Cylindrical Radiation and Scattering

Daniel S. Weile

Department of Electrical and Computer Engineering
University of Delaware

ELEG 648—Radiation and Scattering in Cylindrical Coordinates
Outline

1. Cylindrical Radiation
 - Sources of Cylindrical Radiation
 - Green’s Function and Far Field
 - Wave Transformations
Outline

1. Cylindrical Radiation
 - Sources of Cylindrical Radiation
 - Green’s Function and Far Field
 - Wave Transformations

2. Scattering
 - Scattering from a Circular Cylinder
 - Scattering from a Wedge
 - 2.5-D Problems
Outline

1. Cylindrical Radiation
 - Sources of Cylindrical Radiation
 - Green’s Function and Far Field
 - Wave Transformations

2. Scattering
 - Scattering from a Circular Cylinder
 - Scattering from a Wedge
 - 2.5-D Problems
Two-Dimensional Sources

Two-dimensional radiation is created by sources independent of z.

The simplest such source (akin to a Hertzian Dipole) is an infinite filament.

Such a current radiates TM_z.

Consider a filamentary current I on the z-axis. Since its radiation is

1. Independent of ϕ,
2. Independent of z, and
3. Outwardly traveling,

the magnetic vector potential must be of the form

$$A_z = \mu CH_0^{(2)}(k\rho)$$
Radiation from a Filament

Now, we must have

\[
\lim_{\rho \to 0} \int_{0}^{2\pi} H_\phi \rho \, d\phi = I
\]

Now

\[
H = \frac{1}{\mu} \nabla \times A
\]

implies

\[
H_\phi = -C \frac{\partial}{\partial \rho} \left[H_0^{(2)}(k\rho) \right] = kCH_1^{(2)}(k\rho).
\]

For small \(\rho \), we have

\[
H_1^{(2)}(k\rho) \to \frac{k\rho}{2} + \frac{j}{\pi} \frac{2}{k\rho}
\]
Substituting this into our equation,

\[kC \lim_{\rho \to 0} \int_0^{2\pi} \left(\frac{k\rho}{2} + \frac{j}{\pi} \frac{2}{k\rho} \right) \rho \, d\phi = I \]

\[\frac{2jC}{\pi} \frac{2\pi}{2\pi} = I \]

so finally

\[C = \frac{1}{4j} \]

and we have the

Magnetic Vector Potential

\[A_z = \frac{\mu I}{4j} H_0^{(2)}(k\rho) \]
Fields of a Filament

Given A_z we can easily compute

Filamentary Fields

\[
E_z = -\frac{k^2 I}{4\omega \epsilon} H_0^{(2)}(k\rho)
\]

\[
H_\phi = \frac{kI}{4j} H_1^{(2)}(k\rho)
\]

Using large argument approximations, we can find

Far Fields

\[
E_z = -\eta kl \sqrt{\frac{j}{8\pi k\rho}} e^{-jk\rho}
\]

\[
H_\phi = kl \sqrt{\frac{j}{8\pi k\rho}} e^{-jk\rho}
\]
Near the source, E and H are not in phase and have a complex relationship.

Far from the source, E and H
- Are in phase,
- Have ratio η, and
- Decrease as $\rho^{-\frac{1}{2}}$.

The total radiation (per unit length) must be independent of radius (which can be proven directly). Therefore, we can use the far field expression to compute the power:

$$P = - \int_{0}^{2\pi} E_z H_{\phi}^* \rho d\phi = - \int_{0}^{2\pi} \left(-\eta kl \sqrt{\frac{j}{8\pi k\rho}} e^{-jk\rho} \right) \left(k l^* \sqrt{\frac{-j}{8\pi k\rho}} e^{jk\rho} \right) \rho d\phi$$

$$= \frac{\eta k^2 |l|^2}{8\pi k\rho} 2\pi \rho = \frac{\eta k}{4} |l|^2$$
To proceed further, it is useful to define

\[\rho = xu_x + yu_y \]
\[\rho' = x'u_x + y'u_y \]

