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@ d be a scalar-valued random variable (desired output signal)

o E[d]=0
o E[d?] =07
o With realization {d (i) : i =0,1,2,...}

o u € RM(CM) be a random vector (input signal)

Eluj=0

R, = E[u*u] >0

Ry, = E [du*]

With realization {v; : i =0,1,2,...}

Problem

We want to solve
minE [(d — uw)2] (1)

w

where w is the weights vector.
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By the steepest-descent algorithm
w® = R, 1Ry,

which can be approximated by the following recursion with constant
step-size u > 0

Wi =wj-1+Hu [Rdu — Ruw,-_l] , w_1 = initial guess.

Remark
R, and Ry, should be known, and fixed.

H. Ahsan (ECE BSU) Adaptive Filters April 12, 2010 3/17



Adaptive Filters

@ "Smart Systems"
e Learning: Learns the Statistics of the Signal
e Tracking: Adjusts the Behavior to Signal Variations
@ Practicle Reasons for Using Adaptive Filters
e Lack of Statistical Information
@ Mean, Variance, Auto-correlation, Cross-correlation, etc
e Variation in the Statistics of the Signal
@ Signal with Noise Randomly Moving in a Know/Unknown Bandwith
with Time
@ Types of Adaptive Filters
o Least Mean Square (LMS) Filters

@ Normalized LMS Filters
@ Non-Canonical LMS Filters

e Recursive Least Square (RLS) Filters
o QR-RLS Filters
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Least Mean Square (LMS) Filters

Development Using Instantaneous Approximation

@ At time index / approximate
o R, = E[u*u] by Ry = u}u;
o Ry, = E[du*] by Ry, = d (i) u?
o Corresponding steepest-descent itteration
W = wj_1+ ],tu,* [d (I) — u,'(U,'_l] , w_1 = initial guess
where 1 > 0 is a constant stepsize.

@ Remarks

e Also known as the Widrow-Hoff algorithm.
o Commonly used algorithm for simplicity.
o i is choosen to be 27 for m € IN.

o Computational Cost

o Complex-valued Signal: 8M 4 2 real multiplications, 8 real additions.
o Real-values Signal: 2M + 1 real multiplications, 2M real additions.
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Least Mean Square (LMS) Filters

An lllustration

u: input signal
Y Y
7
w w
I e /k +
d: desired output signal ' interference

Figure: An lllustration for Least Mean Square Filter
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Least Mean Square (LMS) Filters

An Application (1/3)

X .
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Least Mean Square (LMS) Filters

An Application (2/3)
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Least Mean Square (LMS) Filters

An Application (Error )(3/3)

i a okt
0 A bt -

Time offset: 0
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Normalized Least Mean Square (LMS) Filters

@ Solution to (1) using regularized Newton Recursion

wi=wi_14+u (i) ]e(i) ! =Ry [Ray — Ruwi_1], w_1 = initial guess.

where p (i) > 0 is the stepsize and ¢ (i) is the regularization factor.
e With p (i) = p > 0 and € (i) = ¢ fixed for all i, using the
instantaneous approximation

Wi

wi_y +plel —ufu] tur [d (i) — wiwi_q]

wi-1+

o Computational Cost

K *

72u,- [d (I) — u,-a),-_l]
e+ | ui

e Complex-valued Signal: 10M + 2 real multiplications, 10M real
additions and one real division.
o Real-values Signal: 3M + 1 real multiplications, 3M real additions and
one real division.
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Other LSM-Type Techniques

@ Power Normalization
u/M

> Wi 2 ’
e+ |uill e/M+|lu||= /M
the filter.

e Replace where M is the order of

Definition

Non-Blind algorithms are so called since they employ a reference sequence
{d(i):i=0,1,2,...}.

Non-Blind Algorithm Blind Algorithm
o Leaky LMS Algorithm e CMA1-2, NCMA
e LMF Algorithm Algorithm
e LMMN Algorithm o CMA2-2 Algorithm

@ RCA Algorithm
o MMA Algorithm

H. Ahsan (ECE BSU) Adaptive Filters April 12, 2010 11/



C>

x®

dw

Non-Canonical Least Mean Square (LMS) Filters
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Recursive Least Square (RLS) Filters

@ Solution to (1) using regularized Newton Recursion
wi=wi—1+u(i)e(i)l— Ru]_l [Rgy — Rywi—1], w_1 = initial guess.

where p (i) > 0 is the stepsize and ¢ (i) is the regularization factor.
1

i+1

average of previous regressors.

i
@ Approximate R, by R, = ZA"J ufuj, i.e. by an exponential
j=0

o If A =1 then all regressors have equal weight.
e If 0 € A < 1 then recent regressors (i — 1,/ — 2,...) are more relevant
and remote regressors are forgotten.
o Generally A is choosen so that 0 < A < 1, therefore RLS has a
memory or forgetting property.
L Alfle . .
e and ¢ (i) = 1 for all i. Then e(i) — 0 as

i — 00, i.e. as time increases the regularization factor disappears.

o Assume p (i) =
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Recursive Least Square (RLS) Filters

@ Development using the instantaneous approximation

. -1
1
wi =wi 1+ [AN el + Z AT ufuj] uj [d (i) — vjwi—1]

Jj=0

@ Define ,
d; = )\i+181 —+ Z /\iijuj-ﬁ uj
j=0

then
O =AD;_ vy, P =c¢l

@ The matrix inversion formula for P; = CIDI._1 is given by
/\71P,-_1u;-ku,-P,-_1

= Py =¢Y
14+ A u,-P,-,lu;‘

Pi=A"1|Piy—

@ With the simplification we obtain the RLS algorithm
wi=wj_1+ Piu; [d (i) — ujw;_1], i=01,2,...
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Least-Squares Problem

@ Replace E [|d — uwﬂ by %Z,’-Vgol |d — uw|2, then problem (1) is

modified to
. N-1 . 2 . 2
min X 19 (1)~ wil” = min |y~ Ho| (2)
where
y = [d(©0) d(1) --- d(N—1) ] and
Ho= [of of - ufy]

@ Weighted Least-Squares
o Let W be a weights matrix, then (2) can be modified to
min (y — Hw)* W (y — Hw).
@ Regularized Least-Squares
o Let IT > 0 be a regularization matrix, then (2) can be modified to
min [w*nw +y - Hw||2} .
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Not Presented

Weighted, Regularized and Weighted and Regularized Least-Square
Algorithms

Array Methods for Adaptive Filters
Given's Rotation

CORDIC Cells

QR-Recursive Least Square Algorithm
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