

Defining x = cos# (and y = ©) we find
d?y

d

@ Since0 <<, —1<x<1.

@ One set of solutions is regular for n € Z, we call them
associated Legendre functions of the first kind P;(x).

@ The other set, associated Legendre functions of the
second kind, Q7(x), are singular at |x| = 1. =
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Legendre Polynomials

If m= 0, and n € Z the solutions become orthogonal
polynomials; Legendre Polynomials of degree n. These are
given by the well-known

Rodrigues Formula

1 d"

Pr%) = i gn®” — 1"

@ These polynomials are not orthonormal; they are
normalized so P,(1) = 1.

@ The first few are: Py(x) =1, P1(x) = x,
P5(x) = (8x2 — 1)/2... How can | find the rest?
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Associated Legendre Facts

@ If v ¢ Z, the functions P,(x) and P,(—x) are independent.
@ Therefore, if v € Z, the Q must be used.

@ The functions P, (x) (and, for that matter, P)’(x)) for v ¢ Z
are not regular at |x| = 1 either.

@ When m # 0, they are called Associated Legendre
Functions.

@ Of course, in practice, we use P/(cos 6) and Q7'(cos 9).
(We call these L](cosf).)

@ Finally, it is important to note that

L7(x)=0  form>n.
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The Problem

@ Our normal approach uses the scalar Helmholtz equation
to solve for a vector potential component.

@ This generally requires choosing a Cartesian component.
@ In spherical coordinates, there is no Cartesian component!

One approach is to set fields to be, say, TM, anyway. Then
A =uzu = Upup cosh — Ugup sin b,

where 1 is a solution to the Helmholtz equation in spherical
coordinates. Why is this approach unpopular?
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A Better Approach

@ Our approach will look for fields TM, and TE, by letting
A - U,’;LA,- and F - UreFr.

@ Our problem is that
V2A, # (V2A),

so that A, is not a solution of the Helmholtz equation.

@ To find the equation the vector potential solves, we go back
to the beginning.
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Spherical Vector Potential

Because V - B = 0 and B = 1:H, we define A through

H:1V><A
I

From Faraday’s Law,
VX E=—jwupH =—jwV x A

This implies
V x (E+jwA)=0
or
E+jwA=-Vo
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Spherical Vector Potential

Plugging this into the source-free Ampére-Maxwell law, we find

V x (;V X A) = jwe (—V® — jwA)

or
VXV xA—-KkA=—juueVo.
Now assume
A = ArUr.
Then

1 0A, 1 0A,

VXA=W e Y an
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Spherical Vector Potential

Now
1 0 . OA, 1 PA
A), = —5—— |
(VxV xA), rzsine[ae (Sm969>+sin9 (92<25]
1 92A,
(VX VXA = 500
1 82A,
(VXVXAy = Tondoras
and
100 1 00

jweV P ' u a¢+u +Uy———
iwoueVd — — o® 1o% o®
Jou Jore \Urgr TY T 58 T Y rsing 94
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Spherical Vector Potential

We can equate the uy and u, components immediately by
choosing

—Jjwped = a;:r

Plugging this into the u, equation gives

D2A, 1 o (. ,0AF 1 9PA 5
or2 +r2sin9[89(sme >+sin0 82¢]+kAr =0

10%A, 1 [a< aA,> 162A,] (2 Ar

- | Z (sing==" - - T
r ore  r2sing |00 SN56 7 sinf 92¢ r r

02 A 1 o (. . 0A 1 0% A 2 Ar
P r23in9L‘)9 (Smeaer>+sin962q§r]+kr =0
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Spherical Vector Potential

This equation is recognized as the

Scalar Helmholtz Equation (for TM, waves)

V2 + 7] (f) ~0

It is not to hard to imagine the

with the gauge condition

OF, .
a—rr = —jwepd™. e
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Spherical Vector Potential

Thus, in short, if 4@ and ¢ solve the Helmholtz equation, we
have

A = P
F = efr

where r = ru,. In terms of these we have

The Fields

E = —erww,ivXVxnpa
Jwp

H = erzpa+LvaXr¢f
Jwe
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Spherical Vector Potential

The components may be written
2

Jwp
1 OF 1 0%A

B0 = ~rsing ¢ * Jwur drof
_ 10F 1 D2A,
Es roe * Jowursing drdg

2
pHr = joJ1€ (881’2+k2> Fr

1 0A, n 1 0%F;
rsinf ¢  jwer 0rod

1 0A, 1 0°F,

nhs = =775 Jrjwersineﬁr&b »
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The Schelkunoff Bessel Functions

@ A, and F; do not solve the Helmholtz equation.