The distance between these points is

\[|\rho - \rho'| = \sqrt{(\rho - \rho') \cdot (\rho - \rho')} \]
\[= \sqrt{\rho^2 + (\rho')^2 - 2\rho \cdot \rho' \cos(\phi - \phi')} \]
Radiation Due to a Filament

The radiation due to a current I at the origin we have seen is

$$A_z = \frac{\mu I}{4j} H_0^{(2)}(k\rho).$$

Therefore, if the current is located at ρ', we have

Filamentary Radiation

$$A_z(\rho) = \frac{\mu I}{4j} H_0^{(2)}(k|\rho - \rho'|)$$

Similarly, a filamentary magnetic current K at ρ' radiates

$$F_z(\rho) = \frac{\epsilon K}{4j} H_0^{(2)}(k|\rho - \rho'|)$$
Outline

1 Cylindrical Radiation
 - Sources of Cylindrical Radiation
 - Green’s Function and Far Field
 - Wave Transformations

2 Scattering
 - Scattering from a Circular Cylinder
 - Scattering from a Wedge
 - 2.5-D Problems
Green’s Function

If a current density $J_z(\rho)$ is independent of z, we can think of it as a bundle of filaments with current $J_z(\rho)dS$. Then we have the

General Formulas for Two-Dimensional Radiation

$$A_z(\rho) = \frac{\mu}{4j} \iint J_z(\rho') H_0^{(2)}(k|\rho - \rho'|)dS'$$

$$F_z(\rho) = \frac{\epsilon}{4j} \iint M_z(\rho') H_0^{(2)}(k|\rho - \rho'|)dS'$$

From here, the fields can be computed in the usual way.
Far Fields

In the far field, we can make the standard approximation

$$|\rho - \rho'| \to \rho - \rho' \cos(\phi - \phi')$$

Similarly, for $x \to \infty$,

$$H_0^{(2)}(x) \to \sqrt{\frac{2j}{\pi x}} e^{-jx}.$$

Combining these (and remembering to use a simpler approximation in the denominator) we have

The Far Field

$$A_z(\rho) = \mu \frac{e^{-jk\rho}}{\sqrt{8j\pi k\rho}} \int\int J_z(\rho') e^{jk\rho' \cos(\phi - \phi')} dS'$$

$$F_z(\rho) = \epsilon \frac{e^{-jk\rho}}{\sqrt{8j\pi k\rho}} \int\int M_z(\rho') e^{jk\rho' \cos(\phi - \phi')} dS'$$
Far Fields

- We can compute the far fields using the definitions of A and F.
- The results are similar to three-dimensional results.

Relationship Between E and H

\[
E_\phi = \eta H_z \quad E_z = -\eta H_\phi
\]

Far Electric Fields

\[
E_\phi = -j\omega \eta F_z \\
E_z = -j\omega A_z
\]
1 Cylindrical Radiation
 - Sources of Cylindrical Radiation
 - Green’s Function and Far Field
 - Wave Transformations

2 Scattering
 - Scattering from a Circular Cylinder
 - Scattering from a Wedge
 - 2.5-D Problems
We often want to express plane waves in cylindrical wave functions. The result must be

- Finite at the origin, and
- 2π-periodic.

Thus

$$e^{-jx} = e^{-j\rho \cos \phi} = \sum_{n=-\infty}^{\infty} a_n J_n(\rho) e^{in\phi}.$$

To find the a_n, use orthogonality

$$\int_{0}^{2\pi} e^{-j\rho \cos \phi} e^{-jm\phi} d\phi = \sum_{n=-\infty}^{\infty} a_n J_n(\rho) \int_{0}^{2\pi} e^{i(n-m)\phi} d\phi.$$
Plane Wave Expansion

Using orthogonality

\[\int_{0}^{2\pi} e^{-j\rho\cos\phi} e^{-jm\phi} d\phi = 2\pi a_m J_m(\rho) \]

