
OCEAN Reference

Product Version 5.1.41
June 2004

 1999-2004 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in
this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s
trademarks, contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants
you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s
customer in accordance with, a written agreement between Cadence and its customer. Except as may be
explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained
in this document. Cadence does not warrant that use of such information will not infringe any third party
rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of
such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

OCEAN Reference

Contents
Preface . 15

Related Documents . 15
Typographic and Syntax Conventions . 15

SKILL Syntax Examples . 17

1
Introduction to OCEAN. 19

Types of OCEAN Commands . 20
OCEAN Online Help . 20
OCEAN Syntax Overview . 21

Common SKILL Syntax Characters Used in OCEAN . 21
Parentheses . 21
Quotation Marks . 21
Single Quotation Marks . 23
Question Mark . 23
Data Types Used in OCEAN . 24
OCEAN Return Values . 25
Design Variables in OCEAN . 25
outputs() in OCEAN . 26

Parametric Analysis . 27
Data Access Without Running a Simulation . 28

Distributed Processing . 28
Blocking and Nonblocking Modes . 29

Waveform Tool Selection . 30

2
Using OCEAN . 31

OCEAN Use Models . 31
Using OCEAN Interactively . 32

Using OCEAN from a UNIX Shell . 32
June 2004 3 Product Version 5.1.41

OCEAN Reference
Using OCEAN from the CIW . 33
Interactive Session Demonstrating the OCEAN Use Model . 34

Creating OCEAN Scripts . 35
Creating Scripts Using Sample Script Files . 35
Creating Scripts from the Analog Design Environment . 35
Selectively Creating Scripts . 35
Loading OCEAN Scripts . 38

Selecting Results . 39
Selecting Results Run from Worst Case Scripts for Cross-Probing or Back Annotating
Operating Points . 39
Selecting Results Run from Spectre Stand Alone . 40

Running Multiple Simulators . 41
OCEAN Tips . 41

3
Introduction to SKILL . 43

The Advantages of SKILL . 43
Naming Conventions . 44
Arithmetic Operators . 44
Scaling Factors . 44
Relational and Logical Operators . 46

Relational Operators . 46
Logical Operators . 47

SKILL Syntax . 48
Special Characters . 48
White Space . 49
Comments . 49
Role of Parentheses . 50
Line Continuation . 51

Arithmetic and Logical Expressions . 51
Constants . 52
Variables . 52
June 2004 4 Product Version 5.1.41

OCEAN Reference
4
Working with SKILL. 55

Skill Functions . 55
Data Types . 55

Numbers . 56
Atoms . 57
Constants and Variables . 57
Strings . 57

Arrays . 58
Allocating an Array of a Given Size . 58

Concatenating Strings (Lists) . 58
Comparing Strings . 59

Declaring a SKILL Function . 60
Defining Function Parameters . 61
Defining Local Variables (let) . 61

Skill Function Return Values . 62
Syntax Functions for Defining Functions . 62

procedure . 62
Terms and Definitions . 62

5
OCEAN Environment Commands . 65

appendPath . 66
path . 67
prependPath . 68
setup . 69

6
Simulation Commands . 71

ac . 73
analysis . 75
createFinalNetlist . 78
createNetlist . 79
converge . 81
June 2004 5 Product Version 5.1.41

OCEAN Reference
dc . 82
definitionFile . 84
delete . 85
design . 87
desVar . 89
envOption . 91
forcenode . 93
ic . 94
includeFile . 95
modelFile . 96
nodeset . 97
noise . 98
ocnDisplay . 99
ocnGetWaveformTool . 101
ocnWaveformTool . 102
off . 103
option . 104
restore . 106
resultsDir . 107
run . 108
save . 111
saveOption . 113
simulator . 115
stimulusFile . 116
store . 118
temp . 119
tran . 120

7
Data Access Commands . 121

dataTypes . 123
getData . 124
getResult . 126
i . 127
ocnHelp . 129
June 2004 6 Product Version 5.1.41

OCEAN Reference
openResults . 131
outputParams . 133
outputs . 135
phaseNoise . 137
pv . 139
resultParam . 141
results . 143
selectResult . 144
sp . 146
sweepNames . 148
sweepValues . 150
sweepVarValues . 151
v . 153
vswr . 155
zm . 157
zref . 159

8
Plotting and Printing Commands . 161

addSubwindow . 163
addSubwindowTitle . 164
addTitle . 165
addWaveLabel . 166
addWindowLabel . 168
clearAll . 169
clearSubwindow . 170
currentSubwindow . 171
currentWindow . 172
dbCompressionPlot . 173
dcmatchSummary . 174
deleteSubwindow . 178
deleteWaveform . 179
displayMode . 180
getAsciiWave . 181
graphicsOff . 182
June 2004 7 Product Version 5.1.41

OCEAN Reference
graphicsOn . 183
hardCopy . 184
hardCopyOptions . 185
ip3Plot . 187
newWindow . 188
noiseSummary . 189
ocnPrint . 193
ocnYvsYPlot . 196
plot . 198
plotStyle . 200
pzPlot . 201
pzSummary . 203
removeLabel . 205
report . 206
xLimit . 209
yLimit . 210

Plotting and Printing SpectreRF Functions in OCEAN . 212

9
OCEAN Aliases . 215

10
Predefined Functions and Waveform (Calculator) Functions .

217

Predefined Arithmetic Functions . 221
abs . 223
acos . 224
add1 . 225
asin . 226
atan . 227
cos . 228
exp . 229
linRg . 230
log . 231
June 2004 8 Product Version 5.1.41

OCEAN Reference
logRg . 232
max . 233
min . 234
mod . 235
random . 236
round . 237
sin . 238
sqrt . 239
srandom . 240
sub1 . 241
tan . 242

Waveform (Calculator) Functions . 243
average . 244
awvPlaceXMarker . 246
awvPlaceYMarker . 247
b1f . 248
bandwidth . 249
clip . 250
compression . 252
compressionVRI . 254
compressionVRICurves . 256
conjugate . 258
complex . 259
complexp . 260
convolve . 261
cPwrContour . 263
cReflContour . 265
cross . 267
db10 . 269
db20 . 270
dbm . 271
delay . 272
deriv . 275
dft . 276
dftbb . 278
eyeDiagram . 280
June 2004 9 Product Version 5.1.41

OCEAN Reference
flip . 281
fourEval . 282
frequency . 283
ga . 284
gac . 285
gainBwProd . 287
gainMargin . 289
gmax . 290
gmin . 291
gmsg . 292
gmux . 293
gp . 294
gpc . 295
groupDelay . 297
gt . 298
harmonic . 299
harmonicFreqList . 301
harmonicList . 303
iinteg . 305
imag . 306
integ . 307
ipn . 309
ipnVRI . 312
ipnVRICurves . 315
kf . 318
ln . 319
log10 . 320
lsb . 321
lshift . 322
mag . 323
nc . 324
overshoot . 326
peakToPeak . 328
phase . 329
phaseDeg . 331
phaseDegUnwrapped . 332
June 2004 10 Product Version 5.1.41

OCEAN Reference
phaseMargin . 333
phaseRad . 335
phaseRadUnwrapped . 336
pow . 337
psd . 339
psdbb . 343
real . 347
riseTime . 348
rms . 350
rmsNoise . 351
root . 352
rshift . 354
sample . 355
settlingTime . 357
slewRate . 359
spectralPower . 361
ssb . 362
stddev . 363
tangent . 364
thd . 365
value . 367
xmax . 369
xmin . 371
xval . 373
ymax . 374
ymin . 375

11
Advanced Analysis . 377

Parametric Analysis Commands . 377
paramAnalysis . 378
paramRun . 382

Corners Analysis Commands . 383
cornerDesVar . 384
cornerMeas . 385
June 2004 11 Product Version 5.1.41

OCEAN Reference
cornerRun . 386
cornerRunTemp . 388
residual . 389
selectProcess . 390

Monte Carlo Analysis Commands . 391
correlationTable . 392
dataFilter . 393
histogram . 395
iterVsValue . 397
monteCarlo . 398
monteCorrelate . 400
monteDisplay . 401
monteExpr . 402
monteOutputs . 403
monteResults . 404
monteRun . 405
monteSelectResults . 407
scatterplot . 408
specLimits . 409
yield . 411

Optimization Commands . 413
optimizeAlgoControl . 414
optimizeGoal . 415
optimizePlotOption . 416
optimizeRun . 418
optimizeVar . 419

12
OCEAN Distributed Processing Commands 421

deleteJob . 422
digitalHostMode . 423
digitalHostName . 424
hostMode . 425
hostName . 426
killJob . 427
June 2004 12 Product Version 5.1.41

OCEAN Reference
monitor . 428
remoteDir . 429
resumeJob . 430
suspendJob . 431
wait . 432
Sample Scripts . 433

13
Language Constructs . 439

if . 440
unless . 442
when . 443
for . 444
foreach . 446
while . 448
case . 449
cond . 451

14
File Commands and Functions . 453

close . 454
fscanf . 455
gets . 457
infile . 458
load . 459
newline . 461
outfile . 462
printf . 464
println . 465

A
OCEAN 4.4.6 Issues . 467

Mixed-Signal in OCEAN 4.4.6 . 467
June 2004 13 Product Version 5.1.41

OCEAN Reference
Index. 469
June 2004 14 Product Version 5.1.41

OCEAN Reference
Preface

The preface discusses the following:

■ Related Documents on page 15

■ Typographic and Syntax Conventions on page 15

Related Documents

The Open Command Environment for Analysis (OCEAN) is based on the Virtuoso® SKILL
programming language. The following manuals give you more information about the SKILL
language and other related products.

■ The SKILL Language User Guide describes how to use the SKILL language functions,
the SKILL++ functions, and the SKILL++ object system (for object-oriented
programming).

■ The SKILL Language Reference provides descriptions, syntax, and examples for the
SKILL and SKILL++ functions.

■ The SKILL++ Object System Functions Reference provides descriptions, syntax,
and examples for the object system functions.

■ The Virtuoso® Analog Design Environment User Guide explains how to design and
simulate analog circuits.

■ The Virtuoso® Mixed-Signal Circuit Design Environment User Guide explains how
to design and simulate mixed-signal circuits.

■ The Virtuoso® Analog Distributed Processing Option User Guide explains how to
set up and run distributed processing for OCEAN and other Virtuoso® Analog Design
Environment applications.

Typographic and Syntax Conventions

This list describes the syntax conventions used for the Virtuoso® Analog Design Environment
SKILL functions.
June 2004 15 Product Version 5.1.41

OCEAN Reference
Preface
literal Nonitalic words indicate keywords that you must type literally.
These keywords represent command (function, routine) or
option names.

argument (z_argument)
Words in italics indicate user-defined arguments for which you
must substitute a name or a value. (The characters before the
underscore (_) in the word indicate the data types that this
argument can take. Names are case sensitive. Do not type the
underscore (z_) before your arguments.) For a listing of data
types, see “Data Types Used in OCEAN” on page 24.

| Vertical bars (OR-bars) separate possible choices for a single
argument. They take precedence over any other character.

[] Brackets denote optional arguments. When used with OR-bars,
they enclose a list of choices. You can choose one argument
from the list.

{ } Braces are used with OR-bars and enclose a list of choices. You
must choose one argument from the list.

… Three dots (…) indicate that you can repeat the previous
argument. If you use them with brackets, you can specify zero or
more arguments. If they are used without brackets, you must
specify at least one argument, but you can specify more.

argument… Specify at least one, but more are possible.

[argument]… Specify zero or more.

,… A comma and three dots together indicate that if you specify
more than one argument, you must separate those arguments by
commas.

=> A right arrow precedes the possible values that a SKILL function
can return. This character is represented by an equal sign and a
greater than sign.

/ A slash separates the possible values that can be returned by a
SKILL function.
June 2004 16 Product Version 5.1.41

OCEAN Reference
Preface
<yourSimulator>
Angle brackets indicate places where you need to insert the
name of your simulator. Do not include the angle brackets when
you insert the simulator name.

Important

The characters included in the list above are the only characters that are not typed
literally. All other characters in the SKILL language are required and must be typed
literally.

SKILL Syntax Examples

The following examples show typical syntax characters used in the SKILL language.

Example 1

list(g_arg1 [g_arg2] …
)
=> l_result

Example 1 illustrates the following syntax characters.

list Plain type indicates words that you must type literally.

g_arg1 Words in italics indicate arguments for which you must substitute
a name or a value.

() Parentheses separate names of functions from their arguments.

_ An underscore separates an argument type (left) from an
argument name (right).

[] Brackets indicate that the enclosed argument is optional.

=> A right arrow points to the return values of the function. Also used
in code examples in SKILL manuals.

… Three dots indicate that the preceding item can appear any
number of times.
June 2004 17 Product Version 5.1.41

OCEAN Reference
Preface
Example 2

needNCells(
s_cellType | st_userType
x_cellCount
)
=> t/nil

Example 2 illustrates two additional syntax characters.

| Vertical bars separate a choice of required options.

/ Slashes separate possible return values.
June 2004 18 Product Version 5.1.41

OCEAN Reference
1
Introduction to OCEAN

This chapter provides an introduction to Open Command Environment for Analysis (OCEAN).
In this chapter, you can find information about

■ Types of OCEAN Commands on page 20

■ OCEAN Online Help on page 20

■ OCEAN Syntax Overview on page 21

■ Parametric Analysis on page 27

■ Distributed Processing on page 28

OCEAN lets you set up, simulate, and analyze circuit data. OCEAN is a text-based process
that you can run from a UNIX shell or from the Command Interpreter Window (CIW). You can
type OCEAN commands in an interactive session, or you can create scripts containing your
commands, then load those scripts into OCEAN. OCEAN can be used with any simulator
integrated into the Virtuoso® Analog Design Environment.

