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Abstract: A paper by Bode has shown the limi- 
tations of using a feedback structure in terms of 
an integral constraint on the sensitivity function 
for open-loop stable continuous-time systems. The 
paper by Mohtadi examines and derives equiva- 
lent results for discrete-time feedback systems. 
These integral constraints also provide some 
guidelines regarding the philosophy of feedback 
design specifically for sampled-data systems. For 
example, it is shown that, for all sampled-data 
control systems, there is a maximum sampling fre- 
quency, beyond which little improvement in per- 
formance is gained. 

1 Introduction 

Whether an advocate of any of the multitude of 
frequency-response approaches for feedback control 
systems or a worker in the field of the so-called 'optimal' 
or predictive methodologies, the control engineer must be 
aware of the limitations imposed by the choice of a feed- 
back structure for control. Frequency, these rules are for-. 
gotten leading to designs which have extraordinary 
properties for the nominal case, and which are extremely 
sensitive to arbitrarily small perturbations causing insta- 
bilities, albeit to the amazement of their designers! 

Surprisingly, Bode [l] was the first to recognise and 
acknowledge this limitation expressed in the form of an 
integral constraint on the sensitivity function: 

In a single-loop feedback amplifier of more than one 
stage, the average regeneration and degeneration over the 
complete frequency spectrum is zero (see Reference 1, 
page 285). 

In mathematical terms, this reduces to 

C 1 n l . l  dw = 0 

for systems with at least 2-pole roll off, where (r is the 
sensitivity function [l, 23 and w is the frequency. For a 
brief description of sensitivity see Section 2. Loosely 
speaking, this theorem implies that: 

(a) we cannot have a sensitivity less than unity at all 
frequencies using output feedback with finite-bandwidth 
controllers 

(b)  combined with the open-loop roll-off requirements 
for stability, the primary cost of feedback is in increased 
sensitivity at high frequencies. 

Subsequently, only a few design methodologies appear to 
have considered these constraints explicitly [2, 3, 41. It is 
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only in recent years that Freudenberg and Looze [5,  6,7] 
have obtained new integral constraints for the general 
case of open-loop stable/unstable continuous-time 
systems. Although these results do not provide us with a 
specific design methodology, they do explain the reasons 
for failures of some designs and give insight as to how we 
should tackle the feedback configuration. In this paper, 
we attempt to translate these integral constraints to the 
discrete-time case. Although most of the results are direct 
analogues of the continuous-time case, there are some 
differences between the discrete and the continuous 
counterparts. In addition, it is shown that some of the 
practices, such as sampling at about l/lOth of the domin- 
ant time constant of the process, can be explained satis- 
factorily using these integrals. 

2 Preliminaries 

2.1 Poisson% integral theorem 
For any functionf(r&'), where r8' is a complex variable 
in polar co-ordinates, we have 

wheref(.) is analytic outside the unit circle and re" is a 
complex variable outside the unit circle. The function can 
have zeros on the unit circle. The proof of this via 
Cauchy's residue theorem is given in Reference 9. The 
power of this relation is in the fact that the weighted 
contour integral off( .) is only related to the value of the 
function at the chosen point re". This relationship is used 
in the following Sections to establish the properties of 
stable closed-loop transfer-functions (i.e. analytic outside 
the unit circle). 

2.2 Sensitivity and complementary sensitivity 
Consider the discrete-time two-degrees-of-freedom SISO 
feedback system of Fig. 1. The first step in the design of 

Fig. 1 A two degrees offreedom pole-placement controller 

the controller is to compensate for the disturbances d(t)  
and noise n(t) taking into account the required robust 
stability margins. The servo properties are then adjusted 
using open-loop (or feedforward) compensation with a 
prefilter T(q- ' )  [2, 10, 111. 
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For the purposes of this paper, a standard pole- 
placement controller, where the only variables are the 
closed-loop pole-positions, is arbitrarily adopted. The 
control is of the form: 

Tw(t) = Ru(t) + Sy(t) 

where R and S are polynomials in q - ' ,  the backward 
shift operator, and the plant model is given by 

Ay(t)  = Bu(t - k )  
where A and B are further polynomials in q - ' ,  k is the 
plant dead time in samples and the designer only chooses 
P(q-  '), where 