The integral on the right-hand side is well-known

\[J_n(x) = \frac{j^n}{2\pi} \int_{0}^{2\pi} e^{-jx\cos\phi} e^{-jm\phi} d\phi \]
Substituting this in, we find

\[a_m = j^{-m} \]

and finally

The Plane Wave Expansion of Cylindrical Waves

\[e^{-jx} = e^{-j \rho \cos \phi} = \sum_{n=-\infty}^{\infty} j^{-n} J_n(\rho) e^{jn\phi} \]

How might this formula be modified for waves travelling in other directions?
The Addition Theorem

- We are also interested in expanding the field of a filament with respect to a different center.
- We have seen that a filamentary current \(I \) located at \(\rho = \rho' \) radiates a field with \(A_z = \mu \psi \) with
 \[
 \psi(\rho, \phi) = \frac{I}{4\pi} H_0^{(2)}(k|\rho - \rho'|).
 \]
- We can think of the current generating this field as a current sheet, confined to the \(\rho = \rho' \) cylinder, with
 \[
 J_z(\phi) = \frac{I \delta(\phi - \phi')}{\rho}
 \]
 where the denominator ensures that
 \[
 \int_0^{2\pi} J_z(\phi) \rho d\phi = I
 \]
The Addition Theorem

We can expand the field inside and outside the tube of current:

\[\psi(\rho, \phi) = \begin{cases}
\sum_{n=-\infty}^{\infty} a_n^- J_n(k\rho)e^{jn\phi} & \text{for } \rho < \rho' \\
\sum_{n=-\infty}^{\infty} a_n^+ H_n^{(2)}(k\rho)e^{jn\phi} & \text{for } \rho > \rho'
\end{cases} \]

Since \(E_z \propto \psi \), \(\psi \) must be continuous at \(\rho' \). Thus

\[a_n^- J_n(k\rho') = a_n^+ H_n^{(2)}(k\rho'). \]

This is solved if we let

\[a_n^- = H_n^{(2)}(k\rho')a_n \]
\[a_n^+ = J_n(k\rho')a_n \]
The Addition Theorem

We now have

\[\psi(\rho, \phi) = \begin{cases}
\sum_{n=-\infty}^{\infty} a_n H_n^{(2)}(k\rho') J_n(k\rho) e^{jn\phi} & \text{for } \rho < \rho' \\
\sum_{n=-\infty}^{\infty} a_n J_n(k\rho') H_n^{(2)}(k\rho) e^{jn\phi} & \text{for } \rho > \rho'
\end{cases} \]

Now

\[H_\phi = -\frac{\partial \psi}{\partial \rho} = \begin{cases}
-k \sum_{n=-\infty}^{\infty} a_n H_n^{(2)}(k\rho') J'_n(k\rho) e^{jn\phi} & \text{for } \rho < \rho' \\
-k \sum_{n=-\infty}^{\infty} a_n J_n(k\rho') H_n^{(2)'}(k\rho) e^{jn\phi} & \text{for } \rho > \rho'
\end{cases} \]
The Addition Theorem

From boundary conditions, we have

\[H_\phi(\rho = \rho'^+) - H_\phi(\rho = \rho'^-) = J_z \]

We thus have

\[-k \sum_{n=-\infty}^{\infty} a_n [J_n(k\rho')H_n^{(2)'}(k\rho') - H_n^{(2)}(k\rho')J_n'(k\rho')] e^{in\phi} = J_z \]

The standard Wronskian formula gives

\[J_n(k\rho')H_n^{(2)'}(k\rho') - H_n^{(2)}(k\rho')J_n'(k\rho') = \frac{-2j}{\pi k\rho} \]
The Addition Theorem

Therefore, plugging in,

\[\frac{2j}{\pi \rho} \sum_{n=-\infty}^{\infty} a_n e^{jn\phi} = \frac{l \delta(\phi - \phi')}{\rho} \]

