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i REINVENtING COMputing

* Von Neumann computing in the nano-CMOS regime
+ Massive transistor count, but....
— Device variability
— Dark silicon issue

— Not well suited for processing massively parallel data streams
and pattern recognition tasks that come easy to a brain.

e US Office of Science and Technology (OSTP) RFI, June 2015:

“Create a new type of computer that can proactively interpret and learn from
data, solve unfamiliar problems using what it has learned, and operate with
the energy efficiency of the human brain”

DOE, Brain Initiative, AFOSR, DARPA, SRC
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Brain-Inspired Neuromorphic System
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e REvisiting Biological Inspiration
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 Emerging understanding of neural computation from Computational
Neuroscience

— Hierarchical spiking neural networks with localized learning

* Synapses strengthen or weaken by relative firing times of the pre- and post-
neurons

— Plasticity rules: Spike-Timing Dependent Plasticity (STDP)
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.. Neuromorphic Computing with RRAMSs
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* To achieve biology-like synapse density, emerging nanoscale deV|ces are
under consideration v
— Resistive RAM (RRAM) or Memristors “mmrf
— Chalcogenide-based Conductive Bridge RAM (CBRAM) devices from Mitkova
Group at Boise State
* Three necessary criterions for the realization of neuromorphic hardware
capable of deep learning: (1) non-volatility of the trained weights, (2)
massive synaptic density, and (3) ultra-low-power operation.
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CBRAM I-V Characteristics
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Stochastic CBRAM Behavior
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«  The CBRAM switching behavior is stochastic

 The ‘analog’ synapse value depends upon the electroforming process
Weak bridge-> more intermediate resistance values
The analog resistance value relaxes in few minutes to hours
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Spike Timing Dependent Plasticity (STDP)
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic
System for Real-World Pattern Recognition”, IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, Accepted.
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CBRAM Synapse Challenges

* Variability: Device characteristics such as the switching
threshold voltages are variable from device to device

— Switching characteristics depend upon the initial ‘forming’ step and
compliance current

* Resistive Load: Thousands of devices in parallel present a
difficult (low resistance) load to drive by the neuron circuit

* Resolution: Challenging to realize long-term persistence of
weights for more than 1-bit resolution in CBRAM devices
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e CMOS Integrate and Fire Neuron

* Asynchronous integrated and fire
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”, IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 5(3), 2015.
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Novel Tri-mode Operation
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Simulation: Output Spikes

Output Spikes
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Source: X. Wu, V. Saxena and K. Zhu, “A CMOS Spiking Neuron for Dense Memristor-Synapse Connectivity for Brain-Inspired Computing”, International Joint Conference on Neural Networks
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el . Test Chip interfaced with CBRAM Devices
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(b) Splkmg CMOS Neurons in (C) lon-conducting Memristor/
180nm CMOS RRAM Devices

Mixed-signal IC with 180-nm CMOS Neurons connected with CBRAM Synapses
A first RRAM compatible STDP learning Neuron

« Power consumed in the neuron is 9.3pJ/spike/synapse (in terms of 10,000
synapses each having around 1MQ resistance).

Source: X. Wu, V. Saxena, K. Zhu and S. Balagopal, “A CMOS Spiking Neuron for Brain-Inspired Neural Networks With Resistive Synapses and In Situ Learning”, IEEE
TCAS-II, 62(11), pp.1088-1092.
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Associative Learning Experiment
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Source: X. Wu, V. Saxena, K. Zhu and S. Balagopal, “A CMOS Spiking Neuron for Brain-Inspired Neural Networks With Resistive Synapses and In Situ Learning”, IEEE TCAS-II, 62(11),
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”, IEEE Journal on Emerging and Selected Topics in Circuits and
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Spike-based Pattern Recognition Circuit
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”, IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 5(3), 2015, in press.
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B ASyNchronous WTA Bus Interface
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B Demo: Handwrite Digits Classification
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Source: X. Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”, IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 5(3), 2015.
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Parallel Multibit Synapses

* Emerging spike-based deep Input Layer F‘;[)Vif‘;d Compound Multibit
learning architectures require :'7 <7 | Synapse
at least 4-bits of synaptic AN
resolution. :
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states with stochastic x >

e

SWitChing behavior Current integration Output Neuron
* Recent approach: Use several
of these device in parallel

— Potentially multiple resistance
states due to variation in
individual threshold voltages
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B, MUltibit Synapses: Dendritic Processing
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Dendritic processing to include sensitivity to time-overlap
between the pre- and post-synaptic spikes

e Shiftin time or pulse voltage in the back-propagating spikes

e Simulations exhibit remarkable STDP learning behavior;
experiments underway with physical devices

X.Wuand V. Saxena, “Realizing Multibit Synapses with Bistable RRAM Devices”, Unpublished result.
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... Conclusion

* Nanoscale emerging memory devices present opportunity for
realizing non von Neumann computing

* Mixed-Signal architectures for spiking neural networks can
realize a versatile neuromorphic computing motif

* Further need to characterize device capabilities and limitations
for large scale integration

* Algorithm/architecture development to be driven ground up by
emerging device capabilities

ORNL, June 30, 2016 © Vishal Saxena



References

1. X.Wu, V. Saxena and K. Zhu, “Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition”,
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 5(3), 2015, in press.

2.  X.Wu, V. Saxena and K. Zhu, “A CMOS Spiking Neuron for Dense Memristor-Synapse Connectivity for Brain-
Inspired Computing”, International Joint Conference on Neural Networks (IJCNN), 2015, Accepted.

3. X.Wu, V. Saxena and K. A. Campbell, “Energy-efficient STDP-based learning circuits with memristor synapses”,
SPIE Machine Intelligence and Bio-inspired Computation: Theory and Applications VIII, 2014.

4. X.Wu, V. Saxena and K. Zhu, “A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses
and In-Situ Learning”, IEEE Transactions on Circuits and Systems Il: Express Briefs, In final review.

5. X.Wu and V. Saxena, “Associative Learning on CMOS-Memristor Spiking Neuromorphic Chip”, IEEE Transactions on
Nanotechnology, In 2" round review.

ORNL, June 30, 2016 © Vishal Saxena




BOISE STATE UNIVERSITY

Questions?
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