P = R A  + q-'BS 

This fixes the R and S polynomials for the specific case, 
where 6 R  = 6 B  + k and 6s = 6 A  and R will always have 
a zero at 1, corresponding to the integral mode of the 
controller (6R denotes the degree of the R polynomial). 
The choice of pole-placement is simply to indicate some 
of the issues necessary for design, but, as such, is not an 
ideal one. In most cases, we are interested in the so-called 
cost of feedback and we have to examine the minimum 
necessary cost which has to be paid (i.e. minimize the 
maximum deviations). This necessitates an H" design 
(see e.g. Reference 12). Here we are only interested in a 
qualitative analysis and, as such, a pole-palcement design 
will suffice to demonstrate the basic properties. We have 

= - ~ ( q  ' )n(t )  + a(q I )  d(t) 

where a is the sensitivity function and c the complemen- 
tary sensitivity function (i.e. c + a = 1 at all frequencies). 
d(t) is usually used to model low-frequency disturbances; 
such as load changes, offsets, feed variations, slow 
environmental changes (e.g. changes in the ambient tem- 
perature and pressure), as well as disturbances such as 
friction and stiction. The regulator is designed to remove 
these disturbances and therefore we require I ~ ( ( 4 - l )  I to 
be small at these frequencies. n(t) is usually used to model 
higher frequency disturbances, such as measurement 
noise arising from 'bouncy' pressure sensors, poor electri- 
cal connections, cross talk etc. We do not wish the 
control system to react to these disturbances. This 
implies I ~ ( q -  I )  I should be. small around these frequencies. 
n(t) is also used to describe unmodelled dynamics (i.e. the 
unmodelled dynamics is reflected at the output of the 
system). Consider the case where the 'real' plant is given 
by M(q-') .  Defining fi = M - q-'B/A gives 

which implies that the extra term must satisfy the usual 
Nyquist criterion or the appropriate version of the small 
gain theorem, if it is nonlinear or time-varying. T there- 
fore can also be considered as a measure of robustness of 
the system to unmodelled dynamics, in that large values 
of IC I at high frequencies may cause instability. Note that 
151 > 1 usually implies 161 > 1, despite the fact that 
U + T = 1, the magnitude of both quantities can be large, 
as they can both have large imaginary parts. Recall that 
I U I is the inverse of the distance of the open-loop Nyquist 
plot from the critical point (-1, 0). Therefore, large 
values of I U I or I c I indicate a poor design. These con- 
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cepts are traditionally expressed as gain and phase 
margins, but it can be argued that, under some perverse 
conditions (e.g. see Fig. 2), I U I is a better indicator. Note 

--. _.--__ -.. ,_-- 
_ _ - - _ _  

01 

3 The basic result 

Consider the sensitivity function a(q '). Assuming that 
the nominal design is stable, we can split U into two com- 
ponents: 

a(q- ' )  = ii(q-1)6(q-1) 

where ii is analytic outside the unit circle and ii is all-pass 
(i.e. it has a gain of unity at all frequencies up to the 
Nyquist). From Poisson's integral theorem, we have 

for any r > 1. Recall that 

In (5) =In  (151) + j ~ i i  
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Note that the integral equation above is valid for any 
point outside the unit circle. At the NMP zeroes of the 
system however, ?(re") = 0. This means that U = 1 at 
these points (this is the requirement of internal stability). 
This leads to the following theorem: 

Theorem I: For any zero re'a of the open-loop transfer 
function outside the unit circle, the sensitivity function 
must satisfy the following integral constraints: 

2n (r2 - 1) In ( I  u(e'+) I )  d 4  
r2 + 1 - 2r cos (e - 4) 

d' 
- In (O(s)- l )  
ds' s = rele =&r (r2 - 1) d' In (6(s)) 

r2 + 1 - 2r cos (e - 4) '4 

for i = l ,  ..., m - 1  

where m is the multiplicity of the zero. 

Proof: Follows the proof of Freudenberg and Looze [SI. 
Equate the real and imaginary parts of the logarithm, 
recalling that U = 1 at the nonminimum-phase zero, its 
derivatives up to the order m - 1 are equal to zero and 
that I U I is unity evaluated at frequencies round the unit 
circle. 

A similar result can be achieved for the complemen- 
tary sensitivity function using a similar set of arguments 
as above. Rewriting z as q-'E leads to the second 
theorem on the complementary sensitivity function. 

Theorem 2: For any pole r&' of the open-loop transfer 
function outside the unit circle, the complementary sensi- 
tivity function must satisfy the following integral con- 
straints: 

In(lT(r&e)-ll)+ kIn( r )  

2n (r2 - 1) In ( I  z(e'+) I ) d 4  
r2 + 1 - 2r cos (e - 4) 

(r2 - 1) d' In (?(s)) 

for i = l ,  ..., n - 1  

where n is the multiplicity of the open-loop unstable pole 

Proof: Immediate as with the sensitivity function. 