We can now find the \(a_n \) using orthogonality:

\[\frac{j}{\pi} \sum_{n=-\infty}^{\infty} a_n \int_{0}^{2\pi} e^{in\phi} e^{-jm\phi} d\phi = l \int_{0}^{2\pi} \delta(\phi - \phi') e^{-jm\phi} d\phi \]

\[4ja_m = le^{-jm\phi'} \]

\[a_m = \frac{l}{4j} e^{-jm\phi'} \]
The Addition Theorem

We thus find that the field of a filament can be expanded as

\[A_z = \mu \psi \text{ with } \]

\[\psi(\rho, \phi) = \begin{cases}
\frac{i}{4j} \sum_{n=-\infty}^{\infty} H_n^{(2)}(k\rho')J_n(k\rho)e^{in(\phi'-\phi)} & \text{for } \rho < \rho' \\
\frac{i}{4j} \sum_{n=-\infty}^{\infty} J_n(k\rho')H_n^{(2)}(k\rho)e^{in(\phi'-\phi)} & \text{for } \rho > \rho'
\end{cases} \]

Equating our earlier expression, this gives

The Addition Theorem

\[H_0^{(2)}(k|\rho - \rho'|) = \begin{cases}
\sum_{n=-\infty}^{\infty} J_n(k\rho)H_n^{(2)}(k\rho')e^{in(\phi'-\phi')} & \text{for } \rho < \rho' \\
\sum_{n=-\infty}^{\infty} J_n(k\rho')H_n^{(2)}(k\rho)e^{in(\phi'-\phi')} & \text{for } \rho > \rho'
\end{cases} \]
Outline

1. Cylindrical Radiation
 - Sources of Cylindrical Radiation
 - Green’s Function and Far Field
 - Wave Transformations

2. Scattering
 - Scattering from a Circular Cylinder
 - Scattering from a Wedge
 - 2.5-D Problems
Consider a PEC cylinder of radius a.
Let it be excited by a z-polarized incident wave

$$E_z^i = E_0 e^{-jkx} = E_0 e^{-j\rho\cos\phi}$$

Using our plane wave expansion, we may write

$$E_z^i = E_0 \sum_{n=-\infty}^{\infty} j^{-n} J_n(k \rho) e^{in\phi}$$

The total field is of course

$$E_z = E_z^i + E_z^s;$$

it must vanish on the surface of the cylinder.
We may expand the scattered field as
We may expand the scattered field as

$$E_s^z = E_0 \sum_{n=-\infty}^{\infty} j^{-n} a_n H_n^{(2)}(k\rho)e^{jn\phi}$$

The total field on the surface of the cylinder is thus

$$E_z = E_0 \sum_{n=-\infty}^{\infty} j^{-n} \left[J_n(ka) + a_n H_n^{(2)}(ka) \right] e^{jn\phi} = 0$$

Therefore

$$a_n = -\frac{J_n(ka)}{H_n^{(2)}(ka)}$$
From here we can find any information about the scattering we want. For instance

\[J_z = H_\phi \bigg|_{\rho=a} = \frac{1}{j\omega \mu} \frac{\partial E_z}{\partial \rho} \bigg|_{\rho=a} \]

Now

\[
\frac{1}{j\omega \mu} \left. \frac{\partial E_z}{\partial \rho} \right|_{\rho=a} = \frac{E_0}{j\omega \mu} \sum_{n=-\infty}^{\infty} j^{-n} \left[J'_n(ka) + a_n H_n^{(2)'}(ka) \right] e^{jn\phi} \\
= \frac{-E_0}{j\omega \mu} \sum_{n=-\infty}^{\infty} j^{-n} \left[H_n^{(2)}(ka)J'_n(ka) + J_n(ka)H_n^{(2)'}(ka) \right] \frac{e^{jn\phi}}{H_n^{(2)}(ka)}
\]
Using the Wronskian relation, we find

The Surface Current

\[J_s(\phi) = \frac{-2E_0}{\omega \mu \pi a} \sum_{n=-\infty}^{\infty} \frac{j^{-n}e^{jn\phi}}{H_n^{(2)}(ka)} \]

For a thin wire, the first term dominates and we can even write

\[I = 2\pi \frac{E_0}{j\omega \mu \log ka} \]
Of course, the exact scattered field is given above:

\[E_{Z}^{s} = E_{0} \sum_{n=-\infty}^{\infty} j^{-n} a_{n} H_{n}^{(2)}(k\rho)e^{jn\phi} \]