Typically, you use the Virtuoso® Analog Design Environment when creating your circuit (in
Composer) and when interactively debugging the circuit. After the circuit has the performance
you want, you can use OCEAN to run your scripts and test the circuit under a variety of
conditions. After making changes to your circuit, you can easily rerun your scripts. OCEAN
lets you

■ Create scripts that you can run repeatedly to verify circuit performance

■ Run longer analyses such as parametric analyses, Corners Analyses, and statistical
analyses more effectively

■ Run long simulations in OCEAN without starting the Virtuoso® Analog Design
Environment graphical user interface

■ Run simulations from a nongraphic, remote terminal
June 2004 19 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
Types of OCEAN Commands

You can create OCEAN scripts to accomplish the full suite of simulation and data access
tasks that you can perform in the Virtuoso® Analog Design Environment. An OCEAN script
can contain three types of commands, as shown in the following figure.

All the parameter storage format (PSF) information created by the simulator is accessible
through the OCEAN data access commands. (The data access commands include all of the
Virtuoso® Analog Design Environment calculator functions.)

OCEAN Online Help

Online help is available for all the OCEAN commands when you are in an OCEAN session.
To get help for a specific OCEAN command, type the following:

ocnHelp('commandName)

This command returns an explanation of the command and examples of how the command
can be used.

To get a listing of all the different types of commands in OCEAN, type the following:

ocnHelp()

Simulation Set-up
Commands

Simulator Run
Command

Data Access
Commands

OCEAN Commands

Specify the analyses to be run
Specify the nets and currents to save
Specify the simulator option values
Specify the circuit stimulus

Run the simulator

Perform calculations on the results
Print information
Plot waveforms

Purpose

OCEAN scripts can
contain all of these types of
commands.
June 2004 20 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
For more information, see “ocnHelp” on page 129.

OCEAN Syntax Overview

OCEAN is based on the Virtuoso® SKILL programming language and uses SKILL syntax. All
the SKILL language commands can be used in OCEAN. This includes if statements, case
statements, for loops, while loops, read commands, print commands, and so on.

The most commonly used SKILL commands are documented in this manual. However, you
are not limited to these commands. You can use any SKILL routine from any SKILL manual.

Common SKILL Syntax Characters Used in OCEAN

This section provides an overview of some basic SKILL syntax concepts that you need to
understand to use OCEAN. For more information about SKILL syntax, see Chapter 3,
“Introduction to SKILL.”

Parentheses

Parentheses surround the arguments to the command. The command name is followed
immediately by the left parenthesis, with no intervening space.

Examples

The following example shows parentheses correctly enclosing two arguments to the path
command.

Quotation Marks

Quotation Marks are used to surround string values. A string value is a sequence of
characters, such as "abc".

path("~/simulation1/schematic/psf" "~/simulation2/schematic/psf")

path ("~/simulation1/schematic/psf" "~/simulation2/schematic/psf")

Syntax error.

In the next example, the space after the command name causes a syntax error.
June 2004 21 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
In the following example, the directory names provided to the path command are strings,
which must be surrounded by quotation marks.

path("~/simulation1/schematic/psf" "~/simulation2/schematic/psf")

Convention

In this manual, a SKILL convention is used to let you know when an argument must be a
string. When you see the prefix t_, you must substitute a string value (surrounded by
quotation marks) for the argument. Consider the following syntax statement:

desVar(t_desVar1 g_value1 t_desVar2 g_value2)

In this case, there are two string values that must be supplied: t_desVar1 and
t_desVar2. (The g_ prefix indicates a different type of argument. For more information
about prefixes, see Chapter 4, “Working with SKILL.”)

Recovering from an Omitted Quotation Mark

Accidentally omitting a closing quotation mark from an OCEAN command can cause great
confusion. For example, typing the incorrect command

strcat("rain" "bow)

appears to hang OCEAN. In an attempt to recover, you type a Control-c. That gives you a
prompt but it does not fix the problem, as you discover when you then type the correct
command.

strcat("rain" "bow")

Again, you have to type a Control-c and OCEAN responds with another message.

^C*Error* parser: interrupted while reading input

If you find yourself in this situation, do not press a Control-c. Instead, recover by entering
a quotation mark followed by a right square bracket (]). This procedure reestablishes a
normal OCEAN environment and you can then reenter the correct command.

ocean> strcat("rain" "bow)
"]
"rainbow) "
ocean> strcat("rain" "bow")
"rainbow"
ocean>
June 2004 22 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
Single Quotation Marks

The single quotation mark indicates that an item is a symbol. Symbols in SKILL correspond
to constant enums in C. In the context of OCEAN, there are predefined symbols. The
simulator that you use also has predefined symbols. When using symbols in OCEAN, you
must use these predefined symbols.

Examples

In the following example, tran is a symbol and must be preceded by a single quotation mark.
The symbol tran is predefined. You can determine what the valid symbols for a command
are by checking the valid values for the command’s arguments. For example, if you refer to
“analysis” on page 75, you see that the valid values for the first argument include 'tran.

analysis(’tran …)

The list of items you can save with the save command is also predefined. You must choose
from this predefined list. See “save” on page 111 and refer to the valid values for the
s_saveType argument. The ’v symbol indicates that the item to be saved is the voltage on
a net.

save(’v "net1")

Convention

In this manual, a SKILL convention is used to let you know when an argument must be a
symbol. When you see the prefix s_, you must substitute a symbol (preceded by a single
quotation mark) for the argument. Consider the following syntax statement:

selectResults(s_resultsName) => t/nil

In this case, there is one symbol that must be supplied: s_resultsName. For the
selectResults command, there is a different mechanism that lets you know the list of
predefined symbols. If you type the following command, with no arguments, the list of
predefined symbols is returned: results() => (dc tran ac)

Note: Depending on which results are selected, the values returned by the results
command vary.

Question Mark

The question mark indicates an optional keyword argument, which is the first part of a
keyword parameter. A keyword parameter has two components:
June 2004 23 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
■ The first component is the keyword, which has a question mark in front of it.

■ The second component is the value being passed, which immediately follows the
keyword.

Keyword parameters, composed of these keyword/value pairs, are always optional.

Examples

In the following example, all the arguments to the analysis command except ’tran are
keyword/value pairs and are optional.

For example, you can use ?center and ?span instead of ?start and ?stop. You also can
omit ?start altogether because it is an optional argument.

Convention

In this manual, a SKILL convention is used to let you know when arguments are optional.
Optional arguments are surrounded by square brackets []. In the following example, all of the
keyword/value pairs are surrounded by square brackets, indicating that they are optional.

report([?output t_filename | p_port] [?type t_type] [?name t_name]
[?param t_param] [?format s_reportStyle]) => t/nil

Data Types Used in OCEAN

The following table shows the internal names and prefixes for the SKILL data types that are
used in OCEAN commands.

Data Type Internal Name Prefix

floating-point number flonum f

any data type general g

linked list list l

integer, floating-point number, or
complex number

n

analysis(’tran ?start 0 ?stop 1u ?step 1n)

Keyword Value passed
June 2004 24 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
For more information about SKILL datatypes, see Chapter 4, “Working with SKILL.”

OCEAN Return Values

You get return values from most OCEAN commands and can use these values in other
OCEAN commands.

The following table shows some examples in which the return value from a command is
assigned to a variable.

Design Variables in OCEAN

Design variables in OCEAN function as they do in the Virtuoso® Analog Design Environment.
Design variables are not assigned in the order specified. Rather, they are reordered and then
assigned. Consider the following example:

desVar("a" "b+1")
desVar("b" 1)

user-defined type o

I/O port port p

symbol symbol s

symbol or character string S

character string (text) string t

window type w

integer number fixnum x

Assigning a Return Value to a Variable Resulting Value for the Variable

a=desVar("r1" 1k) a=1k

a=desVar("r1" 1k "r2" 2k) a=2k

a=desVar("r1") a=1k, assuming r1 was set in a
desVar command

a=desVar("r2") a=2k, assuming r2 was set in a
desVar command

Data Type Internal Name Prefix
June 2004 25 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
You might expect an error because a is assigned the value b+1 before b is assigned a value.
However, OCEAN reorders the statements and sends them as follows:

desVar("b" 1)
desVar("a" "b+1")

After the reordering, there is no error. (b is equal to 1 and a is equal to 2.)

Suppose you run a simulation, then specify the following:

desVar("b" 2)

You might expect a to be equal to 2, which was the last value specified. Instead, a is
reevaluated to b+1 or 3.

This approach is similar to how the design variables are used in simulation. For example,
consider a circuit that has the following resistor:

R1 1 0 resistor r=b

If you change the value of b, you expect the value of R1 to change. You do not expect to have
to netlist again or retype the R1 instantiation.

This approach is used in the Virtuoso® Analog Design Environment. Users are not expected
to enter design variables in a particular order. Rather, the design variables are gathered
during the design variable search then reordered before they are used.

outputs() in OCEAN

Throughout this manual are examples of nets and instances preceded by a “/” as well as
examples without the “/”. There is a significant difference between the two.

If you create a design in the Virtuoso® Analog Design Environment and save the OCEAN file,
all net and instance names will be preceded with a “/”, indicating they are schematic names.
The netlist/amap directory must be available to map these schematic names to names
the simulator understands. (If your design command points to the raw netlist in the netlist
directory, the amap directory is there.)

If you create a design or an OCEAN script by hand, or move the raw netlist from the netlist
directory, the net and instance names might not be preceded with “/”. This indicates that
simulator names are used, and mapping is not necessary.

If you are unsure whether schematic names or simulator names are used, after
selectResult(S_resultsName), type outputs() to see the list of net and instance
names.
June 2004 26 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
Note: Although you can move the raw netlist file from the netlist directory, it is not advised.
There are other files in the netlist directory that are now required to run OCEAN.

Parametric Analysis

There are two ways you can run parametric analyses in OCEAN:

■ You can use the paramAnalysis command (recommended approach).

■ You can use a SKILL for loop.

Using the paramAnalysis command is an easier approach. With this command, you can
set up any number of nested parametric analyses in an OCEAN script. The paramRun
command runs all the parametric analyses. When the analysis is complete, the data can be
plotted as a family of curves. The following example shows how you might use nested
parametric analyses:

paramAnalysis("rl" ?start 200 ?stop 600 ?step 200
paramAnalysis('rs ?start 300 ?stop 700 ?step 200

)

)

paramRun ()

In this example, the outer loop cycles through r1, and the inner loop cycles through rs as
follows:

Loop through r1 from 200 to 600 by 200.

Loop through rs from 300 to 700 by 200.

Run.

End the first loop.

End the second loop.

So, for r1=200, rs equals 300, 500 and then 700. Then, for r1=400, rs equals 300, 500,
and then 700. Finally, for r1=600, rs equals 300, 500, and then 700

Use a SKILL for loop only if the paramAnalysis command is not adequate. You can use
the SKILL for loop to set up any number of variable-switching runs. After all the simulations
are complete, you have to work with the results directories individually. The following example
shows how you might use SKILL loops for parametric analyses.
June 2004 27 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
Cload = list(2p 4p 6p 8p)
foreach(val Cload

desVar("Cload" val)
a=resultsDir(sprintf(nil "./demo/Cload=%g" val))
printf("%L", a)
run()

)

foreach(val Cload
openResults(sprintf(nil "./<dir>/Cload=%g" val))
selectResults('ac)
plot(vdb("vout"))

)

Data Access Without Running a Simulation

You can retrieve and use data from previous simulations at any time by opening the data with
the openResults command. After opening the data, you can use any data access
commands on this data. For more information, see Chapter 7, “Data Access Commands.”

You can use query commands such as results, outputs, and dataTypes to see what
data is available to be opened.

Distributed Processing

You can use OCEAN distributed processing commands to run simulations across a collection
of computer systems. The distributed processing commands allow you to specify where and
when jobs are run and allow you to monitor and control jobs in a variety of ways. Using
distributed commands, you can

■ Submit one or more jobs to a distributed processing queue

■ Specify a host or group of hosts on which to distribute jobs

■ View the status of jobs

■ Specify when a job will run or in what sequence a group of jobs will run

■ Suspend and resume jobs

■ Cancel jobs

For you to be able to use the distributed processing commands, your site administrator needs
to set up the lists of machines to which jobs are submitted. Each list of machines is a group
of hosts and is called a queue. Consult the Virtuoso® Analog Distributed Processing
June 2004 28 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
Option User Guide for more information on how to configure systems for distributed
processing. For information on the distributed processing commands for OCEAN, see
Chapter 12, “OCEAN Distributed Processing Commands.”

Blocking and Nonblocking Modes

You can configure jobs to run in blocking or nonblocking mode. In blocking mode, execution
of subsequent OCEAN commands is halted until the job completes. In nonblocking mode, the
system does not wait for the first job to finish before starting subsequent jobs.

Blocking Mode

You must run jobs in blocking mode to be able to use the data resulting from a job in a
subsequent command in an OCEAN script or batch run.

For example, if you want to run a simulation, select the tran results from that simulation, and
then plot them, you

1. Configure the simulation with setup commands

2. Run the simulation with the run() command

3. Select the desired results with the selectResults(’tran) command

4. Plot the results with the plot() command

A job like the one in the example above must run in blocking mode so that the commands are
processed sequentially. If the jobs in the example above are run in nonblocking mode, the
selectResult command starts before the run command can return any data, and the
selectResult command and the plot command cannot complete successfully.

Nonblocking Mode

If you are submitting several jobs that have no interdependencies, you can run them
concurrently when hostmode is set to distributed.

For example, if you want to run two separate simulations as jobs, but do not want to wait until
the first is complete before starting the second, you

1. Configure the first simulation with setup commands

2. Configure a second simulation with setup commands
June 2004 29 Product Version 5.1.41

OCEAN Reference
Introduction to OCEAN
In the example above, the script starts the first job and then starts the second job without
waiting for the first job to finish.