@ If ¢ solves the Helmholtz equation, the vector potential
may be ri.

@ It is therefore helpful to define new radial eignefunctions.

@ The most common (and obvious) definition is that due to S.
A. Schelkunoff

Schelkunoff Bessel Functions

" [mKr
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The Schelkunoff Bessel Functions

The Schelkunoff Bessel Functions solve the equation

2
1 ~
d k2_n(nr_2'_) Bn:0

dr2
The solutions for either vector potential can now be written as

> > CnnBa(kr) L7 (cos 0)h(mg).
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The Spherical Cavity

Waveguides and Cavities Radial Waveguldas

Transverse Electric Modes

@ Consider a spherical resonator of radius a.

@ The field must be finite at the origin.

@ The field must be finite at the poles (i.e. § =0 and 6 = 7.
@ The field must be 27-periodic in azimuth.

Thus we choose the

Modal Vector Potentials

Fi = k) PR(eoso) { oo 7 |

(In the future we ignore the sin m¢ for simplicity.)

D. S. Weile Spherical Waves



The Spherical Cavity

Waveguides and Cavities Radial Waveguldas

Transverse Electric Modes

Now E, and Ey4 are not proportional to derivatives with respect
to r, so we need

A~

Jn(ka) =0

This will be satisfied if
ka == Unp

where, as might be expected,

A

Jn(Unp) =0,
in particular, upp is the p root of J,
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Transverse Magnetic Modes

Transverse magnetic modes are similar. We start with

Modal Vector Potentials

A = M:jn(kr)Pr’,"(COS 0) { (;(I)r?nn’;,(f }

In this case, Ey and E; are proportional to derivatives with
respect to r, so we need

J'(kr) =0
Therefore ,
Kk = Unp
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Waveguides and Cavities Radial Waveguldas

Resonant Frequencies

Given the values for k, it is easy to find the

Resonant Frequencies

(f )TE — Unp
T2 2ra, /e

(f )TM — u;7P
T2 2ra,/pe

It is important to note that many of these modes are
degenerate (i.e. have the same cutoff frequency.)
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Degeneracies

@ Cutoff frequencies in spherical waveguides do not depend
on m or on whether they are even or odd.

@ The lowest order TE modes have n = p =1, upp = 4.493
The following modes have the same cutoff:
~ r
(Fr)07171 = U (4493@) cosf
(F)5h = (4.4932) cos 0 cos ¢

(Ff)?fj1d,1

i (4.4932) cos fsin ¢

In this case, the reason for the degeneracy is clear; these are
all the same mode, rotated in space. How many modes have o
n=2p=1? e
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Waveguides and Cavities Radial Waveguides

Conical Waveguide

Consider the cone 6 = 64. Let’s find the field:
@ The field should be outwardly travelling.

@ The field should be 27-periodic in azimuth.
@ The field should be finite at the poles:

o If 1 > w/2, the field must be finite at § = 0.
o If 0y < w/2, the field must be finite at § = «.

Either way, if we choose TM, functions and assume outward
propagation and cos m¢ dependence,

(A)m, = P™(cos 0) cos(me)H?) (kr)
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Conical Waveguide

@ To satisfy the boundary condition, we need E, = E;, = 0.

@ Neither E, nor E4 is proportional to a derivative of A, with
respect to 6.

To make the field vanish at 6 = 81 we need
PM(cos ;) = 0.

This is an equation in v/!
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Waveguides and Cavities Radial Waveguides

Conical Waveguide

@ To satisfy the boundary condition, we need E, = E;, = 0.

@ Neither E, nor E4 is proportional to a derivative of A, with
respect to 6.

To make the field vanish at 6 = 81 we need
PM(cos ;) = 0.
This is an equation in v! For TE modes, we have
(Fr)mw = PI"(cos 0) cos(me)H?) (kr)
subject to
{;Pg’(cos 9)] - =0 -
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Waveguides and Cavities Radial Waveguides

Biconical Waveguide

@ Consider now the waves in the region between 6 = 6 and
0 = 0,.