Using the far field formula for Hankel Functions, we find the Scattered Far Field

\[E_{Z}^{s} = E_{0}e^{-jk\rho} \sqrt{\frac{2}{\pi k\rho}} \sum_{n=-\infty}^{\infty} a_{n}e^{jn\phi} \]

We may treat the other polarization in the same way.
We can also consider the scattering due to a current I located at ρ'. In this case, the incident field is

$$E^i_z = \frac{-k^2 I}{4\omega \varepsilon} H_0^{(2)}(k|\rho - \rho'|) = \frac{-k^2 I}{4\omega \varepsilon} \sum_{n=-\infty}^{\infty} H_n^{(2)}(k\rho')J_n(k\rho)e^{jn(\phi - \phi')} \quad \text{for } \rho < \rho'$$

We can write the scattered field in the form

$$E^s_z = \frac{-k^2 I}{4\omega \varepsilon} \sum_{n=-\infty}^{\infty} c_n H_n^{(2)}(k\rho')H_n^{(2)}(k\rho)e^{jn(\phi - \phi')}$$
Scattering due to Filamentary Excitation

From the preceding, it is obvious that

\[c_n = -\frac{J_n(ka)}{H_n^{(2)}(ka)} \]

The final solution is thus the

Total Field from Filamentary Scattering

\[E_z = \frac{k^2 I}{4\omega\epsilon} \sum_{n=-\infty}^{\infty} H_n^{(2)}(k\rho^\ast) \left[J_n(k\rho) + c_n H_n^{(2)}(k\rho) \right] e^{jn(\phi - \phi')} \]

Here

\[\rho^\ast = \min(\rho, \rho') \quad \rho = \max(\rho, \rho') \]
Our answer is symmetrical with respect to the substitution \(\rho \leftrightarrow \rho' \) and \(\phi \leftrightarrow \phi' \). Why?
Observations

- Our answer is symmetrical with respect to the substitution $\rho \leftrightarrow \rho'$ and $\phi \leftrightarrow \phi'$. Why?

- The coefficients c_n are the same as the a_n from the last problem. Why?
Observations

- Our answer is symmetrical with respect to the substitution $\rho \leftrightarrow \rho'$ and $\phi \leftrightarrow \phi'$. Why?
- The coefficients c_n are the same as the a_n from the last problem. Why? How can we assure they are the same for every problem?
Our answer is symmetrical with respect to the substitution \(\rho \leftrightarrow \rho' \) and \(\phi \leftrightarrow \phi' \). Why?

The coefficients \(c_n \) are the same as the \(a_n \) from the last problem. Why? How can we assure they are the same for every problem?

It is often said this problem is a generalization of the plane wave scattering problem. Why?
Observations

Our answer is symmetrical with respect to the substitution $\rho \leftrightarrow \rho'$ and $\phi \leftrightarrow \phi'$. Why?

The coefficients c_n are the same as the a_n from the last problem. Why? How can we assure they are the same for every problem?

It is often said this problem is a generalization of the plane wave scattering problem. Why? How can we recover the plane wave solution from this one?
Observations

- Our answer is symmetrical with respect to the substitution $\rho \leftrightarrow \rho'$ and $\phi \leftrightarrow \phi'$. Why?
- The coefficients c_n are the same as the a_n from the last problem. Why? How can we assure they are the same for every problem?
- It is often said this problem is a generalization of the plane wave scattering problem. Why? How can we recover the plane wave solution from this one?
- How else might we approach the solution to this problem?
Outline

1. Cylindrical Radiation
 - Sources of Cylindrical Radiation
 - Green’s Function and Far Field
 - Wave Transformations

2. Scattering
 - Scattering from a Circular Cylinder
 - Scattering from a Wedge
 - 2.5-D Problems
Now we look at filamentary scattering from a wedge.

The wedge is composed of two half planes $\phi = \alpha$ and $\phi = 2\pi - \alpha$.