If you are running several commands, and some of them are data access commands, you
can use the wait command to block a single job. The wait command is needed between the
simulation and the data access commands to ensure the desired simulation is complete
before the data is accessed.

For example, if you want to run two separate simulations as jobs (sim1 and sim2), and want
to select and plot the results of the second simulation run, you

1. Configure the first simulation with setup commands

2. Run the simulation with a run(?jobPrefix "sim1") command

3. Configure a second simulation with setup commands

4. Run the second simulation with the run(?jobPrefix "sim2) command

5. Cause the script to wait until the second simulation finishes before starting the
selectResults command with the wait(sim2) command

6. Select the desired results with the selectResults(’tran) command

7. Plot the results with the plot() command

In the example above, the script starts the first job and then starts the second job without
waiting for the first job to finish. When the script reaches the wait command, it pauses until
the second simulation runs and then selects the results to plot.

Waveform Tool Selection

You can plot simulation results in the waveform tool of your choice. The Analog Design
Environment now supports WaveScan in addition to AWD. Although WaveScan is the default,
you can dynamically switch between the two waveform tools using the OCEAN function
ocnWaveformTool() as follows:

ocnWaveformTool(‘awd)
June 2004 30 Product Version 5.1.41

OCEAN Reference
2
Using OCEAN

This chapter explains the different ways you can use OCEAN to perform simulation tasks. In
this chapter, you can find information about

■ OCEAN Use Models on page 31

■ Using OCEAN Interactively on page 32

■ Creating OCEAN Scripts on page 35

■ Running Multiple Simulators on page 41

■ OCEAN Tips on page 41

OCEAN Use Models

There are two ways you can use OCEAN:

■ You can use OCEAN interactively to perform simple tasks.

■ You can use OCEAN in batch mode and provide the name of an existing (or
parameterized) script as a command line argument. OCEAN scripts can be created

❑ From the Virtuoso® Analog Design Environment window with the command
Session – Save Script

❑ By hand (by you or someone else in your organization) with a text editor

For information about creating scripts, see “Creating OCEAN Scripts” on page 35.

All the OCEAN commands are described in this manual, and online help is available for all
these commands. For information about using the OCEAN online help, see “OCEAN Online
Help” on page 20.

Note: The current version of OCEAN has some specific issues that are addressed in
Appendix A, “OCEAN 4.4.6 Issues.” Please refer to this appendix before using OCEAN.
June 2004 31 Product Version 5.1.41

OCEAN Reference
Using OCEAN
Using OCEAN Interactively

You can run OCEAN from a UNIX prompt or from the Virtuoso® design framework II (DFII)
Command Interpreter Window (CIW).

Note: The primary use model is to use OCEAN in a UNIX shell. Unless otherwise indicated,
the rest of this chapter assumes that you are working from OCEAN in a UNIX shell.

Using OCEAN from a UNIX Shell

To start OCEAN from a UNIX prompt, type the following command:

ocean

This loads and reads your .oceanrc file.

You can place OCEAN commands in your .oceanrc file, which is similar to the .cdsinit
file. OCEAN ignores your .cdsinit file at startup. If you want OCEAN to use any
initialization options at startup, you must specify them in the .oceanrc file. This file can
contain any valid OCEAN command, function or SKILL initialization routine (excluding
graphical dfII references, such as bindkeys and so on, which are not applicable to OCEAN).
If you do not want to specify any startup initialization options for OCEAN, you do not need to
create or add an .oceanrc file.

The OCEAN prompt appears indicating that you have started OCEAN:

ocean>

If you do not see this prompt after starting OCEAN, press Return. If you still do not see this
prompt, you may have redefined the prompt with the setPrompt command. (This does not
affect OCEAN; the prompt just will not indicate OCEAN is running.)

Now you can start typing OCEAN commands interactively. For an example of interactive use,
see “Interactive Session Demonstrating the OCEAN Use Model” on page 34.

To quit the OCEAN executable from UNIX, type the following command:

exit

OCEAN in Non-Graphical Mode

OCEAN is an executable shell script that calls the AWD workbench and passes all its
command-line options to it using the following shell command:
June 2004 32 Product Version 5.1.41

OCEAN Reference
Using OCEAN
#! /bin/sh -

exec awd -ocean "$@"

This makes OCEAN highly dependent on the UNIX shell environment.

You can run OCEAN in a non-graphical mode by using the -nograph option with the ocean
command. This disables the graphical options of the software. This option is useful if OCEAN
is started on a machine that does not have X-Windows running.

The -nograph option must only be used to replay logfiles that have been created
interactively. For example, while using OCEAN with the -nograph option, your
oceanScript.ocn file must have an exit() statement at the end. Otherwise, OCEAN
hangs. The reason for this is that when the workbench is started in the non-graphical mode,
it does not redirect standard I/O as it normally does; instead, it lets the SKILL human interface
(HI) handle the standard I/O. HI expects an explicit exit() statement at the end of the
OCEAN script and OCEAN exits only when it detects an exit() at EOF. The command is
used as follows:

ocean -nograph < oceanScript.ocn > oceanScript.log

While using the -nograph option with ocean, if you find that simulation run messages are
not being stored in the log file, check for the following environment variable in the .cdsenv
file:

(envGetVal "spectre.envOpts" "firstRun")

It must be set to nil as shown below for simulation run messages to be stored in it:

(envSetVal "spectre.envOpts" "firstRun" ’boolean nil)

For more information about this variable, see Appendix B of the Virtuoso Analog Design
Environment User Guide.

Using OCEAN from the CIW

You can type OCEAN commands in the CIW after you bring up the Virtuoso® Analog Design
Environment. (Starting the design environment loads the required OCEAN files.)

Your .oceanrc file is not automatically read when you start the DFII software (using the
icms command). Therefore, you might want to load your .oceanrc file manually in the CIW
if you need information that it contains.
June 2004 33 Product Version 5.1.41

OCEAN Reference
Using OCEAN
Interactive Session Demonstrating the OCEAN Use Model

The following figure shows a typical set of simulation tasks that you might perform
interactively in OCEAN with the corresponding commands.

On the second and third run, the AC analysis runs because it is still active. If you do not want
it to run, you must disable it with the following command:

delete(’analysis ’ac)

The simulator is not called and run until the run() command is entered.

Start OCEAN and specify
your simulator.

Perform the second
simulation run

Specify an AC analysis.

Set a design variable.

Change a design variable.

Perform the first simulation
run.

Perform the third simulation
run.

Specify a transient analysis.

ocean
simulator(’spectre)

analysis(’ac ?start 1 ?stop 1000 ?lin 100)
or
ac(1 1000 "linear" 100)

desVar("rs" 1k)

run()

desVar("rs" 2k)

run()

analysis(’tran ?stop 1u) (Spectre only)
or
tran(0 1u 1n)

run()
June 2004 34 Product Version 5.1.41

OCEAN Reference
Using OCEAN
The commands can be given in any order, as long as they are all defined before the run()
command.

Creating OCEAN Scripts

You can modify the included sample script files or create script files interactively from the
Virtuoso® Analog Design Environment.

Creating Scripts Using Sample Script Files

You can create your own script files with a text editor using the sample scripts as examples,
or you can make copies of the sample scripts and modify them as needed using a text editor.
The scripts can be found in the following directory:

your_install_dir/tools/dfII/samples/artist/OCEAN

Refer to the README file in this directory for information about the scripts.

Creating Scripts from the Analog Design Environment

When you perform tasks in the design environment, the associated OCEAN commands are
automatically stored in the simulatorx.ocn file in your netlist directory. For example,
if you start the Virtuoso software, open the Virtuoso® Analog Design Environment window,
and run a simulation using the Cadence SPICE simulator, a cdsSpice0.ocn file is created
in your netlist directory. You can load this cdsSpice0.ocn script as described in
“Loading OCEAN Scripts” on page 38.

Selectively Creating Scripts

You can be selective about the information that is created in your .ocn script. The Virtuoso®
Analog Design Environment has a feature that lets you create an OCEAN script based on the
state of your current session. The following example illustrates how using this feature is
different than using the automatic script generation feature.

Consider the following task flow:

1. Start the Virtuoso® Analog Design Environment.

2. Specify a DC analysis.

3. Select nets on the schematic to save.
June 2004 35 Product Version 5.1.41

OCEAN Reference
Using OCEAN
4. Run the simulation.

5. Turn off the DC analysis.

6. Select a transient analysis.

7. Run the simulation.

8. Save the script from the Virtuoso® Analog Design Environment.

The script that is created, called oceanScript.ocn by default, contains only the selected
nets, the transient analysis, and the run command. The script does not contain the DC
analysis because it was turned off.

In contrast, the simulator0.ocn script, which is automatically created in the netlist
directory, contains all of the commands, including the DC analysis and the current state of the
analysis (on or off).

Creating a Script

To selectively create a script from the Virtuoso® Analog Design Environment,

1. Start the Virtuoso software with the executable you prefer; for example,

icms&

The CIW appears.

2. From the CIW, choose Tools – Analog Environment – Simulation.

The Virtuoso® Analog Design Environment window appears.

3. Perform all of the design environment tasks that you want to capture in the script.

4. Choose Session – Save Script.

The Save Ocean Script to File form appears.

5. Click OK to accept the default file name (./oceanScript.ocn), or change the name
for the file and click OK.

A script containing the OCEAN commands for the tasks you performed is created. For
information about how to load this script, see “Loading OCEAN Scripts” on page 38.

Controlling What Is Included in Scripts

You can use .cdsenv variables to alter the OCEAN script that is created when you choose
Session – Create Script in the Virtuoso® Analog Design Environment. One variable allows
June 2004 36 Product Version 5.1.41

OCEAN Reference
Using OCEAN
you to include default environment settings in a script, two other variables allow you to run
procedures before and after a script is created.

Including Default Control Statements

To save every control statement, including default statements, in your OCEAN script, add the
following line to your .cdsenv file.

asimenv.misc saveDefaultsToOCEAN boolean t

Setting saveDefaultsToOCEAN to t results in a complete dump of the current circuit design
environment, defaults and all. Because the created OCEAN script contains all the settings,
you might use this variable when you plan to archive a script, for example.

If saveDefaultsToOCEAN is not set to t, the created OCEAN script contains only those
items that you explicitly set to some value other than their default.

Running Functions Before or After Creating a Script

The information in this section describes how you can specify functions to be run before or
after a script is created. You can use these functions, for example, to add information at the
beginning or end of a script. To use this capability follow these steps.

1. Decide when you want the functions to run.

❑ Add the following line to your .cdsenv file to run the function preOceanFunc
before the OCEAN script is created.

asimenv.misc preSaveOceanScript string "preOceanFunc"

❑ Add the following line to your .cdsenv file to run the function postOceanFunc
after the OCEAN script is created.

asimenv.misc postSaveOceanScript string "postOceanFunc"

2. Use the following syntax to specify the functions.

preOceanFunc(session fp)
postOceanFunc(session fp)

In this syntax, session is the OASIS session and fp is the file pointer to the OCEAN
script file. For guidance on determining the session to use, see the Virtuoso®
Analog Design Environment SKILL Language Reference.

3. Load the functions in your .cdsinit file.

For example, you might add the following lines to your .cdsenv file.
June 2004 37 Product Version 5.1.41

OCEAN Reference
Using OCEAN
asimenv.misc preSaveOceanScript string "MYfirstProc"
asimenv.misc postSaveOceanScript string "MYlastProc"

The functions MYfirstProc and MYlastProc might be defined like this.

procedure(MYfirstProc(session fp)
fprintf(fp "; This will be the first line in the ocean script.\n")

)

procedure(MYlastProc(session fp)
fprintf(fp "; This will be the last line in the ocean script.\n")

)

If these procedures are defined in a file called myOceanProcs.il, you can load them by
adding to your .cdsinit file a command like the following.

load "myOceanProcs.il"

When you choose Session – Create Script, first the preSaveOceanScript procedure is
called, then the OCEAN script is created, then the postSaveOceanScript procedure is
called.

Loading OCEAN Scripts

You can load OCEAN scripts from OCEAN (in UNIX) or from the CIW.

From a UNIX Shell

To load an OCEAN script,

1. Type the following command to start OCEAN:

ocean

The OCEAN prompt appears.

2. Use the SKILL load command to load your script:

load("script_name.ocn")

Messages about the progress of your script appear.

From the CIW

To load an OCEAN script,

1. Start the Virtuoso software with the executable you prefer, for example
June 2004 38 Product Version 5.1.41

OCEAN Reference
Using OCEAN
icms&

The CIW appears.

2. In the text entry field, use the SKILL load command to load your script:

load("script_name.ocn")

Messages about the progress of your script appear in the CIW.

Note: OCEAN does not read your .cdsinit file. If you want your .cdsinit file read, you
must load it in your .oceanrc file.

Selecting Results

You may use OCEAN to run several simulations on the same design and save the results in
different result directories. You can then use Artist to select the results and work with features
like annotation etc.

Selecting Results Run from Worst Case Scripts for Cross-Probing or Back
Annotating Operating Points

Assume that you have been using Ocean to create separate data directories for worst case
corners or parameter sweeps. Also assume that the new directories you make are accessed
with the resultsDir() ocean command in your Ocean script and that these directories are
in the standard location where psf data is stored in Artist.

In Artist, psf data is stored in:

<runDir>/simulation/<testSchemName>/spectre/schematic/psf

where,

runDir is the directory where you envoke icfb&

testSchemName is your test schematic

This implies that your script should store the new directories under the schematic directory.
Therefore, if c1, c2 and c3 are the worst case directories, they are located at:

<runDir>/simulation/<testSchemName>/spectre/schematic/c1

<runDir>/simulation/<testSchemName>/spectre/schematic/c2

<runDir>/simulation/<testSchemName>/spectre/schematic/c3

1. Choose Artist -> Results -> Select
June 2004 39 Product Version 5.1.41

OCEAN Reference
Using OCEAN
2. The Select Results form opens. Click Browse. A Unix Browser form appears.