Note that, in each case, the integral relations have to be 
satisfied for every nonminimum-phase zero or unstable 
pole of the system. To ensure internal stability, both 
theorems have to be satisfied. 

4 Interpretations and extensions 

In this Section, the properties and consequences of the 
integral results of the preceding Section will be examined. 
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4. I 
Consider the magnitude integral of theorem 1, the term 
In I U I is weighted by 

Effect of the weighting 

r2 - 1 
r2 + 1 - 2r cos (e - 4) 

where re'e is a nonminimum-phase zero of the system. 
Fig. 3 shows the variation of this weight with r and 4. 8 
was arbitrarily chosen as 4 4 .  

Note that the peak magnitude is at n/4 as 4 varies, 
and also that the sharpness (i.e. bandwidth) of the weight 
decreases significantly as r approaches unity. This implies 
that In I U I is weighted heavily and its value contributes 
to the integral, when 

(i) 4 N 0 (i.e. at frequencies corresponding to those of 
the NMP zeros) 

(ii) r + 1 (i.e. when the NMP zeros are close to the unit 
circle). 

A natural consequence of this observation is that if, for 
one reason (e.g. performance requirements), we force I U I 
to be small at these critical frequencies, then the price 
paid at the other frequencies where these weights are 
small is such that I U I would have to be some orders of 
magnitude larger than unity. This distance of NMP 
zeros, if not taken into account, could lead to very poor 
feedback systems. It is, therefore, important to relax 
requirements on U within the bandwidth of the weight. 
The following example clarifies this point. Consider the 
system : 

(1  - 0.9q-')y(t) = ( - 1  + l.lq-')u(t - 1) 

with two sets of pole positions {OS, 0.5) and 10.8, 0.8). 
The solid line in Fig. 4 shows the variation of the log 
sensitivity with frequency, of the poles at 0.5, and the 
broken lines are for the case with the poles at 0.8. Clearly, 
relaxing the bandwidth requirement improves the sensi- 
tivity at higher frequencies. 

The bandwidth of the weight for NMP zeros on the 
real axis can be approximated by (using statistical 
analogies) 

The bandwidths for different values of r given in Table 1. 

Table 1 : Variation of bandwidth with zero position on the 
real axis 

r 8 a w ,  rad 

1.05 ,1462 
1.15 ,3257 
1.25 ,4537 
1.50 ,6712 
2.00 ,9147 

4.2 Pole-zero cancellations outside the unit circle 
It is well known that pole-zero cancellations outside the 
unit circle lead to internally unstable loops. However, it 
is sometimes hard to quantify the effect of close pole-zero 
cancellations outside the unit circle. Theorem 1 gives an 
indication of the weighted average effect of these close 
cancellations. Recall that the value of the integral is equal 
to In 10(e'+)-' I and 0 has all of the open-loop unstable 
poles as zeros. Clearly, this quantity approaches infinity 
as the cancellations become exact. The bounds on the 
magnitude of the sensitivity function clarify this point 
further. This is yet another reason why such cancellations 

59 

Authorized licensed use limited to: Boise State University. Downloaded on January 18, 2010 at 02:11 from IEEE Xplore.  Restrictions apply. 



should be avoided. Consider the system: than an order of magnitude over the entire frequency 
(1 = 0.9q-')(1 - l . Iq- ' )y( t )  = 0.1(1 - I.llq-')u(t - 1) range! 

4.3 Bode's integral theorem for discrete-time systems 
(i) pole-placement with the approximate common The integral constraint of theorem 1 is valid for all NMP 

Two cases are considered: 

factors zeros of the system, including those at infinity (i.e. due to 

I 2 3 

0 . m  

r z  1.1 

8 I rod 

Fig. 3 Variation weights with r and 4 

100 

normalised frequency 

Variation of sensitiuity with pole position 

K-2; 
10-2 10-1 

Fig. 4 

r z  1.05 

time delay). As, for discrete-time system, k is at least 1, we 
have r + CO for this NMP zero. Also, as I U I is also sym- 
metric about 4 = x ,  we have the following corollary of 
theorem 1. 

Corollary 1 ;  For all closed-loop stable discrete-time feed- 
back systems, the sensitivity function has to satisfy the 
following integral constraint: 

2 In I pi I = In I U(&+) I d+ 

where pi are the open-loop unstable poles of the system 
and rn is the total number of these poles. 