@ Here, neither § = 0 or § = = is involved, so we can (and
must) use either Qu(x) or Pp(—x).

@ We still have azimuthal 2x-periodicity, so m € Z.
@ We assume outward travel, and cos m¢ dependence.

Then we may write

(Ar)mw = [P)(cos ) P'(— cos 61) — P (— cos §) P (cos 61)]
x cos(me)H, (kr)

Note that this function vanishes already at 6 = 64 by design. o
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Biconical Waveguide

The vector potential must also vanish at § = 6,. This implies
P"(cos 62) P’ (—cos ) — P'(—cos )P (cosf1) = 0

This is an (awful, transcendental, obscure) equation for v.
Similar considerations apply to the TE modes.
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The TEM Mode

@ The bicone is a two-conductor waveguide, and therefore
supports a TEM mode.

@ The easiest way to study it is to consider a special
formulation of the TMgg mode.

Thus, let

~ 0 .
(Ar)oo = —juQo(cos §)HS?) (kr) = Incot Eefjkr‘

(The extra factor of j is included just to make the expression
real.)
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The TEM Mode

Now, we first note that

9 cot? —tanfcsc2? <—1> I Y
dp 2 2 2\ 2/ 2sinfcos}
This implies '
g 1 PA _ ke
o= Jwepr Orof — wersing
Similarly,

10A, e

T 7T 90  rsing
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The TEM Mode Voltage

Notice

This is to be expected from TEM waves.
We can also define

Voltage
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The TEM Mode Current

Similarly we have

2w
I(r) = /H¢rsin 0dp = 2re M
0

We can also compute the

Transmission Line Characteristic Impedance
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Wave Transformations

Scattering Scatieind

Plane Wave Expansion

A wave traveling in the —z-direction must have the expansion

ez — glrcost Z anjn(r)Pn(cos 6)

n=0

Multiplying both sides by sin ¢ and integrating from 0 to 7 gives
/ g9 P, (cos 0) sin HdH = ﬂjn(r)
2n+1
0

after invoking orthogonality. Computing the integral yields

an=J"(2n+1)
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Plane Wave Expansion

We thus have the
Spherical Expansion of a Plane Wave

/%30 =" j"(2n + 1)jn(r) Pn(cos 6)
n=0

Similar theorems can translate cylindrical Bessel functions into
spherical harmonics, etc.
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Addition Theorem

We know that the solution to
V2 + kP = 5(r—r)

47T|I‘— d " 4rn ( r)

P(r) =
@ We can write this in terms of origin centered spherical
harmonics in two ways.
@ The difference centers on the special nature of the z-axis.
@ The solution must have rotational symmetry with respect to
the 1’ axis.
o Let the angle with r’ be &.
o It can be shown geometrically that

cos¢ =cosfcosh +sindsind’ cos(p — ¢') izl
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Addition Theorem

We also know from
@ Our study of spherical coordinate special functions, and
@ Symmetry,

that the solution can be written as

b= 223 calnlr<) () Po(cos )
n=0

By interpreting £ as 6 and, say, uy as A; we find
The Addition Theorem

M2 (I —rl) = - (@n+ 1)jn(r<)HP(rs) Pa(cos €)
n=0 H
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The Other Addition Theorem

If we do not invoke the polar symmetry we just used, we can
solve the problem using associated Legendre functions in their

full glory. This leads to

The Legendre Function Addition Theorem

Pn(cos¢) = Z emMP’”(cos 0)P[(cos 0’) cos m(¢p — ¢')

(n+my "
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Scattering

The Set Up

Consider a sphere of radius a, illuminated by the

Incident Wave

E)i( = E e tkz — E, efjkr cos @
i _  Eon—jkz _  Eo 5—jkrcoso
H, = el = Jle

@ Our wave is not TE, or TM;.

@ We need to expand it as a combination of these types of
modes.