3. Navigate to the directory that contains your Ocean generated directories c1, c2, and c3.

4. Click OK on the Unix Browser form. Now the Select Results Form should show c1, c2
and c3.

5. Double click on c1, c2 or c3. Alternatively, you can also single click on c1, c2 or c3 and
then choose Update Results and click OK. At this point the data is selected though
there is no confirmation in the CIW. Now, you should be able to use Artist -> Results -
> Direct Plot , Artist -> Results -> Annotate etc to see the results of that particular
directory.

Selecting Results Run from Spectre Stand Alone

After running spectre standalone, you can select results using the Results Browser and use
calculator to plot the results. However, this does not allow you to use Artist features like Artist
-> Results -> Direct Plot or Artist -> Results -> Annotate.

Consider that your data is in

<runDir>/simulation/<testSchemName>/spectre/schematic/psf.

where,

runDir is the directory where you envoke icfb&

testSchemName is your test schematic

1. Choose Artist -> Tools -> Results Browser . A pop up box appears. Enter your design
path up to the spectre directory.

2. Click OK, and the browser comes up.

3. Click on schematic directory. The psf directory should appear.

4. Click on the directory with the data in it, psf. When you click on the ’psf’ directory you
should see the tree expand with different results from your spectre stand alone
simulation, e.g. tran.tran etc.

5. Place the mouse pointer over the ’psf’ node in the tree and press down the middle mouse
key and scroll down to "create ROF". You should now see the psf directory change, and
an intermediate node comes up --Run1-- betweenpsf/ and the results.

6. Place the middle mouse pointer over the Run1 node, scroll down and select "Select
Results".
June 2004 40 Product Version 5.1.41

OCEAN Reference
Using OCEAN
Note: Even though there is a confirmation message in the CIW that the select was
success, Artist is not synced up to allow cross-probing and back annotation of operating
points.

7. You may now use Artist -> Tools > Calculator to select objects from the schematic.
You can then choose ’plot’ from the calculator, or different calculator operations.

Note: You CAN use Artist -> Tools > Calculator but you CAN NOT use Artist -> Results
-> Direct Plot or Artist -> Results -> Annotate etc.

Running Multiple Simulators

There are times when you might want to run more than one simulator. You might be
benchmarking simulators or comparing results. In OCEAN, you can only use one simulator
per OCEAN session. If you change simulators, you must start a new OCEAN session. This
is because some OCEAN command arguments are simulator specific, and therefore change
when the simulator changes. For example, the arguments to the option command are
simulator specific. (No two simulators have the exact same options.) The analyses are
typically simulator specific also.

OCEAN Tips

The information in this section can help you solve problems that you encounter while using
OCEAN.

■ While working in OCEAN, you might get the following SKILL error message:

Error eval: unbound variable - nameOfVariable

In this case, you need to see if you have an undeclared variable or if you are missing a
single quotation mark (') or a quotation mark (") for one of your arguments. For example,
the following command returns an error message stating that fromVal is an unbound
variable because the variable has not been declared:

analysis('tran ?from fromVal)

However, the following pair of statements work correctly because fromVal has a value
(is bound).

fromVal=0

analysis('tran ?from fromVal)

■ If you get an error in an OCEAN session, you are automatically put into the SKILL
debugger. In this case, you see a prompt similar to this:
June 2004 41 Product Version 5.1.41

OCEAN Reference
Using OCEAN
ocean-Debug 2>

You can continue working. However, if you would like to get out of the debugger, you can
type

debugQuit()

Now you are back to the normal prompt:

ocean>

■ If it appears that OCEAN does not accept your input, or OCEAN appears to hang, then
you may have forgotten to enter a closing quotation mark. Type "] to close all strings.
For more information, and some examples, see “Recovering from an Omitted Quotation
Mark” on page 22.

■ In SKILL, the following formats are equivalent: (one two) and one(two). Results
might be returned in either format. For example, OCEAN might return ac(tran) or (ac
tran), but the two forms are equivalent.

■ You can check your script for simple syntax errors by running SKILL lint. For example,
you might use a command like

sklint -file myScript.ocn

From within OCEAN, you can run SKILL lint by typing the following at the OCEAN
prompt:

sklint(?file "yourOceanScript.ocn")

Running SKILL lint helps catch basic errors, such as unmatched parentheses and strings
that are not closed.
June 2004 42 Product Version 5.1.41

OCEAN Reference
3
Introduction to SKILL

This chapter introduces you to the basic concepts that can help you get started with the
Virtuoso® SKILL programming language. In this chapter, you can find information about

■ The Advantages of SKILL on page 43

■ Naming Conventions on page 44

■ Arithmetic Operators on page 44

■ Scaling Factors on page 44

■ Relational and Logical Operators on page 46

■ SKILL Syntax on page 48

■ Arithmetic and Logical Expressions on page 51

The Advantages of SKILL

The SKILL programming language lets you customize and extend your design environment.
SKILL provides a safe, high-level programming environment that automatically handles many
traditional system programming operations, such as memory management. SKILL programs
can be immediately run in the Virtuoso environment.

SKILL is ideal for rapid prototyping. You can incrementally validate the steps of your algorithm
before incorporating them in a larger program.

SKILL leverages your investment in Cadence technology because you can combine existing
functionality and add new capabilities.

SKILL lets you access and control all the components of your tool environment: the User
Interface Management System, the Design Database, and the commands of any integrated
design tool. You can even loosely couple proprietary design tools as separate processes with
SKILL’s interprocess communication facilities.
June 2004 43 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
Naming Conventions

The recommended naming scheme is to use uppercase and lowercase characters to
separate your code from code developed by Cadence.

All code developed by Cadence Design Systems typically names global variables and
functions with up to three lowercase characters, that signify the code package, and the name
starting with an uppercase character. For example, dmiPurgeVersions() or
hnlCellOutputs. All code developed outside Cadence should name global variables by
starting them with an uppercase character, such as AcmeGlobalForm.

Arithmetic Operators

SKILL provides many arithmetic operators. Each operator corresponds to a SKILL function,
as shown in the following table.

Scaling Factors

SKILL provides a set of scaling factors that you can add to the end of a decimal number
(integer or floating point) to achieve the scaling you want.

■ Scaling factors must appear immediately after the numbers they affect. Spaces are not
allowed between a number and its scaling factor.

■ Only the first nonnumeric character that appears after a number is significant. Other
characters following the scaling factor are ignored. For example, for the value 2.3mvolt,
the m is significant, and the volt is discarded. In this case, volt is only for your reference.

Sample SKILL Operators

Operators in Descending
Precedence

Underlying
Function

** exponentiation

*
/

multiply
divide

+
–

plus
minus

==
!=

equal
nequal

= assignment
June 2004 44 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
■ If the number being scaled is an integer, SKILL tries to keep it an integer; the scaling
factor must be representable as an integer (that is, the scaling factor is an integral
multiplier and the result does not exceed the maximum value that can be represented as
an integer). Otherwise, a floating-point number is returned.

The scaling factors are listed in the following table.

Note: The characters used for scaling factors depend on your target simulator. For example,
if you are using cdsSpice, the scaling factor for M is different than shown in the previous table,
because cdsSpice is not case sensitive. In cdsSpice, M and m are both interpreted as 10-3,
so ME or me is used to signify 106.

Scaling Factors

Character Name Multiplier Examples

Y Yotta 1024 10Y [10e+25]

Z Zetta 1021 10Z [10e+22]

E Exa 1018 10E [10e+19]

P Peta 1015 10P [10e+16]

T Tera 1012 10T [1.0e13]

G Giga 109 10G [10,000,000,000]

M Mega 106 10M [10,000,000]

K Kilo 103 10K [10,000]

% percent 10-2 5% [0.05]

m milli 10-3 5m [5.0e-3]

u micro 10-6 1.2u [1.2e-6]

n nano 10-9 1.2n [1.2e-9]

p pico 10-12 1.2p [1.2e-12]

f femto 10-15 1.2f [1.2e-15]

a atto 10-18 1.2a [1.2e-18]

z zepto 10-21 1.2z [1.2e-21]

y yocto 10-24 1.2y [1.2e-24]
June 2004 45 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
Relational and Logical Operators

This section introduces you to

■ Relational Operators: <, <=, >, >=, ==, !=

■ Logical Operators: !, &&, ||

Relational Operators

Use the following operators to compare data values. SKILL generates an error if the data
types are inappropriate. These operators all return t or nil.

Knowing the function name is helpful because error messages mention the function
(greaterp below) instead of the operator (>).

1 > "abc"
Message: *Error* greaterp: can’t handle (1 > "abc")

Sample Relational Operators

Operator Arguments Function Example Return Value

< numeric lessp 3 < 5
3 < 2

t
nil

<= numeric leqp 3 <= 4 t

> numeric greaterp 5 > 3 t

>= numeric geqp 4 >=3 t

== numeric
string
list

equal 3.0 == 3
"abc" == "ABc"

t
nil

!= numeric
string
list

nequal
"abc" != "ABc" t
June 2004 46 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
Logical Operators

SKILL considers nil as FALSE and any other value as TRUE. The and (&&) and or (||)
operators only evaluate their second argument if it is required for determining the return
result.

The && and || operators return the value last computed. Consequently, both && and ||
operators can be used to avoid cumbersome if or when expressions.

The following example illustrates the difference between using && and || operators and using
if or when expressions.

You do not need to use

If (usingcolor then
currentcolor=getcolor()
else
currentcolor=nil

)

Instead use

currentcolor=usingcolor && getcolor()

Using &&

When SKILL creates a variable, it gives the variable a value of unbound to indicate that the
variable has not been initialized yet. Use the boundp function to determine whether a
variable is bound. The boundp function

■ Returns t if the variable is bound to a value

Sample Logical Operators

Operator Arguments Function Example Return Value

&& general and 3 && 5
5 && 3
t && nil
nil && t

5
3
nil
nil

|| general or 3 || 5
5 || 3
t || nil
nil || t

3
5
t
t

June 2004 47 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
■ Returns nil if the variable is not bound to a value

Suppose you want to return the value of a variable trMessages. If trMessages is
unbound, retrieving the value causes an error. Instead, use the expression

boundp(’trMessages) && trMessages

Using ||

Suppose you have a default name, such as noName, and a variable, such as userName. To
use the default name if userName is nil, use the following expression:

userName || "noName"

SKILL Syntax

This section describes SKILL syntax, which includes the use of special characters,
comments, spaces, parentheses, and other notation.

Special Characters

Certain characters are special in SKILL. These include the infix operators such as less than
(<), colon (:), and assignment (=). The following table lists these special characters and their
meaning in SKILL.

Note: All nonalphanumeric characters (other than _ and ?) must be preceded (escaped) by
a backslash (\) when you use them in the name of a symbol.
Special Characters in SKILL

Character Name Meaning

\ backslash Escape for special characters

() parentheses Grouping of list elements, function calls

[] brackets Array index, super right bracket

’ single
quotation
mark

Specifies a symbol (quoting the expression prevents its
evaluation)

” quotation
mark

String delimiter

, comma Optional delimiter between list elements
June 2004 48 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
White Space

White space sometimes takes on semantic significance and a few syntactic restrictions must
therefore be observed.

Write function calls so the name of a function is immediately followed by a left parenthesis;
no white space is allowed between the function name and the parenthesis. For example

f(a b c) and g() are legal function calls, but f (a b c) and g () are illegal.

The unary minus operator must immediately precede the expression it applies to. No white
space is allowed between the operator and its operand. For example

-1, -a, and -(a*b) are legal constructs, but - 1, - a, and - (a*b) are illegal.

The binary minus (subtract) operator should either be surrounded by white space on both
sides or be adjacent to non-white space on both sides. To avoid ambiguity, one or the other
method should be used consistently. For example:

a - b and a-b are legal constructs for binary minus, but a -b is illegal.

Comments

SKILL permits two different styles of comments. One style is block oriented, where comments
are delimited by /* and */. For example:

/* This is a block of (C style) comments
comment line 2

; semicolon Line-style comment character

+, –, *, / arithmetic For arithmetic operators; the /* and */ combinations are
also used as comment delimiters

!,^,&,| logical For logical operators

<,>,= relational For relational and assignment operators;
< and > are also used in the specification of bit fields

? question mark If first character, implies keyword parameter

% percent sign Used as a scaling character for numbers

Special Characters in SKILL

Character Name Meaning
June 2004 49 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
comment line 3 etc.
*/

The other style is line- oriented where the semicolon (;) indicates that the rest of the input
line is a comment. For example:

x = 1 ; comment following a statement
; comment line 1
; comment line 2 and so forth

For simplicity, line-oriented comments are recommended. Block-oriented comments cannot
be nested because the first */ encountered terminates the whole comment.

Role of Parentheses

Parentheses () delimit the names of functions from their argument lists and delimit nested
expressions. In general, the innermost expression of a nested expression is evaluated first,
returning a value used in turn to evaluate the expression enclosing it, and so on until the
expression at the top level is evaluated. There is a subtle point about SKILL syntax that C
programmers, in particular, must be very careful to note.

Parentheses in C

In C, the relational expression given to a conditional statement such as if, while, and
switch must be enclosed by an outer set of parentheses for purely syntactical reasons,
even if that expression consists of only a single Boolean variable. In C, an if statement might
look like

if (done) i=0; else i=1;

Parentheses in SKILL

In SKILL, parentheses are used for specifying lists, calling functions, delimiting multiple
expressions, and controlling the order of evaluation. You can write function calls in prefix
notation

(fn2 arg1 arg2) or (fn0)

as well as in the more conventional algebraic form

fn2(arg1 arg2) or fn0()

The use of syntactically redundant parentheses causes variables, constants, or expressions
to be interpreted as the names of functions that need to be further evaluated. Therefore,
June 2004 50 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
■ Never enclose a constant or a variable in parentheses by itself; for example, (1), (x).