Proof: By substitution in the integral of theorem 1. 

i = 1  

J 

lo '  This result is the discrete analogue of the result of Freu- 
denberg and Looze [SI, and, in effect, is the Bode integral 
theorem for a general sampled-data system. Recall that 
d = oh.  where h is the sample time and o is the fre- 

(ii) po~e-p~acement without the approximate factor 
present. 

The solid line in Fig. 5 shows the variation of the sensi- 
tivity when the common factor is present, for a choice of 
two poles at 0.8 and the dashed line for the case when the 
factor is absent. Note the increase in sensitivity by more 
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quency 'in radians per second: It is then easy to see that, 
as h + O ,  the result of corollary 1 converges to the 
continuous-time result (this requires a change of variable 
from 4 to o). However, there are some points which are 
different between the two results: 

(a) The upper limit of frequency in the integral of 
corollary 1 is z / h ,  the Nyquist frequency. This is because, 
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implicit in the discrete-time design, it is assumed that 
there are no signals above this frequency floating in the 
loop. Our ideal requirement is therefore, that I U I = 1 for 
all frequencies above the Nyquist 

10-21 
10-2 10-1 100 IO'  

normalised frequency 

Fig. 5 Approximate common factors outside the unit circle 

(b) As the upper frequency is n/h for all h > 0, this 
implies that if for some frequency 1 0 1  < 1, then for the 
other range jul z 1 and its value cannot be arbitrarily 
close to unity, as only a finite bandwidth is available, 
unlike the continuous-time case, where I U I can be spread 
over a wide range of frequencies (other constraints not 
taken into account) 

(c) It is well known that the 'optimal' controller using 
full-state feedback in continuous time is such that 
In 11 - 71 < 0 at all frequencies [13]. The recent results 
in loop transfer recovery [14, 151 attempt to asymp- 
totically achieve this property by observer state feedback' 
for minimum-phase systems. The net result of observa- 
tion (b) is that these recovery methods cannot be 
achieved in discrete time : the approximation becomes 
better as the sampling time decreases. Any serious appli- 
cation of these methods should therefore consider the 
effects of sampling 

(d)  In the standard result, for the continuous-time case, 
at least a 2-pole roll-off is required which is not required 
in the discrete-time result. This is due to the presence of 
the zeroth-order hold whose frequency response is given 

their paper [6], show that for time-delay systems the 
2-pole roll-off requirement can be relaxed to a single-pole 
roll off. The zeroth-order hold accounts for a time delay 
of h/2 and the roll off. Our observation here, therefore, is 
in direct agreement with their result. 

4.4 Bounds on the sensitivity function 
A typical sensitivity function plot against frequency may 
look something like that of Fig. 6. The maximum value of 
the sensitivity function umS is a measure of how good (or 
poor) the performance of a control system is. It is useful 
to find some bounds on this maximum, to consider such 
concepts as achievable performance in a particular 
design. 

Consider Fig. 6, assume that, for some performance 
requirements, we want: 

(a) I U I < a, for frequencies below w1 
(b) I U I L 1, for frequencies above w2 . 

by h e - j m h / 2  sin ' (wh/2)/(wh/2). Freudenberg and Looze, in 

The 'real' sensitivity function may be that given in Fig. 6, 
but we make the simplifying assumption that In I U I is the 
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following the broken line. Clearly, S, is a lower bound to 
S,,,. Using theorem 1, it is easy to show that 

i 
lo-- t / 

10-1 I00 I01 

10-2 // 
10-2 

normalised frequency 

Fig. 6 Typical sensitiuity function 

where Ri is given by 

For a number of NMP zeros, clearly, the maximum 
lower bound, due to the appropriate zero, is of interest. 
But simply to obtain guidelines about the value of S,,,, 
we will consider the case of infinite zeros (due to delays) 
or the direct consequence of corrolary 1, which gives 

This implies that S, will become large when 
(i) I pi I are large (i.e. large gains are necessarily to move 

highly unstable poles back into the stability region) 
(ii) w 2  - w ,  is small (i.e. we are asking for a rapid roll 

off at high frequencies or the crossover frequency is too 
large) 

(iii) a is small (i.e. we require too tight a tracking (or 
rejection) requirement at low frequencies). 

It is also instructive to examine the role of sampling on 
the magnitude of S,. For simplicity, assume that there 
are no requirements on sensitivity at high frequencies (i.e. 
w 2  = n/h), this gives 

where f, is the sampling frequency. A plot of In (S,)/ln 
( l / a )  againstf,lw, is given in Fig. 7. 

As seen, there appears to be a point of diminishing 
returns for f, N 30, or f, N 18 times the crossover fre- 
quency. Most importantly, this simple analysis implies 
that, although the maximum value of sensitivity will 
probably always decrease as f, increases, there is very 
little point in sampling the output of a system too 
quickly. What it also implies is that there is every justifi- 
cation in not sampling too slowly, as the performance 
degrades exponentially. 

