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Reinventing Computing

• Von Neumann computing in the nano-CMOS regime

+ Massive transistor count, but….

– Device variability

– Dark silicon issue

– Not well suited for processing massively parallel data streams 
and pattern recognition tasks that come easy to a brain.

• US Office of Science and Technology (OSTP) RFI, June 2015:
“Create a new type of computer that can proactively interpret and learn from 

data, solve unfamiliar problems using what it has learned, and operate with 
the energy efficiency of the human brain”

DOE, Brain Initiative, AFOSR, DARPA, SRC
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Brain-Inspired Neuromorphic System

Our Current Research Focus

Source: DARPA SyNAPSE Program
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Revisiting Biological Inspiration
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• Emerging understanding of neural computation from Computational 
Neuroscience

– Hierarchical spiking neural networks with localized learning

• Synapses strengthen or weaken by relative firing times of the pre- and post-
neurons

– Plasticity rules: Spike-Timing Dependent Plasticity (STDP)
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Neuromorphic Computing with RRAMs
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• To achieve biology-like synapse density, emerging nanoscale devices are 
under consideration
– Resistive RAM (RRAM) or Memristors
– Chalcogenide-based Conductive Bridge RAM (CBRAM) devices from Mitkova 

Group at Boise State

• Three necessary criterions for the realization of neuromorphic hardware 
capable of deep learning: (1) non-volatility of the trained weights, (2)
massive synaptic density, and (3) ultra-low-power operation.
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CBRAM I-V Characteristics

I-V Sweep Resistance
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Stochastic CBRAM Behavior
VTH_Set Distributions RON Distributions

• The CBRAM switching behavior is stochastic
• The ‘analog’ synapse value depends upon the electroforming process

• Weak bridge-> more intermediate resistance values
• The analog resistance value relaxes in few minutes to hours
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Spike Timing Dependent Plasticity (STDP)
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic 

System for Real-World Pattern Recognition”, IEEE Journal on Emerging and 

Selected Topics in Circuits and Systems, Accepted.
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CBRAM Synapse Challenges

• Variability: Device characteristics such as the switching 
threshold voltages are variable from device to device

– Switching characteristics depend upon the initial ‘forming’ step and 
compliance current

• Resistive Load: Thousands of devices in parallel present a 
difficult (low resistance) load to drive by the neuron circuit

• Resolution: Challenging to realize long-term persistence of 
weights for more than 1-bit resolution in CBRAM devices
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CMOS Integrate and Fire Neuron
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• Asynchronous integrated and fire 
operation

• Accommodates RRAM
– Provides current summing node
– Sustain a fixed voltage for synapses
– Dynamic biasing for large current 

drive

• STDP compatible
– STDP-compatible spike generator
– In-situ STDP learning 

• Winner-takes-all bus for effective 
local decision making

• Single contact point to a synapse

Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”, IEEE Journal on Emerging and Selected Topics in Circuits and 

Systems, 5(3), 2015.
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Novel Tri-mode Operation
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”, IEEE Journal on Emerging and Selected Topics in Circuits and 

Systems, 5(3), 2015.

• A first CMOS neuron that is compatible with RRAMs and 
drives a large load
– Several resistive devices in parallel load the neuron
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Simulation: Output Spikes

Source: X. Wu, V. Saxena and K. Zhu, “A CMOS Spiking Neuron for Dense Memristor-Synapse Connectivity for Brain-Inspired Computing”, International Joint Conference on Neural Networks 

(IJCNN), 2015.

Parameter Symbol Unit Min Max Step

Positive amplitude α+ mV 0 360 24

Negative amplitude α- mV 0 360 24

Positive pulse width τ+ ns 48 396 23

Negative pulse width τ- ns 282 1125 56

Negative pulse slope s mV/ns 0.011 0.52 0.034
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Test Chip interfaced with CBRAM Devices

Source: X. Wu, V. Saxena, K. Zhu and S. Balagopal, “A CMOS Spiking Neuron for Brain-Inspired Neural Networks With Resistive Synapses and In Situ Learning”, IEEE

TCAS-II, 62(11), pp.1088-1092.

• Mixed-signal IC with 180-nm CMOS Neurons connected with CBRAM Synapses
• A first RRAM compatible STDP learning Neuron
• Power consumed in the neuron is 9.3pJ/spike/synapse (in terms of 10,000

synapses each having around 1MΩ resistance).
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Associative Learning Experiment

Source: X. Wu, V. Saxena, K. Zhu and S. Balagopal, “A CMOS Spiking Neuron for Brain-Inspired Neural Networks With Resistive Synapses and In Situ Learning”, IEEE TCAS-II, 62(11), 

pp.1088-1092.
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Dynamic Resistive Load Driving
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Spike-based Pattern Recognition Circuit
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”, IEEE Journal on Emerging and Selected Topics in Circuits and 

Systems, 5(3), 2015, in press.
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Asynchronous WTA Bus Interface
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”, IEEE Journal on Emerging and Selected Topics in Circuits and 

Systems, Accepted.
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Demo: Handwrite Digits Classification
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Parallel Multibit Synapses

• Emerging spike-based deep 
learning architectures require 
at least 4-bits of synaptic 
resolution.  

• The devices fundamentally 
have bistable nonvolatile 
states with stochastic 
switching behavior

• Recent approach: Use several 
of these device in parallel 
– Potentially multiple resistance 

states due to variation in 
individual threshold voltages
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Multibit Synapses: Dendritic Processing

• Dendritic processing to include sensitivity to time-overlap 
between the pre- and post-synaptic spikes

• Shift in time or pulse voltage in the back-propagating spikes

• Simulations exhibit remarkable STDP learning behavior; 
experiments underway with physical devices

X. Wu and V. Saxena, “Realizing Multibit Synapses with Bistable RRAM Devices”, Unpublished result.
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Conclusion

• Nanoscale emerging memory devices present opportunity for 
realizing non von Neumann computing

• Mixed-Signal architectures for spiking neural networks can 
realize a versatile neuromorphic computing motif

• Further need to characterize device capabilities and limitations 
for large scale integration

• Algorithm/architecture development to be driven ground up by 
emerging device capabilities
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Questions?