■ For arithmetic expressions involving infix operators, you can use as many parentheses
as necessary to force a particular order of evaluation, but never put a pair of parentheses
immediately outside another pair of parentheses; for example, ((a + b)): the
expression delimited by the inner pair of parentheses would be interpreted as the name
of a function.

For example, because if evaluates its first argument as a logical expression, a variable
containing the logical condition to be tested should be written without any surrounding
parentheses; the variable by itself is the logical expression. This is written in SKILL as

if(done then i = 0 else i = 1)

Line Continuation

SKILL places no restrictions on how many characters can be placed on an input line, even
though SKILL does impose an 8,191 character limit on the strings being entered. The parser
reads as many lines as needed from the input until it has read in a complete form (that is,
expression). If there are parentheses that have not yet been closed or binary infix operators
whose right sides have not yet been given, the parser treats carriage returns (that is,
newlines) just like spaces.

Because SKILL reads its input on a form-by-form basis, it is rarely necessary to “continue” an
input line. There might be times, however, when you want to break up a long line for aesthetic
reasons. In that case, you can tell the parser to ignore a carriage return in the input line simply
by preceding it immediately with a backslash (\).

string = "This is \
a test."
=> "This is a test."

Arithmetic and Logical Expressions

Expressions are SKILL objects that also evaluate to SKILL objects. SKILL performs a
computation as a sequence of function evaluations. A SKILL program is a sequence of
expressions that perform a specified action when evaluated by the SKILL interpreter.

There are two types of primitive expressions in SKILL that pertain to OCEAN: constants and
variables.
June 2004 51 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
Constants

A constant is an expression that evaluates to itself. That is, evaluating a constant returns the
constant itself. Examples of constants are 123, 10.5, and "abc".

Variables

A variable stores values used during the computation. The variable returns its value when
evaluated. Examples of variables are a, x, and init_var.

When the interpreter evaluates a variable whose value has not been initialized, it displays an
error message telling you that you have an unbound variable. For example, you get an error
message when you misspell a variable because the misspelling creates a new variable.

myVariable

causes an error message because it has been referenced before being assigned, whereas

myVariable = 5

works.

When SKILL creates a variable, it gives the variable an initial value of unbound. It is an error
to evaluate a variable with this value because the meaning of unbound is that-value-which-
represents-no-value. unbound is not the same as nil.

Using Variables

You do not need to declare variables in SKILL as you do in C. SKILL creates a variable the
first time it encounters the variable in a session. Variable names can contain

■ Alphanumeric characters

■ Underscores (_)

■ Question marks

■ Digits

The first character of a variable must be an alphanumeric character or an underscore. Use
the assignment operator to store a value in a variable. You enter the variable name to retrieve
its value.

lineCount = 4 => 4
lineCount => 4
June 2004 52 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
lineCount = "abc" => "abc"
lineCount => "abc"

Creating Arithmetic and Logical Expressions

Constants, variables, and function calls can be combined with the infix operators, such as
less than (<), colon (:), and greater than (>) to form arithmetic and logical expressions. For
example: 1+2, a*b+c, x>y.

You can form arbitrarily complicated expressions by combining any number of the primitive
expressions described above.
June 2004 53 Product Version 5.1.41

OCEAN Reference
Introduction to SKILL
June 2004 54 Product Version 5.1.41

OCEAN Reference
4
Working with SKILL

This chapter provides information on using SKILL functions. It includes information on the
types of SKILL functions, the types of data accepted as arguments, how data types are used,
and how to declare and define functions. In this chapter, you can find information about

■ Skill Functions on page 55

■ Data Types on page 55

■ Arrays on page 58

■ Concatenating Strings (Lists) on page 58

■ Declaring a SKILL Function on page 60

■ Skill Function Return Values on page 62

■ Syntax Functions for Defining Functions on page 62

Skill Functions

There are two basic types of SKILL functions:

■ Functions carry out statements and return data that can be redirected to other
commands or functions.

■ Commands are functions that carry out statements defined by the command and return
t or nil. Some commands return the last argument entered, but the output cannot be
redirected.

Data Types

SKILL supports several data types, including integer and floating-point numbers, character
strings, arrays, and a highly flexible linked list structure for representing aggregates of data.
The simplest SKILL expression is a single piece of data, such as an integer, a floating-point
June 2004 55 Product Version 5.1.41

OCEAN Reference
Working with SKILL
number, or a string. SKILL data is case sensitive. You can enter data in many familiar ways,
including the following:

For symbolic computation, SKILL has data types for dealing with symbols and functions.

For input/output, SKILL has a data type for representing I/O ports. The table below lists the
data types supported by SKILL with their internal names and prefixes.

Numbers

SKILL supports the following numeric data types:

Sample SKILL Data Items

Data Type Syntax Example

integer 5

floating point number 5.3

text string "Mary had a little lamb"

Data Types Supported by SKILL

Data Type Internal Name Prefix

array array a

boolean b

floating-point number flonum f

any data type general g

linked list list l

floating-point number or integer n

user-defined type o

I/O port port p

symbol symbol s

symbol or character string S

character string (text) string t

window type w

integer number fixnum x
June 2004 56 Product Version 5.1.41

OCEAN Reference
Working with SKILL
■ Integers

■ Floating-point

Both integers and floating-point numbers may use scaling factors to scale their values. For
information on scaling factors, see “Scaling Factors” on page 44.

Atoms

An atom is any data object that is not a grouping or collection of other data objects. Built into
SKILL are several special atoms that are fundamental to the language.

nil The nil atom represents both a false logical condition and an
empty list.

t The symbol t represents a true logical condition.

Both nil and t always evaluate to themselves and must never be used as the name of a
variable.

unbound To make sure you do not use the value of an uninitialized
variable, SKILL sets the value of all symbols and array elements
initially to unbound so that such an error can be detected.

Constants and Variables

Supported constants and variables are discussed in “Arithmetic and Logical Expressions” on
page 3-14.

Strings

Strings are sequences of characters; for example, "abc" or "123". A string is marked off by
quotation marks, just as in the C language; the empty string is represented as "". The SKILL
parser limits the length of input strings to a maximum of 8,191 characters. There is, however,
no limit to the length of strings created during program execution. Strings of more than 8,191
characters can be created by applications and used in SKILL if they are not given as
arguments to SKILL string manipulation functions.

When typing strings, you specify

■ Printable characters (except a quotation mark) as part of a string without preceding them
with the backslash (\) escape character
June 2004 57 Product Version 5.1.41

OCEAN Reference
Working with SKILL
■ Unprintable characters and the quotation mark itself by preceding them with the
backslash (\) escape character, as in the C language

Arrays

An array represents aggregate data objects in SKILL. Unlike simple data types, you must
explicitly create arrays before using them so the necessary storage can be allocated. SKILL
arrays allow efficient random indexing into a data structure using familiar syntax.

■ Arrays are not typed. Elements of the same array can be different data types.

■ SKILL provides run-time array bounds checking. The array bounds are checked with
each array access during runtime. An error occurs if the index is outside the array
bounds.

■ Arrays are one dimensional. You can implement higher dimensional arrays using single
dimensional arrays. You can create an array of arrays.

Allocating an Array of a Given Size

Use the declare function to allocate an array of a given size.

declare(week[7]) => array[7]:9780700
week => array[7]:9780700
type(week) => array
days = ’(monday tuesday wednesday

thursday friday saturday sunday)
for(day 0 length(week)-1

week[day] = nth(day days))

■ The declare function returns the reference to the array storage and stores it as the
value of week.

■ The type function returns the symbol array.

Concatenating Strings (Lists)

Concatenating a List of Strings with Separation Characters (buildString)

buildString makes a single string from the list of strings. You specify the separation
character in the third argument. A null string is permitted. If this argument is omitted,
buildString provides a separating space as the default.
June 2004 58 Product Version 5.1.41

OCEAN Reference
Working with SKILL
buildString(’("test" "il") ".") => "test.il"
buildString(’("usr" "mnt") "/") => "usr/mnt"
buildString(’("a" "b" "c")) => "a b c"
buildString(’("a" "b" "c") "") => "abc"

Concatenating Two or More Input Strings (strcat)

strcat creates a new string by concatenating two or more input strings. The input strings
are left unchanged.

strcat("l" "ab" "ef") => "labef"

You are responsible for any separating space.

strcat("a" "b" "c" "d") => "abcd"
strcat("a " "b " "c " "d ") => "a b c d "

Appending a Maximum Number of Characters from Two Input Strings (strncat)

strncat is similar to strcat except that the third argument indicates the maximum
number of characters from string2 to append to string1 to create a new string.
string1 and string2 are left unchanged.

strncat("abcd" "efghi" 2) => "abcdef"
strncat("abcd" "efghijk" 5) => "abcdefghi"

Comparing Strings

Comparing Two Strings or Symbol Names Alphabetically (alphalessp)

alphalessp compares two objects, which must be either a string or a symbol, and returns
t if arg1 is alphabetically less than arg2. alphalessp can be used with the sort
function to sort a list of strings alphabetically. For example:

stringList = ’("xyz" "abc" "ghi")
sort(stringList ’alphalessp) => ("abc" "ghi" "xyz")

The next example returns a sorted list of all the files in the login directory:

sort(getDirFiles("~") ’alphalessp)
June 2004 59 Product Version 5.1.41

OCEAN Reference
Working with SKILL
Comparing Two Strings Alphabetically (strcmp)

strcmp compares two strings. (To simply test if two strings are equal or not, you can use
the equal command.) The return values for strcmp are explained in the following table.

strcmp("abc" "abb")=> 1
strcmp("abc" "abc")=> 0
strcmp("abc" "abd")=> -1

Comparing Two String or Symbol Names Alphanumerically or Numerically
(alphaNumCmp)

alphaNumCmp compares two string or symbol names. If the third optional argument is not
nil and the first two arguments are strings holding purely numeric values, a numeric
comparison is performed on the numeric representation of the strings. The return values are
explained in the following table.

Declaring a SKILL Function

To refer to a group of statements by name, use the procedure declaration to associate a
name with the group. The group of statements and the name make up a SKILL function.

■ The name is known as the function name.

■ The group of statements is the function body.

To run the group of statements, mention the function name followed immediately by ().

Return Value Meaning

1 string1 is alphabetically greater than string2.

0 string1 is alphabetically equal to string2.

-1 string1 is alphabetically less than string2.

Return Value Meaning

1 arg1 is alphanumerically greater than arg2.

0 arg1 is alphanumerically identical to arg2.

-1 arg2 is alphanumerically greater than arg1.
June 2004 60 Product Version 5.1.41

OCEAN Reference
Working with SKILL
The clearplot command below erases the Waveform window and then plots a net.

procedure(clearplot(netname)
clearAll()
plot(v (netName))

)

Defining Function Parameters

To make your function more versatile, you can identify certain variables in the function body
as formal parameters.

When you start your function, you supply a parameter value for each formal parameter.

Defining Local Variables (let)

Local variables can be used to establish temporary values in a function. This is done using
the let statement. When local variables are defined, they are known only within the let
statement and are not available outside the let statement.

When the function is defined, the let statement includes the local variables you want to
define followed by one or more SKILL expressions. The variables are initialized to nil. When
the function runs, it returns the last expression computed within its body. For example:

procedure(test (x)
let((a b)
a=1
b=2
x * a+b
)

)

■ The function name is test.

■ The local variables are a and b.

■ The local variables are initialized to nil.

■ The return value is the value of x * a + b.
June 2004 61 Product Version 5.1.41

OCEAN Reference
Working with SKILL
Skill Function Return Values

All SKILL functions compute a data value known as the return value of the function.
Throughout this document, the right arrow (=>) denotes the return value of a function call.
You can

■ Assign the return value to a SKILL variable

■ Pass the return value to another SKILL function

Any type of data can be a return value.

Syntax Functions for Defining Functions

SKILL supports the following syntax functions for defining functions. You should use the
procedure function in most cases.

procedure

The procedure function is the most general and is easiest to use and understand.

The procedure function provides the standard method of defining functions. Its return
value is the symbol with the name of the function. For example:

procedure(trAdd(x y)
"Display a message and return the sum of x and y"
printf("Adding %d and %d ... %d \n" x y x+y)
x+y
) => trAdd

trAdd(6 7) => 13

Terms and Definitions

function, procedure
In SKILL, the terms procedure and function are used
interchangeably to refer to a parameterized body of code that
can be executed with actual parameters bound to the formal
parameters. SKILL can represent a function as both a
hierarchical list and as a function object.

argument, parameter
The terms argument and parameter are used interchangeably.
June 2004 62 Product Version 5.1.41

OCEAN Reference
Working with SKILL
The actual arguments in a function call correspond to the formal
arguments in the declaration of the function.

expression A use of a SKILL function, often by means of an operator
supplying required parameters.

function body The collection of SKILL expressions that define the function’s
algorithm.
June 2004 63 Product Version 5.1.41

OCEAN Reference
Working with SKILL
June 2004 64 Product Version 5.1.41

OCEAN Reference
5
OCEAN Environment Commands

The following OCEAN environment commands let you start, control, and quit the OCEAN
environment.

appendPath on page 66

path on page 67

prependPath on page 68

setup on page 69
June 2004 65 Product Version 5.1.41

OCEAN Reference
OCEAN Environment Commands
appendPath

appendPath(t_dirName1 ... [t_dirNameN])
=> t_dirNameN/nil

Description

Appends a new path to the end of the search path list. You can append as many paths as you
want with this command.

Arguments

t_dirName1 Directory path.

t_dirNameN Additional directory path.

Value Returned

t_dirNameN Returns the last path specified.

nil Returns nil and prints an error message if the paths cannot be
appended.