To verify this property on the actual S,,,, a set of 
discrete-time pole-placing controllers were designed for 
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the following systems: 

1 e - 2 s  1 - s  
and ~ 

1 + 10s 
_ _ ~  
1 + 10s' 1 + 10s 

normalised frequency 1, I w, 

Fig. 7 M a x  log sensitivity against samplingfrequency 

at the following sample rates: 0.1, 0.2, 0.5, 1, 2, 5 and 
10 Hz. In each case, an integrating pole-placer was 
designed and the desired closed-loop poles were 2 poles 
at s = - 1/3. Fig. 8 shows the variation of the maximum 
value of sensitivity with frequency. 

100 
0 1 2  3 4 5 6 7 8 9 IO 

frequency, Hz 

Fig. 8 Variation of maximum sensitivity with samplingfrequency 

Consider the system with a time constant of T. The 
plant is, at most, speeded up by a factor of 3 in most real 
process control applications. This means that w, N 3/T 
which, using the rough rule above, gives anA N 9/T or a 
sampling interval 1/9th of the dominant time constant of 
the system. This is probably the real reason for the prac- 
titioners' rule of thumb. Sidi U201 shows that, from a clas- 
sical design aspect, the ratio of the crossover frequency to 
the sampling frequency for minimum-phase systems with 
no delay is given by 

=!!!?tan-' (2-GM/lZ= 1 
?I 

where G M  is the gain margin in decibels and (1 - U)?I is 
the phase margin in radians. For a gain margin of 12dB 
and a phase margin of 45", the ratio of the sampling to 
crossover frequency is about 8. For more realistic situ- 
ations where there are time delays and NMP zeros, this 
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ratio can perhaps not be reduced to less than about 20, 
for reasonable values for desired gain and phase margins. 

4.5 Effect of NMP zeros on achievable performance 
Typically, discretised systems have two types of zeros : 

(a) zeros due to the presence of an actual zero in the 
process 

(b)  zeros due to the sampling operation. 

Unfortunately, unlike the poles, the exact position of 
neither of the zeros can be predicted, but suffce it to say 
that zeros due to the inverse response of the system to a 
step (i.e. zeros in the right-half s-plane) appear in the 
right-half Z-plane outside the unit circle (for the usual 
sample-rates), and those due to sampling frequently 
appear in the left-half Z-plane 2nd frequently on the real 
axis (for a thorough discussion of the zeros see Reference 
16). 

Recall that we require JuI to be small at low fre- 
quencies and I U I N 1 at w close of n/h. As was discussed 
earlier because of the presence of the NMP zeros on the 
positive real axis, it is not possible to have small [ U ]  at 
low frequencies without paying any penalty at higher fre- 
quencies. This is because the weight of the integral is 
around the same frequencies as that of the NMP zero. A 
sensible design would therefore require relaxation of the 
tight requirements on U within the bandwidth of the 
weight. This implies that these zeros impose real con- 
straints on the feedback system independent of the design 
method applied. The sampling zeros, on the other hand, 
should not impose any difficulty in the design, as 
In I U I N 0 round the appropriate frequencies, where the 
weights are large. Any problem arising, therefore, is a 
function of the design and is not inherent in the control 
problem, unlike the case of 'real' NMP zeros. 

A simple rule of thumb for a reasonable design is to 
choose 

w, h = 2 tan-' (0 .5  @) 
4, + 1 

where qz is an NMP real zero in the RHP, see Reference 
17 for a detailed discussion. Recall that the usable band- 
width of the weight is given in Table 1. Using those 
values in conjunction with the idealised variation of the 
sensitivity function gives (as a first approximation) 

Table 2 shows the variation of the two estimates of w, h 
with the zero position on the real axis: the values for the 

Table 2 :  Variation of o.h with zero Dosition 

r w,h (Hor) w,h (Int) 

1.05 0.0244 0.0338 
1.15 0.0697 0.0754 
1.25 0.1110 0.1050 
1.50 0.1993 0.1553 
2.00 0.3303 0.2116 

w, h (Int) are obtained assuming a = 0.1 and S ,  = 2. It 
can be seen that once again Horowitz's rule can be veri- 
fied using the integral constraints. 