The filament carries current I and is located at (ρ', ϕ').
We can write the

Total Electric Field

\[E_z = \sum_{\nu} a_{\nu} J_{\nu}(k\rho_\leq) H_{\nu}^{(2)}(k\rho_\geq) \sin[\nu(\phi' - \alpha)] \sin[\nu(\phi - \alpha)] \]

- The dependence on \(\rho \) and \(\phi \) is clear enough.
- How can I just write a dependence on \(\rho' \) and \(\phi' \)?
- Since \(E_z(\alpha) = E_z(2\pi - \alpha) = 0 \),

\[\nu = \nu_m = \frac{m\pi}{2(\pi - \alpha)} \]
Expansion of the Current

The current can be thought of as a cylindrical sheet current (A/m) with an impulsive distribution:

\[J_z = I \frac{\delta(\phi - \phi')}{\rho'} \]

This current can be expanded in a Fourier series in the usual way:

\[J_z = \frac{I}{(\pi - \alpha)\rho'} \sum_{m=1}^{\infty} \sin \nu_m (\phi' - \alpha) \sin \nu_m (\phi - \alpha) \]

From boundary conditions, this current is related to the field by

\[J_z = H_\phi (\rho'^+) - H_\phi (\rho'^-) \]
Scattering from a Wedge

From the usual equations we can find

\[
H_\phi = \begin{cases}
\frac{k}{j\omega \mu} \sum_{m=1}^{\infty} a_{\nu m} H^{(2)}_{\nu m}(k \rho') J'_{\nu m}(k \rho) \sin \nu_m (\phi' - \alpha) \sin \nu_m (\phi - \alpha) & \rho < \rho' \\
\frac{k}{j\omega \mu} \sum_{m=1}^{\infty} a_{\nu m} H^{(2)*}_{\nu m}(k \rho') J_{\nu m}(k \rho) \sin \nu_m (\phi' - \alpha) \sin \nu_m (\phi - \alpha) & \rho > \rho'
\end{cases}
\]

Using the Wronskian, we can write

\[
J_z = -\frac{2}{\omega \mu \pi \rho'} \sum_{m=1}^{\infty} a_{\nu m} \sin \nu_m (\phi' - \alpha) \sin \nu_m (\phi - \alpha)
\]

Equating the two expressions for \(J_z\) we find

\[
a_{\nu m} = -\frac{\omega \mu \pi l}{2(\pi - \alpha)}
\]
We can generalize our solution to plane wave scattering by taking the limit as the limit as the source recedes. The original incident field was

$$E^i_z = \frac{-k^2 l}{4\omega \epsilon} H_0^{(2)}(k|\rho - \rho'|)$$

Using the large argument approximation and the far field approximation of $|\rho - \rho'|$ we write

$$E^i_z = -\frac{\omega \mu l}{4} \sqrt{\frac{2j}{\pi k \rho'}} e^{-jk\rho'} e^{jk\rho \cos(\phi - \phi')}$$
This can be written as

\[E_z^i = E_0 e^{jk\rho \cos(\phi-\phi')} \]

where

\[E_0 = \frac{-\omega \mu l}{4} \sqrt{\frac{2j}{\pi k\rho'}} e^{-jk\rho'} \]

Why is \(E_0 \) dependent on \(\rho \)?
This can be written as

\[E_z^i = E_0 e^{jk\rho \cos(\phi - \phi')} \]

where

\[E_0 = -\frac{\omega \mu l}{4} \sqrt{\frac{2j}{\pi k\rho'}} e^{-jk\rho'} \]

Why is \(E_0 \) dependent on \(\rho' \)? For large \(\rho' \) our solution is

\[E_z = \sqrt{\frac{2j}{\pi k\rho'}} \sum_{m=1}^{\infty} a_n j^\nu_m J_\nu_m(k\rho) \sin \nu_m(\phi' - \alpha) \sin \nu_m(\phi - \alpha) \]
Plugging in for l and a_n we find