Example
appendPath("/usr/mnt/user/processA/models")
=> "/usr/mnt/user/processA/models"

Adds /usr/mnt/user/processA/models to the end of the current search path.

appendPath("/usr/mnt/user/processA/models" "/usr/mnt/user/processA/models1")
=> "/usr/mnt/user/processA/models"

Adds /usr/mnt/user/processA/models and /usr/mnt/user/processA/models1
to the end of the current search path.
June 2004 66 Product Version 5.1.41

OCEAN Reference
OCEAN Environment Commands
path

path(t_dirName1 ... [t_dirNameN])
=> l_pathList/nil

Description

Sets the search path for included files.

This command overrides the path set earlier using any of these commands: path,
appendPath, or prependPath.

Using this command is comparable to setting the Include Path for the direct simulator, or the
modelPath for socket simulators in the Virtuoso® Analog Design Environment user
interface. You can add as many paths as you want with this command.

Arguments

t_dirName1 Directory path.

t_dirNameN Additional directory path.

Value Returned

l_pathList Returns the entire list of search paths specified.

nil Returns nil and prints an error message if the paths cannot be
set.

Examples
path("~/models" "/tmp/models")
=> "~/models" "/tmp/models"

Specifies that the search path includes /models followed by /tmp/models.

path()
=> "~/models" "/tmp/models"

Returns the search path last set.
June 2004 67 Product Version 5.1.41

OCEAN Reference
OCEAN Environment Commands
prependPath

prependPath(t_dirName1 ... [t_dirNameN])
=> undefined/nil

Description

Adds a new path to the beginning of the search path list. You can add as many paths as you
want with this command.

Arguments

t_dirName1 Directory path.

t_dirNameN Additional directory path.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the paths cannot be
added.

Examples
prependPath("/usr/mnt/user/processB/models")
=> "/usr/mnt/user/processB/models"

Adds /usr/mnt/user/processB/models to the beginning of the search path list.

prependPath("/usr/mnt/user/processB/models" "/usr/mnt/user/processB/models2")
=> "/usr/mnt/user/processB/models"

Adds /usr/mnt/user/processB/models and /usr/mnt/user/processB/models2
to the beginning of the search path list.

prependPath()
=> "/usr/mnt/user/processB/models" "~/models" "/tmp/models"

Returns the search path last set.
June 2004 68 Product Version 5.1.41

OCEAN Reference
OCEAN Environment Commands
setup

setup([?numberNotation s_numberNotation] [?precision x_precision]
[?reportStyle s_reportStyle] [?charsPerLine x_charsPerLine]
[?messageOn g_messageOn])
=> t/nil

Description

Specifies default values for parameters.

Arguments

s_numberNotation
Specifies the notation for printed information.
Valid values: ’suffix, ’engineering, ’scientific,
’none
Default value: ’suffix

The format for each value is ’suffix: 1m, 1u, 1n, etc.;
’engineering: 1e-3, 1e-6, 1e-9, etc.; ’scientific:
1.0e-2, 1.768e-5, etc.; ’none.

The value ’none is provided so that you can turn off formatting
and therefore greatly speed up printing for large data files.

x_precision Specifies the number of significant digits that are printed.
Valid values: 1 through 16
Default value: 6

s_reportStyle
Specifies the format of the output of the report command.
Valid values: spice, paramValPair
Default value: paramValPair

The spice format is:
Param1 Param2 Param3

Name1 value value value

Name2 value value value

Name3 value value value
June 2004 69 Product Version 5.1.41

OCEAN Reference
OCEAN Environment Commands
The paramValPair format is:

Name1
Param1=value Param2=value Param3=value

Name2
Param1=value Param2=value Param3=value

Name3
Param1=value Param2=value Param3=value

x_charsPerLine Specifies the number of characters per line output to the display.
Default value: 80

g_messageOn Specifies whether error messages are turned on.
Valid values: t, nil
Default value: t, which specifies that messages are turned on.

Value Returned

t Returns t if the value is assigned to the name.

nil Returns nil if there is a problem.

Examples
setup(?numberNotation ’engineering)
=> t

Specifies that any printed information is to be in engineering mode by default.

setup(?precision 5)
=> t

Specifies that 5 significant digits are to be printed.

setup(?numberNotation ’suffix ?charsPerLine 40 ?reportStyle ’spice ?messageOn t)

Sets up number notation to suffix format, characters per line to 40, reporting style to
Spice, and error message to ON.
June 2004 70 Product Version 5.1.41

OCEAN Reference
6
Simulation Commands

The following OCEAN simulation commands let you set up and run your simulation.

ac on page 73

analysis on page 75

createFinalNetlist on page 78

createNetlist on page 79

converge on page 81

dc on page 82

definitionFile on page 84

delete on page 85

design on page 87

desVar on page 89

envOption on page 91

forcenode on page 93

ic on page 94

includeFile on page 95

modelFile on page 96

nodeset on page 97

noise on page 98

ocnDisplay on page 99

ocnGetWaveformTool on page 101

ocnWaveformTool on page 102

off on page 103
June 2004 71 Product Version 5.1.41

OCEAN Reference
Simulation Commands
option on page 104

restore on page 106

resultsDir on page 107

run on page 108

save on page 111

saveOption on page 113

simulator on page 115

stimulusFile on page 116

store on page 118

temp on page 119

tran on page 120
June 2004 72 Product Version 5.1.41

OCEAN Reference
Simulation Commands
ac

ac(g_fromValue g_toValue g_ptsPerDec)
=> undefined/nil

ac(g_fromValue g_toValue t_incType g_points)
=> undefined/nil

Description

Specifies an AC analysis.

To know more about this analysis, see the simulator-specific user guide.

Arguments

g_fromValue Starting value for the AC analysis.

g_toValue Ending value.

g_ptsPerDec Points per decade.

t_incType Increment type.
Valid values: For the Spectre® circuit simulator, "Linear",
"Logarithmic", or "Automatic". For other simulators,
"Linear" or "Logarithmic".

g_points Either the linear or the logarithmic value, which depends on
t_incType.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the analysis is not
specified.

Examples
ac(1 10000 2)

Specifies an AC analysis from 1 to 10,000 with 2 points per decade.

ac(1 10000 "Linear" 100)
June 2004 73 Product Version 5.1.41

OCEAN Reference
Simulation Commands
Specifies an AC analysis from 1 to 10,000 by 100.

ac(1 5000 "Logarithmic" 10)

Specifies an AC analysis from 1 to 5000 with 10 logarithmic points per decade.
June 2004 74 Product Version 5.1.41

OCEAN Reference
Simulation Commands
analysis

analysis(s_analysisType [?analysisOption1 g_analysisOptionValue1]…
[?analysisOptionN g_analysisOptionValueN])
=> undefined/nil

Description

Specifies the analysis to be simulated.

You can include as many analysis options as you want. Analysis options vary, depending on
the simulator you are using. To include an analysis option, replace analysisOption1 with
the name of the desired analysis option and include another argument to specify the value for
the option. If you have an AC analysis, the first option/value pair might be [?from 0].

Note: Some simplified commands are available for basic SPICE analyses. See the ac, dc,
tran, and noise commands. Use the ocnHelp(’analysis) command for more
information on the analysis types for the simulator you choose.

Arguments

s_analysisType
Type of the analysis. The valid values for this argument depend
on the analyses that the simulator contains.
The basic SPICE2G-like choices: ‘tran, ‘dc, ‘ac, and
‘noise.

?analysisOption1
Analysis option. The analysis options available depend on which
simulator you use. (See the documentation for your simulator.)
If you are using the Spectre® circuit simulator, see the
information about analysis statements in the Spectre Circuit
Simulator Reference manual for analysis options you can use.

g_analysisOptionValue1
Value for the analysis option.

?analysisOptionN
Any subsequent analysis option. The analysis options that are
available depend on which simulator you use. (See the
documentation for your simulator.)
June 2004 75 Product Version 5.1.41

OCEAN Reference
Simulation Commands
g_analysisOptionValueN
Value for the analysis option.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there is a problem
specifying the analysis.

Examples
analysis(’ac ?start 1 ?stop 10000 ?lin 100)

For the Spectre® circuit simulator, specifies that an AC analysis be performed.

analysis(’tran ?start 0 ?stop 1u ?step 10n)

Specifies that a transient analysis be performed.

analysis(’dc ?oppoint "rawfile" ?save "allpub"
?param "temp" ?start -50 ?stop 100)

Sweeps temperature for the Spectre® circuit simulator.

analysis(’dc ?saveOppoint t)

Saves the DC operating point information for the Spectre® circuit simulator.

analysis(’xf ?start 0 ?stop 100 ?lin 2 ?dev "v3" ?param "dc" ?freq 1 ?probe "v4")

Sets the Spectre transfer function analysis.

analysis(’sens ?analyses_list list("dcOp" "dc" "ac") ?output_list list("I7:3"
"OUT")

Sets the Spectre sensitivity analysis.

analysis(’noise ?start 1 ?stop 10e6 ?oprobe "V4")

Sets the Spectre noise analysis.

analysis(’dcmatch ?oprobe "/PR1")

analysis(’dcmatch ?param "temp" ?start "24" ?stop "26 ?lin "5")

Sets the Spectre dcmatch analysis.

analysis(’pz ?freq "2" ?readns "./abc" ?oppoint "rawfile" ?fmax "4500000000"
?zeroonly "no" ?prevoppoint "no" ?restart "no" ?annotate "no" ?stats "no")

Sets the Spectre pz analysis.
June 2004 76 Product Version 5.1.41

OCEAN Reference
Simulation Commands
analysis(’stb ?start "10" ?stop "10G" ?dec "10" ?probe "/PR1" ?prevoppoint "yes"
?readns "./abc" ?save "lvl" ?nestlvl "1" ?oppoint "logfile" ?restart "yes"
?annotate "no" ?stats "yes")

Sets the Spectre stability analysis.

analysis(’pss ?fund "100M" ?harms "3" ?errpreset "moderate")

Sets the Spectre pss RF analysis.

analysis(’pnoise ?start "1K" ?stop "30M" ?log "20" ?maxsideband "3"
?oprobe "/rif" ?iprobe "/rf" ?refsideband "0")

Sets the Spectre pnoise RF analysis.

analysis(’pac ?sweeptype "relative" ?relharmnum "" ?start "700M" ?stop "800M"
?lin "5" ?maxsideband "3")

Sets the Spectre pac RF analysis.

analysis(’pxf ?start "10M" ?stop "1.2G" ?lin "100" ?maxsideband "3" ?p "/Plo"
?n "/gnd!")

Sets the Spectre pxf RF analysis.

analysis(’qpss ?funds list("flo" "frf") ?maxharms list("0" "0")
?errpreset "moderate" ?param "prf" ?start "-25" ?stop "-10" ?lin "5")

Sets the Spectre qpss RF analysis.

analysis(’qpac ?start "920M" ?stop "" ?clockmaxharm "0")

Sets the Spectre qpac analysis.

analysis(’sp ?start "100M" ?stop "1.2G" ?step "100" ?donoise "yes"
?oprobe "/PORT0" ?iprobe "/RF")

Sets the Spectre sp (S - parameter) analysis.
June 2004 77 Product Version 5.1.41

OCEAN Reference
Simulation Commands
createFinalNetlist

createFinalNetlist()
=> t/nil

Description

Creates the final netlist for viewing purposes. The netlist also can be saved but is not required
to run the simulator.

Note: This command works only for socket simulators, such as spectreS. For direct
simulators, such as spectre, use createNetlist instead.

Arguments

None.

Value Returned

t Returns t if the final netlist is created.

nil Returns nil and prints an error message otherwise.

Example
createFinalNetlist()

Creates the final netlist for the current simulation run.
June 2004 78 Product Version 5.1.41

OCEAN Reference
Simulation Commands
createNetlist

createNetlist([?recreateAll b_recreateAll] [?display b_display])
=> t_filename/nil

Description

Creates the simulator input file.

If the design is specified as lib/cell/view, this command netlists the design, if required, and
creates the simulator input file. When the b_recreateAll argument is set to t and the
design is specified as lib/cell/view, all the cells in the design hierarchy are renetlisted, before
creating the simulator input file. If the design is specified as netlist file, that netlist is included
in the simulator input file. Also see the design function.

When the b_display option is set to t (or nil) the netlist file is displayed (or undisplayed)
to the user. By default, b_display it set to ’t (true).

Note: This command does not work with socket simulators.

Arguments

b_recreateAll
If set and the design is specified as lib/cell/view, the entire netlist
is recreated.

Value Returned

t_fileName Returns the name of the simulator input file on success.

nil otherwise nil is returned

Examples
createNetlist()
=> "/usr/foo/netlist/input.scs"

Creates simulator input file for the current simulation run.

design(?lib "test" ?cell "mytest" ?view "spectre")

createNetlist(?recreateAll t)
=>"/usr/foo/netlist/input.scs"

Netlists and creates simulator input file for the current simulation run.
June 2004 79 Product Version 5.1.41

OCEAN Reference
Simulation Commands
design(?lib "test" ?cell "mytest1" ?view "spectre")

createNetlist(?recreateAll t ?display nil)
=>"/usr/foo/netlist/input.scs"

Netlists and creates simulator input file for the given simulation run but does not display the
input.scs file in a new window which may be annoying to the user. By default ?display
option is set to ’t meaning netist file would be displayed. This can be turned ON/OFF via
?display set to t/nil
June 2004 80 Product Version 5.1.41

OCEAN Reference
Simulation Commands
converge

converge(s_convName t_netName1 f_value1 ... [t_netNameN f_valueN])
=> undefined/nil

Description

Sets convergence criteria on nets.

To know more about convergence, refer to the chapter Helping a Simulation to Converge
of the Virtuoso Analog Design Environment User Guide.