4.6 Effect of the dead time on the sensitivity function 
Unlike the NMP zeros, dead time does not appear to 
influence the value of the integral in Theorem 1 directly: 
this is counterintuitive. To examine the effect of zeros, the 
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following first-order system plus time delay is considered: 

(1 - 0.9q-')y(t) = O.lu(t - k) where 1 < k < 5 

A pole-placement controller with a closed-loop pole situ- 
ated at 0.8 was designed for each value of k. The sums of 
the logarithms of the absolute values of the open-loop 
unstable poles are given in Table 3. 

Table 3: Variation of 72 In 18, I a s k  (time delay) varies 

1 -  
2 0.0953 
3 0.1740 
4 0.2398 
5 0.2956 

It can be seen that, even for this simple model, as k 
increases, so does the value of Z In I 1 ,  which then indi- 
rectly puts a constraint on the maximum value of the 
sensitivity function. This ia a particularly simple example, 
but this phenomena is quite common, whereby the con- 
troller designed using pole-placement design becomes 
unstable as k increases, and the limits derived from corol- 
lary 1 impose a lower bound on the maximum value of 
the sensitivity function. This effect can also be seen from 
theorem 2, where the constraints on the complementary 
sensitivity were imposed. It is also relatively easy to show 
that, for a system with N ,  nonminimum-phase zeros, a 
controller with N ,  - 1 unstable poles situated in appro- 
priate positions can satisfy the constraints on sensitivity 
and complementary sensitivity [7]. 

An important class of problems much encountered in 
chemical engineering is the class of first-order systems 
plus time delay: 

Ke 
1 + s T  

G(s) = - 

It is instructive to examine the variation of the maximum 
value of the sensitivity function and the frequency, where 
1 S 1 z 1 (f,), with the sampling frequency and the desired 
pole location. Two special cases are considered: state- 
dead-beat control (i.e. where all the closed-loop poles are 
fixed at the origin) and the case where the closed-loop 
characteristic equation is set to be the discrete equivalent 
of T i s 2  + 1.414T0s + 1 (i.e. the poles are fixed at 
Butterworth positions). T and K are set to unity, in both 
cases, and To is set to 0.3 in the second case. A varies as 
(0.0, 0.2, 1.0, 5.0). Fig. 9 shows the variation of S,,, and 
f, with the sampling frequency for a state-dead-beat con- 
troller. 

Note that: 
(a) For the minimum-phase system (solid line, no 

delay) S,, does not go to zero as sampling frequency 
increases. This is because we require the presence of the 
integrator in the loop 

(b) In general, S,, increases as the sampling frequency 
increases. This is the main reason why dead-beat control 
should only be used at slow sample rates 

(c) The best ratio of sampling frequency to f, is about 
6. This implies that, if we need to overcome disturbances 
up tof, , we should at least sample the system an order of 
magnitude faster. 

For the second case, we consider the situation where 
To = 0.3, as in Fig. 10. This is a somewhat more realistic 
situation. Here, we have: 

(i) S,, for the case with no time delay tends to unity 
as the sampling frequency increases, because, unlike the 
case above, we are not pushing the integrator and the 
open-loop pole to faster locations, with the increase in 
the sampling frequency 