@ To do this, we need the r components of E and H.
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Scattering Scattering

The Incident Field

Let us work with E! and find the TM part.

i ; i COS¢ 9 —jkr cos 6
E, =cos¢sinbE, = Ey e ae(e )

Plugging in the plane wave expansion we find

SN 0
Zj*”/n(kr)%P,,(cos 0)

n=

This can be simplified using the Schelkunoff functions and
derivative formula for Legendre functions:

jEO cos ¢

El = Z ~"(2n 4 1)Jn(kr)P}(cos )

(k2 -
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Scattering Scattering

The Incident Field

We want to derive this radial field from A,. We thus write

. .
A= cos¢ > " andn(kr)P}(cos 0)

n=1

By deriving E! from this potential and setting it equal to E! from
the previous slide, we can find the a,. We find

Ei_ _jEocos ¢

! (k)2 Zann n+ 1)Jn(kr)P}(cos 6)

Setting this equal to the previous E! we find

j/"(2n+1)
n(n+1) =

D. S. Weile Spherical Waves
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The Incident Fields

Using duality, we can thus write the

Incident Wave Vector Potentials

. E o
A = ;0 CoS ¢ Y _ andn(kr)P(cos )

n=1

Fi = % sing >~ andn(kr)Ph(cos )

n=1

Each of these “incident waves” generates a scattered wave
independently.

BT

D. S. Weile Spherical Waves



Wave Transformations
Scattering

Scattering

The Scattered Fields

We can also write expressions for the

Scattered Wave Vector Potentials

E =N
A = Uocos¢2an,(,2)(kr)P,1,(cose)

n=1

F = —smgchn )(kr)P}(cos 0)

Remember: the a, are known. The two sets of unknowns (b,
and cp) are from the independent TM, and TE, waves.

BT
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The Solution

Computing the E, and E4 components from the vector
potentials given and forcing them to vanish gives the
coefficients:

The Solution
J'(ka
b, = —an,\(g)(%
Hy 7 (ka)
Jn(ka
Ch = —an,\(ggi)
FP) (ka)

Now we can easily find the scattered field. Indeed, we can find
the far field from

~

H,(72) (kr) kr—>20 jrt gk ]
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The Far Scattered Field

Plugging this in and retaining only the fields that decay as r—',
we find

The Far Field

E = /Eo e M cos ¢ Zj” [b,, sinP}'(cos 6) — cn

P} (cos 9)}

kr sing@

n=1

s _ / 0 e Ikr P1 COSQ)_ 3 1/
E; = smqij [ = cnsin 6P} (cos )

’

We are most interested in the backscattered field

ES(0 =m0 =)

BT
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Scattering Scattering

An Aside: Radar Cross Section

@ We can get an idea of the size of something by how much
energy it scatters.

@ This idea is formalized in the radar cross section (RCS) or
echo area Ae.

@ This is, or course, a far field quantity.

Definition

The RCS is that area which intercepts an amount of power,
which, when reradiated isotropically, produces a power at the
receiver equal to that actually observed.
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Wave Transformations

Scattering Scattering

An Aside: Radar Cross Section

@ If the power in the incident wave is S, the power that would
be intercepted is A S'.
@ If this power, reradiated isotropically, creates the power
received, then Ag
r e
5= a2
We thus have the

Radar Cross Section

. S . alEF
Ae:rll[go<47rr S'> :rll[go<4 r |E| >
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Scattering Scattering

The RCS

Plugging our scattered fields into the RCS formula, and using
the wonderfully obscure formulas

Pl(cos®) oor (—1)"
“eind — 5 n(n+1)
ool o-7 (=1)"
sindP,'(cosf) — 5 n(n+1)
and using the Wronskian of Schelkunoff Bessel functions, we
find

Z 2(2n+1)

- 2)(ka H? (ka) .
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RCS (m?) of a 1m Radius Sphere vs. Frequency (Hz)
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Scattering

RCS (m?) of a 1m Radius Sphere vs. Frequency (Hz)
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Wave Transformations

Scattering Scattering

Observations

@ At low frequencies

2
A, ka2f 9x°
4

(ka)®
@ In other words, for small spheres
Ae ox A4

@ This law was first invoked by Lord Rayleigh to explain the
blueness of the sky.

@ What happens for high frequencies?
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Scattering Scattering

Observations

@ At low frequencies

ka—0 97)\2

6
Ae — i (ka)

@ In other words, for small spheres
Ae ox A4

@ This law was first invoked by Lord Rayleigh to explain the
blueness of the sky.

@ What happens for high frequencies?

Ae ka— oo

a7 naP
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