Arguments

s_convName Name of the convergence type. Valid values are one of nodeset
ic and forcenode. Note that forcenode is not supported for
the spectre and spectreS simulators.

t_netName1 Name of the net to which you want to set convergence criteria.

f_value1 Voltage value for the net

t_netNameN Name of the additional net

f_value Voltage value for the additional net

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the function fails

Examples
converge(’ic "/I0/net1" 5)

Sets the convergence name for the initial condition net1 to 5 volts.

converge(’nodeset "/I0/net1" 5)

Sets the convergence name for nodeset of net1 to 5 volts.
June 2004 81 Product Version 5.1.41

OCEAN Reference
Simulation Commands
dc

dc(t_compName [t_compParam] g_fromValue g_toValue g_byValue)
=> undefined/nil

Description

Specifies a DC sweep analysis with limited options. If other analysis options are needed, use
the analysis command.

To know more about this analysis, see the simulator-specific user guide.

Note: t_compParam is valid only for the spectre, spectreS, spectreVerilog and
spectreSVerilog simulators.

Arguments

t_compName Name of the source (or component, for the Spectre® circuit
simulator) to sweep.

t_compParam For the Spectre® circuit simulator, the component parameter to
be swept.

g_fromValue Starting value for the DC analysis.

g_toValue Ending value.

g_byValue The increment at which to step through the analysis.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the analysis is not
specified.

Examples
dc("v1" "dc" 0 5 1)

dc("r1" "r" 0 5 1)

Specifies two DC sweep analyses for the Spectre® circuit simulator.
June 2004 82 Product Version 5.1.41

OCEAN Reference
Simulation Commands
dc("v1" 0 5 1)

Specifies one DC sweep analysis for a simulator other than the Spectre® circuit simulator.
June 2004 83 Product Version 5.1.41

OCEAN Reference
Simulation Commands
definitionFile

definitionFile(t_fileName [t_fileName2 ... t_fileNameN])
=> l_fileNames/nil

Description

Specifies definitions files to be included in the simulator input file.

Definitions files define functions and global variables that are not design variables. Examples
of such variables are model parameters or internal simulator parameters. To know more
about definitions files, see the section Using a Definitions File in Chapter 3 of the
Virtuoso Analog Design Environment User Guide.

Note: This command does not work with socket simulators.

Arguments

t_fileName The name of the definition file that would typically contain
functions or parameter statements.

Value Returned

l_fileNames A list of the file names specified; returned on success.

nil Otherwise nil is returned.

Example
definitionFile("functions.def” “constants.def")
=> ("functions.def” “constants.def")

Includes functions.def and constants.def files in the simulator input file.

definitionFile()
=> ("functions.def" "constants.def")

Returns the definition files set earlier.
June 2004 84 Product Version 5.1.41

OCEAN Reference
Simulation Commands
delete

delete(s_command [g_commandArg1] [g_commandArg2] …)
=> t/nil

Description

Deletes all the information specified.

The s_command argument specifies the command whose information you want to delete. If
you include only this argument, all the information for the command is deleted. If you supply
subsequent arguments, only those particular pieces of information are deleted as opposed to
deleting all the information for that command.

Arguments

s_command Command that was initially used to add the items that are now
being deleted.
Valid values: analysis, desVar, path, save, ic, forcenode,
monteCarlo, monteExpr, nodeset, optimizeGoal,
optimizeVar, optimizeAlgoControl,
optimizePlotOption

Using delete(’monteCarlo) turns off the monteCarlo
command and sets everything back to the defaults.

g_commandArg1 Argument corresponding to the specified command.

g_commandArg2 Additional argument corresponding to the specified command.

Value Returned

t Returns t if the information is deleted.

nil Returns nil if there is an error.

Examples
delete(’save)
=> t

Deletes all the saves.
June 2004 85 Product Version 5.1.41

OCEAN Reference
Simulation Commands
delete(’save ’v)
=> t

Deletes only the nets. The rest of the information can be saved in subsequent simulations.

delete(’save "net23")
=> t

Deletes only net23. The rest of the information can be saved in subsequent simulations.

delete(’monteCarlo)
=> t

Turns off the monteCarlo command and sets everything back to the defaults.
June 2004 86 Product Version 5.1.41

OCEAN Reference
Simulation Commands
design

design(t_cktFile)
=> t_cktFile/nil

design(t_lib t_cell t_view)
=> (t_lib t_cell t_view)/nil

design(t_lib t_cell t_view t_mode)
=> (t_lib t_cell t_view)/nil

Description

Specifies the name of the design to be simulated.

Note: You can use the lib, cell, view version of the design command only if you are
running OCEAN within icms, msfb, or icfb. You cannot use this version of the command
within the OCEAN process itself.

Arguments

t_cktFile For the direct simulator, the name of the netlist. The name must
end in netlist. Note that the netlistHeader and
netlistFooter files are also needed in the same directory.

For socket simulators, this is the name of the raw circuit file. If
generated in the Virtuoso® Analog Design Environment, the file
is named design.c and is found in the netlist directory.

Otherwise, cktFile is a pre-existing netlist file from another
source. In this case, you might need to remove the .cards from
the netlist because the OCEAN commands are converted to
.cards and appended to the final netlist. The simulator might
give an error or warning if the .cards are read twice.

t_lib Name of the Virtuoso® Analog Design Environment library that
contains the design.

t_cell Name of the design.

t_view View of the design (typically schematic).

t_mode The mode in which the design should be opened. The value can
be r, w or a, representing read, write and append,
June 2004 87 Product Version 5.1.41

OCEAN Reference
Simulation Commands
respectively. The default mode is append. Read-only designs
can be netlisted only by direct netlisters, and not socket. The w
mode should not be used as it overwrites the design.

Value Returned

t_cktFile Returns the name of the design if successful.

l_(lib cell view)
Returns the name of the view for an Virtuoso® Analog Design
Environment design if successful.

nil Returns nil and prints an error message if there is a problem
using the specified design.

Examples

For the Spectre® circuit simulator,

design("netlist")
=> netlist

specifies that netlist, a netlist file, be used in the simulation.

For the spectreS simulator,

design("simple.c")
=> simple.c

specifies that simple.c, a raw circuit file, be used in the simulation.

design("tests" "simple" "schematic")
=> (tests simple schematic)

Specifies that the schematic view of the simple design from your tests library be used
in the simulation.

design("mylib" "ampTest" "schematic" "a")
=> (mylib ampTest schematic)

Specifies that the schematic view of the ampTest design from your mylib library be
appended to the simulation.

design()
=> (mylib ampTest schematic)

Returns the lib-cell-view being used in the current session. If a design has not been specified,
it returns nil.
June 2004 88 Product Version 5.1.41

OCEAN Reference
Simulation Commands
desVar

desVar(t_desVar1 f_value1 … [t_desVarN f_valueN])
=> undefined/nil

Description

Sets the values of design variables used in your design. You can set the values for as many
design variables as you want.

To know more about design variables, refer to the chapters Design Variables and
Simulation Files for Direct Simulation and Design Variables and Simulation Files for
Socket Simulation of the Virtuoso Analog Design Environment User Guide.

Arguments

t_desVar1 Name of the design variable.

f_value1 Value for the design variable.

t_desVarN Name of an additional design variable.

f_valueN Value for the additional design variable.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the assignments fail.

Examples
desVar()

Returns the design variables set last, if any. Otherwise, it returns nil.

desVar("rs" 1k)

Sets the rs design variable to 1k.

desVar("r1" "rs" "r2" "rs*2")

Sets the r1 design variable to rs, or 1k, and sets the r2 design variable to rs*2, or 2k.

a = evalstring(desVar("rs")) / 2
June 2004 89 Product Version 5.1.41

OCEAN Reference
Simulation Commands
Sets a to 1k/2 or 500.

Note: evalstring is necessary because desVar returns a string.
June 2004 90 Product Version 5.1.41

OCEAN Reference
Simulation Commands
envOption

envOption(s_envOption1 g_value1 … [s_envOptionN g_valueN])
=> undefined/nil

Description

Sets environment options.

Use the OCEAN online help command ocnHelp(’envOption) to get the list of
environment options. To specify an include file, use the includeFile command, not the
envOption command. To set a model path, use the path command, not the envOption
command.

To know more about environment options, see the section Environment Options in Chapter
2 of the Virtuoso Analog Design Environment User Guide.

Arguments

s_envOption1 Name of the first environment option to set.

g_value1 Value for the option.

s_envOptionN Name of an additional environment option to set.

g_valueN Value for the option.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil if there are problems setting the option.

Examples

envOption(’paramRangeCheckFile "./myDir/range.check")

Sets the paramRangeCheckFile environment option.

envOption(’initFile "./myDotSFiles/init")

Sets the initFile environment option.
June 2004 91 Product Version 5.1.41

OCEAN Reference
Simulation Commands
envOption(’updateFile "./myDotSFiles/update")

Sets the updateFile environment option.
June 2004 92 Product Version 5.1.41

OCEAN Reference
Simulation Commands
forcenode

forcenode(t_netName1 f_value1 … [t_netNameN f_valueN])
=> undefined/nil

Description

Holds a node at a specified value.

To know more about convergence, refer to the chapter Helping a Simulation to Converge
of the Virtuoso Analog Design Environment User Guide.

Note: This is not available for the spectre and spectreS simulators. Refer to the
documentation for your simulator to see if this feature is available for your simulator.

Arguments

t_netName1 Name of the net.

f_value1 Voltage value for the net.

t_netNameN Name of an additional net.

f_valueN Voltage value for the net.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message.

Example
forcenode("net1" 5 "net34" 2)

Sets the force nodes of "net1" to 5 and "net34" to 2.
June 2004 93 Product Version 5.1.41

OCEAN Reference
Simulation Commands
ic

ic(t_netName1 f_value1 … [t_netNameN f_valueN])
=> undefined/nil

Description

Sets initial conditions on nets in a transient analysis.

To know more about convergence, refer to the chapter Helping a Simulation to Converge
of the Virtuoso Analog Design Environment User Guide.

Arguments

t_netName1 Name of the net.

f_value1 Voltage value for the net.

t_netNameN Name of an additional net.

f_valueN Voltage value for the net.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message.

Example
ic("/net1" 5 "/net34" 2)

Holds the nodes of "/net1" at 5 and "/net34" at 2.
June 2004 94 Product Version 5.1.41

OCEAN Reference
Simulation Commands
includeFile

includeFile(t_fileName)
=> t_fileName/nil

Description

Includes the specified file in the final netlist of the simulator for the current session.

Notes:

1. This command is not available for the direct simulator. Use the modelFile or
stimulusFile command instead.

2. Using this command is comparable to using the Environment Options form of the
Virtuoso® Analog Design Environment to name an include file and specify that the
syntax for the file be that of the target simulator. If you want the include file to be in
Cadence-SPICE circuit simulator syntax, you must edit the raw netlist file (which has a
.c or .C suffix), and manually add the include file.

Arguments

t_fileName Name of the file to include in the final netlist.

Value Returned

t_fileName Returns the name of the file if successful.

nil Returns nil and prints an error message otherwise.

Example
includeFile("~/projects/nmos")
=> "~/projects/nmos"

Includes the nmos file in the final netlist of the simulator for the current session.

includeFile()
=>"~/projects/nmos"

Returns the includeFile, if one was set earlier. Otherwise, it returns nil.
June 2004 95 Product Version 5.1.41

OCEAN Reference
Simulation Commands
modelFile

modelFile([g_modelFile1 [g_modelFile2 …]])
=> l_modelFile

Description

Specifies model files to be included in the simulator input file.

This command returns the model files used. When model files are specified through the
arguments, the model files are set accordingly. Use of full paths for the model file is
recommended.

Arguments

g_modelFile1 This argument can be a string to specify the name of the model
file.

g_modelfile2 This argument can be a list of two strings to specify the name of
the model file and the name of the section.

Value Returned

l_modelfile A list of all the model file/section pairs.

nil Returned when no file section pairs have been specified with the
current call or a previous call of this command. The nil value is
also returned when an error has been encountered.

Example
modelFile("bjt.scs" "nmos.scs")
=>(("bjt.scs" "") ("nmos.scs" ""))

modelFile("bjt.scs" ’("nmos.scs" "typ") ’my_models)
=> (("bjt.scs" "") ("nmos.scs" "typ") ("my_models" ""))

modelFile()
=> (("bjt.scs" "") ("nmos.scs" ""))

Returns the modelFile, if one was set earlier. Otherwise, it returns nil.
June 2004 96 Product Version 5.1.41

OCEAN Reference
Simulation Commands
nodeset

nodeset(t_netName1 f_value1 … [t_netNameN f_valueN])
=> undefined/nil

Description

Sets the initial estimate for nets in a DC analysis, or sets the initial condition calculation for a
transient analysis.

To know more about convergence, refer to the chapter Helping a Simulation to Converge
of the Virtuoso Analog Design Environment User Guide.

Arguments

t_netName1 Name of the net.

f_value1 Voltage value for the net.

t_netNameN Name of an additional net.

f_valueN Voltage value for the net.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message otherwise.

Example

nodeset("net1" 5 "net34" 2)

Sets the initial estimates of "net1" to 5 and "net34" to 2.
June 2004 97 Product Version 5.1.41

OCEAN Reference
Simulation Commands
noise

noise(t_output t_source)
=> undefined/nil

Description

Specifies a noise analysis.

Note: This command cannot be used with the spectre, spectreS, spectreVerilog and
spectreSVerilog simulators.

Arguments

t_output Output node.

t_source Input source.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message If there is a problem
specifying the analysis.

Example
noise("n1" "v1")

Specifies a noise analysis.
June 2004 98 Product Version 5.1.41

OCEAN Reference
Simulation Commands
ocnDisplay

ocnDisplay([?output t_filename | p_port] s_command [g_commandArg1]
[g_commandArg2] …)
=> t/nil

Description

Displays all the information specified.

The s_command argument specifies the command whose information you want to display.
If you include only this argument, all the information for the command displays. If you supply
subsequent arguments, only those particular pieces of information display as opposed to
displaying all the information for that command. If you provide a filename as the ?output
argument, the ocnDisplay command opens the file and writes the information to it. If you
provide a port (the return value of the SKILL outfile command), the ocnDisplay
command appends the information to the file that is represented by the port.