IO2[ 

&--.------------ 
loot 

2 4 6 8 10 

sampling frequency Hz 

0 5  

0 
2 6 8 10 

sampllng frequency, H z  

Fig. 9 
beat control 

~ delay = 0 

Variation of S,, andf ,  with samplingfrequencyfor state dead- 

delay = 0 2 
delay = 1.0 
delay = 5.0 

~~~~ 

. . . . . . . 

IO' [ 
I 

10 

sampling frequency Hz 

0.8, 

sampling frequency, Hz 

Fig. 10 
placement control To = 0.3 
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(ii) In the other cases, S,, tends to its final value by 
about a 4 Hz sample rate. This implies that there is very 
little point in sampling the system any faster 

(iii) The ratio of the sampling frequency tof, is, at best, 
around 10, confirming our previous observations 

(iv) For time-constant dominated systems (i.e. T > A), 
sampling the system any faster than 5/T or 10/T is point- 
less, and this gives an f, of around 1/2T. For delay- 
dominated systems (i.e. A > T), on the other hand, 
sampling rates above 2 /A  to 5 /A  are unnecessarily fast, if 
we desire to have reasonable values for S m x .  These 
observations tally very closely with the 'rules of thumb' 
which are frequently quoted in the literature. 

4.7 Bounds on the complementary sensitivity 
function 

Similar to the bounds on the sensitivity function, we may 
approximate the complementary sensitivity function as in 
Fig. 11. Using the same approach as before, we have I ; ( z ~ - n m - n ,  Irlk/n2-R, 

tm = 1 5 ( ~ p - 1  1znin2-nl - 

where t, is the maximum and a is the minimum value of 
the complementary sensitivity function, the rest of the 
definitions are exactly the same as before. The value of t ,  
(i.e. the size of the resonance peak) will be large if: 

(a) I ?  1-l is large, evaluated at the unstable poles of the 
system (i.e. when there are NMP zeros close to these 
locations) 

(b) k is large and/or the unstable pole is fast 
(c) a is small (i.e. too fast a roll off is required) 
(d) (a, - a,) is small (i.e. the Q factor of the resonance 

will be large). 

4.8 Poles and zeros inside the unit circle 
The integral constraints above do not tell us anything 
about the constraints imposed (if any) by the pole-zero 
locations inside the stability boundary. Again, using the 
Poisson's integral theorem [SI, we state the following two 
theorems: 

Theorem 3: For any zero re" of the open-loop transfer 
function inside the unit circle, the sensitivity function 
must satisfy the following integral constraints: 

'* ( 1  - r') In ( I de") I ) d 4  
r2 + 1 - 2r cos (e - 4) 

(1 - r') d' In (Z(s)) 

for i = 1, ..., rn - 1 

1 's (1 - rZ)L?(d+)  d 4  
La(rge ) - l  = g J', 

r' + 1 - 2r cos (0 - 4) 
where rn is the multiplicity of the zero. 

Proof: The proof follows the proof of theorem 1, but 8 is 
analytic inside the unit circle. 

Theorem 4 :  For any pole re" of the open-loop transfer 
function inside the unit circle, the complementary sensi- 
tivity function must satisfy the following integral con- 
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straints: 

In ( 1  ?(re")-' I )  + k In (r)  

- r z ) ln ( l t ( e ' 4 ) l )d4  
r' + 1 - 2r cos (0 - 4) 

for i = 1, ..., n - 1 

where n is the multiplicity of the open-loop stable pole. 5 
is analytic inside the unit circle and 5 is all pass. 

. . . . . . . . . 

\ 
10-2 10-1 I00 I O '  

,0-31 

norrnoltsed frequency 

Fig. 11 Variation oJa typical complementary sensitivity Junction 

Proof: As with theorem 3 .  

Corrolary 2: For any closed-loop stable discrete-time 
system : 

m 

In ( K )  + 1 In I a, I = - In I t(e'") I d 4  
i = 1  x 

where r(q- ' )  = q-'Kfl(l - a iq - ' ) /P (q - ' ) ,  ai are the 
zeros of the open-loop system with the first rn being 
nonminimum-phase. P is the closed-loop pole poly- 
nomial and is assumed to have unity leading element (i.e. 
P = 1 + p l q - '  + ...). 

Proof: By substitution into theorem 4 and evaluating the 
function at r = 0. 

This result is similar to Bode's theorem for the sensitivity 
function, but, as such, does not appear to be as useful, 
other than in finding some bounds on the magnitude of 
complementary sensitivity similar to those of the preced- 
ing Section. Note that this result is particular to discrete- 
time systems as the maximum frequency is n/h. 

4.8. I Pole-zero cancellations inside the unit circle: At 
first sight, it appears that pole-zero cancellations inside 
the unit circle cause the same degree of difficulty as those 
outside the unit circle. This is not the case: 
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where (BS), indicates the minimum-phase zeros and * 
indicates complex conjugate. Clearly, if there are exact 
pole-zero cancellations, the value of In 15 I does not 
change at all. For close cancellations, on the other hand, 
if this zero does not appear close to one of the poles of 
the closed loop, the 17 I ' can become quite large, thus 
imposing a severe limitation on the complementary sensi- 
tivity and sensitivity functions. If, however, one of the 
closed-loop poles is very close to this approximately can- 
celled zero, then the cancellation does not impose as 
severe a difficulty. The following example may clarify the 
point further. Fig. 12 shows the variation of the 

loo-- - - - - - -  .... ~ ....... ~ ......._................. ~ .... 

0.8 0.81 0.82 0.83 0.84 0 85 0.86 0.87 0.88 0.83 0.3 

one of the closed-loop poles 

Fig. 12 Variation of maximum sensitivity with pole-position with 
closed-loop pole-zero cancellation inside the unit circle 

maximum log sensitivity of a pole-placement design as 