The Total Field

$$E_z = \frac{2\pi E_0}{\pi - \alpha} \sum_{m=1}^{\infty} j^{\nu_m} J_{\nu_m}(k\rho) \sin \nu_m(\phi' - \alpha) \sin \nu_m(\phi - \alpha)$$
Cylindrical Radiation

1. Sources of Cylindrical Radiation
 - Green’s Function and Far Field
 - Wave Transformations

2. Scattering
 - Scattering from a Circular Cylinder
 - Scattering from a Wedge
 - 2.5-D Problems
2.5 Dimensions?

- 2.5 dimensions is a “term of art,” not an actual physical description.
- The geometry of the problem is assumed two-dimensional.
- The source, however, may be three dimensional.
- The problems are attacked by superposition (i.e. Fourier Methods).

Suppose

\[
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} + k^2 \right) \psi = 0
\]
Since the boundaries are independent of z, we can define ψ in terms of

$$
\psi(x, y, z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{\psi}(x, y, k_z) e^{jk_zz} dk_z
$$

Substituting into the Helmholtz equation, we find that

$$
\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + (k^2 - k_{z}^2) \right] \tilde{\psi} = 0
$$

We define (as usual) $k_{\rho}^2 = k^2 - k_{z}^2$.
A Filament

- Suppose we have a filament of current \(I(z) \).
- We of course have a TM\(_z\) field, \(A_z = \mu \psi \).
- The wave function can be written in the form

\[
\psi = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(k_z) H_0^{(2)}(k_\rho \rho) dk_z.
\]

- Here, then, the transform of the function is

\[
\tilde{\psi} = f(k_z) H_0^{(2)}(k_\rho \rho).
\]
A Filament

The azimuthal magnetic field is

$$\tilde{H}_\phi = -\frac{\partial \tilde{\psi}}{\partial \rho} = -k_\rho f(k_z) H_0^{(2)'}(k_\rho \rho).$$

Now, by Ampère’s law,

$$\lim_{\rho \to 0} \oint \tilde{H}_\phi d\ell = \tilde{l}$$

For small ρ,

$$\tilde{H}_\phi = k_\rho f(k_z) \frac{d}{dx} \left(\frac{2j}{\pi} \ln \frac{\gamma x}{2} \right)_{x=k_\rho} = \frac{2j}{\pi \rho} f(k_z)$$
A Filament

Thus

\[\lim_{\rho \to 0} \int \tilde{H}_\phi \, d\ell = 2\pi \rho \frac{2j}{\pi \rho} f(k_z) = \tilde{l} \]

or

\[f(k_z) = \frac{\tilde{l}}{4j} \]

Finally, we find the

2.5-D Filament Solution

\[\psi = \frac{1}{8\pi j} \int_{-\infty}^{\infty} \tilde{l}(k_z) H_0^{(2)} \left(\rho \sqrt{k^2 - k_z^2} \right) e^{jk_z z} \, dk_z \]
Another Way

We can always make a line current out of dipoles. We thus have

The Spatial Approach

\[
\psi = \int_{-\infty}^{\infty} I(z') \frac{e^{-jk\sqrt{\rho^2 + (z-z')^2}}}{4\pi \sqrt{\rho^2 + (z - z')^2}} \, dz'
\]

Now, suppose we choose \(I(z') = I\ell \delta(z') \). Then

\[
\psi = I\ell \frac{e^{-jkr}}{4\pi r}.
\]

Also, we have \(\tilde{I}(k_z) = I\ell \), since the Fourier Transform of the delta function is unity.
A New Identity

Plugging this transform into the 2.5-D solution,

\[\psi = \frac{I\ell}{8\pi j} \int_{-\infty}^{\infty} H_0^{(2)}(\rho \sqrt{k^2 - k_z^2}) e^{jk_z z} dk_z \]

Setting these two expressions to each other, we find

\[\frac{e^{ikr}}{r} = \frac{1}{2j} \int_{-\infty}^{\infty} H_0^{(2)}(\rho \sqrt{k^2 - k_z^2}) e^{jk_z z} dk_z \]