the pole position varies from 0.8to 0.9. The solid line is 
the case where a model of the form 

(1 - 0.9q-')(1 - 0.85q-')y(t) = 0.1(1 - 0.84q-')u(t - 1) 

is assumed, and the broken line is where a model of the' 
form 

(1 - 0.9y-')y(t) = O.lu(t - 1) 

is considered. Note that, with the closed-loop pole even 
slightly away from the cancellation, the sensitivity 
increases by an order of magnitude. It is, therefore, very 
important to design controllers which automatically con- 
sider cancellations and close cancellations should they 
occur. Clearly, some loss of performance is inevitable, but 
this should be kept to a minimum. 

4.8.2 Selection of the closed-loop poles: Again, from 
theorem 4, it is quite clear that setting closed-loop poles 
in the proximity of the open-loop poles makes the value 
of In I ?(de)-' I reasonably small. Note that this is partic- 
ularly significant when there are underdamped open-loop 
poles, as then the weight associated with these, as dis- 
cussed earlier, is also large, and thus shifting the poles 
too far may lead to unwanted large sensitivity functions. 

Two special cases are worth considering: the 
minimum-variance or minimum-prototype control where 
the poles are the open-loop zeros of the process, and the 
mean-level control where the closed-loop poles are the 
same as the open-loop poles of the system. For systems 
with unit delay, we have: 

(a) u(q- ') = AA, for minimum-prototype control 
(b) o(q-')  = 1 - q - ' ~ / ~ ( l ) ,  for mean-level control. 

For most values of A and B, it can be shown that the 
maximum sensitivity of minimum-variance control is 
higher than the mean-level control. However, for cases 
where the zeros are close to the point (1, 0), the situation 
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may be reversed. Note that the MV control is only 
applicable to minimum-phase and ML control to open- 
loop stable systems. Hence, the comparison is only mean- 
ingful for stable and minimum-phase systems. References 
18 and 11 show that minimum-prototype and mean-level 
control are two special cases of generalised predictive 
control, when the control horizon is set to unity, as the 
prediction horizon varies from one to infinity. It is con- 
jectured that, for other prediction horizons, the value of 
sensitivity varies between the two quantities above. It is 
possible to examine the above quantities to obtain 
bounds on the sensitivity function of the nominal predic- 
tive control loop. 

5 Concluding remarks 

This paper derives the Bode's integral theorem for 
discrete-time systems. Many of the standard design 
guidelines adopted by the control engineer are shown to 
be a natural outcome of such theorems. Although not a 
design methodology on its own, it provides further 
insight into the design of SISO discrete-time control 
systems : albeit a problem considered to have been com- 
pletely solved by many authors. The design guidelines 
derived from these results include: 

(a) Choice of sample time: Sampling faster should 
always improve the performance, but, once above a 
certain rate (e.g. an order of magnitude above the desired 
closed-loop bandwidth), little benefit will result. With 
time-delay and nonminimum-phase systems, the 
maximum attainable bandwidth is limited to around 
f, N 1/(2nA) Hz, where A is the time delay, in seconds, 
and f, 4477, where s, is the magnitude of the NMP 
zero of the system on the real axis in the right-half s- 
plane. The sample rate is typically lOf, 

(b)  Pole-zero cancellations: Yet another reason was 
considered as to why such exact or close cancellations 
outside the stability reagion are harmful. The cancel- 
lations inside the unit circle, on the other hand, should 
not pose any difficulties provided the correct method is 
adopted 

(c) Nonminimum-phase zeros and time delay: These 
impose, as is well known, a severe limitation on the 
achievement of the performance specifications, especially 
if low sensitivity is required close to the frequencies of 
these zeros. Time delay, on the other hand, appears to 
impose an indirect influence on the maximum sensitivity 
via the restriction on the achievable bandwidth or intro- 
duction of unstable poles in the controller transfer func- 
tion. NMP zeros on the real axis in the left-half Z-plane, 
however, should not pose any difficulty for a proper 
design 

(d) Bode's theorem for  discrete-time systems: It is 
shown that there are close similarities between the dis- 
crete and continuous-time results. As expected, the 2-pole 
roll-off requirement is not necessary. However, because of 
the inherent bandwidth limitation in discrete-time 
systems, asymptotic loop recovery is not possible in the 
usual framework. Moreover, time delays are dealt with, 
without any special considerations. 

The extensions of the basic results to the multivariable 
case are trivial, for any of the multitude of scalar-valued 
functions of a MIMO system (e.g. characteristic values 
[19]) provided the branch points outside the unit circle 
are taken care of, or the determinant or the product of 
the singular values [7]. It is the implications and inter- 
pretations of such results that are unclear. For an excel- 
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lent exposition of this problem see Freudenberg and 
Looze [7], they give a detailed discussion of the 
continuous-time results. The links of these to design 
guidelines are, however, still very obscure. 
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