Arguments

t_filename File in which to write the information. The ocnDisplay
command opens the file, writes to the file, then closes the file. If
you specify the filename without a path, the ocnDisplay
command creates the file in the directory pointed to by your Skill
Path. To find out what your Skill path is, type getSkillPath()
at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

s_command Command that was initially used to add the items that are now
being displayed.
Valid values: Most simulation setup commands. The commands
that are supported include design, analysis, tran, ac, dc, noise,
netlistDir, resultsDir, temp, option, desVar, path, includeFile,
modelFile, stimulusFile, definitionFile, saveOption, envOption,
keep, save, converge, ic, forcenode, nodeset, simulator, setup,
restore, param, optimizeVar, optimizeAlgoControl,
optimizePlotOption, cornerDesVar, monteCarlo, and
monteOutputs.

g_commandArg1 Argument corresponding to the specified command.
June 2004 99 Product Version 5.1.41

OCEAN Reference
Simulation Commands
g_commandArg2 Additional argument corresponding to the specified command.

Value Returned

t Displays the information and returns t.

nil Returns nil and prints an error message if there are problems
displaying the information.

Examples
ocnDisplay(’optimizeGoal)
=> t

Displays all the optimizeGoal information.

ocnDisplay(’analysis ’tran)
=> t

Displays only transient analyses.

ocnDisplay(’save)
=> t

Displays all the keeps.

ocnDisplay(?output myPort ’analyis)
=> t

Displays and writes all the analyses to the port named myPort.
June 2004 100 Product Version 5.1.41

OCEAN Reference
Simulation Commands
ocnGetWaveformTool

ocnGetWaveformTool()
=> t_toolName

Description

Returns the waveform tool name.

Value Returned

t_toolName The waveform tool being used.

Example
ocnGetWaveformTool()
=> awd

Specifies that the current waveform tool is AWD.
June 2004 101 Product Version 5.1.41

OCEAN Reference
Simulation Commands
ocnWaveformTool

ocnWaveformTool(s_waveformTool)
=> t/nil

Description

Sets the specified tool as the waveform tool.

Arguments

s_waveformTool Either one of the waveform tools, awd or wavescan, which you
want to set for the current session.

Value Returned

t Indicates that the specified waveform tool has been set.

nil Returns nil if there is a problem setting the specified waveform
tool.

Example
ocnWaveformTool(’wavescan)
=> t

Sets WaveScan as the current waveform tool.
June 2004 102 Product Version 5.1.41

OCEAN Reference
Simulation Commands
off

off(s_command [g_commandArg1] [g_commandArg2] …)
=> t/nil

Description

Turns off the specified information.

This command is currently available only for the analysis and restore commands. The first
argument specifies the command whose information you want to turn off. If you include only
this first argument, all the information for the command is turned off. If you supply subsequent
arguments, only those particular pieces of information are turned off as opposed to turning
off all the information for that command. The information is not deleted and can be used
again.

Arguments

s_command Command that was initially used to add the items that are now
being turned off.
Valid value: restore

g_commandArg1 Argument corresponding to the specified command.

g_commandArg2 Additional argument corresponding to the specified command.

Value Returned

t Returns t if the information is turned off.

nil Returns nil and prints an error message if there are problems
turning off the information.

Examples
off(’restore)
=> t

Turns off the restore command.

off(restore ’tran)
=> t

Turns off the transient restore command.
June 2004 103 Product Version 5.1.41

OCEAN Reference
Simulation Commands
option

option([?categ s_categ] s_option1 g_value1 [s_option2 g_value2] …)
=> undefined/nil

Description

Specifies the values for built-in simulator options. You can specify values for as many options
as you want.

Arguments

s_categ Type of simulator to be used.
Valid values: analog if the options are for an analog simulator,
digital for a digital simulator, or mixed for a mixed-signal
simulator
Default value: analog

s_option1 Name of the simulator option.

g_value1 Value for the option.

s_option2 Name of an additional simulator option.

g_value2 Value for the option.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there are problems
setting the option.

Examples
option(’abstol 1e-10)

Sets the abstol option to 1e-10.

option(’delmax 50n)

Sets the delmax option to 50n.

option()
June 2004 104 Product Version 5.1.41

OCEAN Reference
Simulation Commands
Returns the category list for simulation options, including analog, digital, and mixed.

option(?categ ’analog)

Returns all the simulator options for the analog simulator currently set. For example, if the set
simulator is spectre, it returns the valid simulator options for spectre.
June 2004 105 Product Version 5.1.41

OCEAN Reference
Simulation Commands
restore

restore(s_analysisType t_filename)
=> undefined/nil

Description

Tells the simulator to restore the state previously saved to a file with a store command.

This command is not available for the Spectre® circuit simulator, with which you can use the
store/restore options: readns, readforce, write, or writefinal.

Note: Restore is available for the cdsSpice and hspiceS simulators.

Arguments

s_analysisType Type of the analysis.
Valid values: dc or tran

t_filename Name of the file containing the saved state.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there are problems
restoring the information.

Examples
restore(’dc "./storeFile")
=> ./storeFile

Initializes the simulator to the state saved in the storeFile file.

restore(’tran "./tranStoreFile")
=> ./tranStoreFile

Initializes the simulator to the state of a transient analysis saved in the tranStoreFile file.
June 2004 106 Product Version 5.1.41

OCEAN Reference
Simulation Commands
resultsDir

resultsDir(t_dirName)
=> undefined/nil

Description

Specifies the directory where the PSF files (results) are stored.

If you do not specify a directory with this command, the PSF files are placed in ../psf to the
netlist directory.

Note: The directory you specify with resultsDir is also where the simulator.out file
is created.

Note: Some simulators are designed to always put their results in a specific location. For
these simulators, resultsDir has no effect. You might use this command when you want
to run several simulations using the same design and want to store each set of results in a
different location. If this command is not used, the results of an analysis are overwritten with
each simulation run.

Arguments

t_dirName Directory where the PSF files are to be stored.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there is a problem
with that directory.

Example
resultsDir("~/simulation/ckt/spectreS/schematic/psf")=>

"~/simulation/ckt/spectreS/schematic/psf"

Specifies the psf directory as the directory in which to store the PSF files.

resultsDir() => "~/simulation/ckt/spectreS/schematic/psf"

Returns the results directory.
June 2004 107 Product Version 5.1.41

OCEAN Reference
Simulation Commands
run

run([analysisList] [?jobName t_jobName] [?host t_hostName]
[?queue t_queueName] [?startTime t_startTime] [?termTime t_termTime]
[?dependentOn t_dependentOn] [?mail t_mailingList] [?block s_block]
[?notify s_notifyFlag])
=> s_jobName/nil

run()
=>t_dirName/nil

run(_analysisType1 … s_analysisTypeN)
=> t_dirName/nil

Description

Starts the simulation or specifies a time after which an analysis should start.

If distributed processing is not available on the system or is not enabled, parameters specific
to distributed processing (such as host, job name, and queue) are ignored and the simulation
runs locally. If distributed processing is available and is enabled, the environment default
values are used if not specified in the run command arguments. The environmental default
values are stored in the .cdsenv file.

Do not use the run command to start the following kinds of analyses. Instead, use the
command that is specific to the analysis.

Arguments

analysisList List of analyses to be run with the run command.

Note: The following arguments apply only when distributed mode is enabled.

t_jobName If the name given is not unique, an integer is appended to create
a unique job name.

To start Use this command

parametric analyses paramRun

corners analyses cornerRun

Monte Carlo analyses monteRun

optimizations optimizeRun
June 2004 108 Product Version 5.1.41

OCEAN Reference
Simulation Commands
t_hostName Name of the host on which to run the analysis. If no host is
specified, the system assigns the job to an available host.

t_queueName Name of the queue. If no queue is defined, the analysis is placed
in the default queue.

t_startTime Desired start time for the job. If dependencies are specified, the
job does not start until all dependencies are satisfied.

t_termTime Termination time for job. If the job has not completed by the
specified termination time, the job is aborted.

t_dependentOn
List of jobs on which the specified job is dependent. The job is
not started until dependent jobs are completed.

t_mailingList List of users to be notified when the analysis is complete.

s_block When s_block is not set to nil, the OCEAN script halts until
the job is complete.
Default value: nil

s_notifyFlag When not set to nil, the job completion message is echoed to
the OCEAN interactive window.
Default value: t

s_analysisType1
Name of a prespecified analysis to be simulated.

s_analysisTypeN
Name of another prespecified analysis to be simulated.

Value Returned

s_jobName Returns the job name of the job submitted. The job name is
based on the jobName argument. If the job name submitted is
not unique, a unique identifier is appended to the job name. This
value is returned for nonblocking distributed mode.

t_dirName Returns the name of the directory in which the results are stored.
This value is returned for local and blocking distributed modes.
June 2004 109 Product Version 5.1.41

OCEAN Reference
Simulation Commands
nil Returns nil and prints an error message if there is an error in
the simulation. In this case, look at the yourSimulator.out
file for more information. (This file is typically located in the psf
directory.)

Examples
run()
=> t

Starts the simulation.

run(’tran, ’ac)

Runs only the tran and ac analyses.

run(’dc)

Runs only the dc analysis.

run(?jobName ?block “nil”)
=> ’reconFilter

Returns a job name of reconFilter for the specified job and runs that job if distributed
processing is enabled. The job is submitted nonblocking. The actual job name is returned.

run(?queue "fast")

Submits the current design and enabled analyses as a job on the fast queue, assuming that
distributed processing is available and enabled.

run(?jobName "job1" ?queue "fast" ?host "menaka" ?startTime "22:59"
?termTime "23:25" ?mail "preampGroup")

Submits the current design and enabled analyses as a jobName job1 on the fast queue host
menaka with the job start time as 22:59 and termination time as 23:25. A mail will be sent
to preampGroup after the job ends.
June 2004 110 Product Version 5.1.41

OCEAN Reference
Simulation Commands
save

save([?categ s_categ] s_saveType [t_saveName1] … [t_saveNameN])
=> undefined/nil

Description

Specifies the outputs to be saved and printed during simulation.

When specifying particular outputs with saveName, you can include as many outputs as you
want. If you want to turn off the default of save, ’allv, use the delete(’save)
command.

Arguments

s_categ Type of simulator to be used.
Valid values: analog, digital
Default value: analog
Note: digital is not available.

s_saveType Type of outputs to be saved.
Valid values:

Default value: allv

t_saveName1 Name of the net, device, or other object.

t_saveNameN Name of another net, device, or object.

Valid Values Description

v Specifies that a list of subsequent net names
be kept.

i Specifies that a list of subsequent currents
be kept.

all Specifies that all nets and all currents are to
be saved.

allv Specifies that all voltages are to be saved.

alli Specifies that all currents are to be saved.
June 2004 111 Product Version 5.1.41

OCEAN Reference
Simulation Commands
Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if there is a problem
keeping the outputs.

Examples
save(’v "net34" "net45")

Saves the outputs for net34 and net45.

save(’i "R1" "/Q1/b")

Saves the currents for R1 and Q1/b.

save(’all)

Saves all the nets and currents.

save(’i "q1:b" "r1:p" "mn1:d")

For the spectre simulator, saves the current through the specified devices.

save(?categ ’analog ’v "/vin" "/vout")

Saves the output for vin and vout.

save(’i "i(q1,b)" "i(r1)" "i(mn1,d)")

For the Cadence-SPICE circuit simulator, saves the current through the same devices.
June 2004 112 Product Version 5.1.41

OCEAN Reference
Simulation Commands
saveOption

saveOption([s_option1 g_optionValue1]…[s_optionN g_optionValueN])
=> undefined/nil

Description

Specifies save options to be used by the simulator.

You can include as many save options as you want. To include a save option, replace
s_option1 with the name of the desired save option and include another argument to
specify the value for the option.

When you use the saveOption command without specifying any arguments, the command
returns a list of option and value pairs.

Save options vary, depending on the simulator and interface that you are using. If you are
using the Spectre® circuit simulator, for example, you can type the following at an OCEAN
prompt to see which options you can set with the saveOption command:

simulator(’spectre)
ocnHelp(’saveOption)

See the Spectre Circuit Simulator User Guide for more information on these options.

Note: The saveOption command does not work with socket simulators. If you are using a
socket simulator, you must instead specify save options with the save command described
in “save” on page 111.

Arguments

s_option1
Save option. The save options that are available depend on
which simulator you use. (See the documentation for your
simulator.)

g_optionValue1
Value for the save option.

s_optionN
Any subsequent save option. The save options that are available
depend on which simulator you use. (See the documentation for
your simulator.)
June 2004 113 Product Version 5.1.41

OCEAN Reference
Simulation Commands
g_optionValueN
Value for the save option.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil if there are problems specifying options.

Example
saveOption(’save "lvl" ’nestlvl 10 ’currents "selected"

’useprobes "yes" ’subcktprobelvl 2 ?saveahdlvars "all")
June 2004 114 Product Version 5.1.41

OCEAN Reference
Simulation Commands
simulator

simulator(s_simulator)
=> s_simulator/nil

Description

Starts an OCEAN session and sets the simulator name for that session. The previous session
(if any) is closed and all session information is cleared.

Arguments

s_simulator Name of the simulator.

Value Returned

s_simulator Returns the name of the simulator.

nil Returns nil and prints an error message if the simulator is not
registered with the Virtuoso® Analog Design Environment
through OASIS. If the simulator is not registered, the simulator
from the preceding session is retained.

Examples
simulator(’spectre)
=> spectre

Specifies that the Spectre® circuit simulator be used for the session.

simulator(’spectreVerilog)
=> spectreVerilog

Specifies that spectreVerilog be used for the session.

simulator()
=> spectreVerilog

Returns the simulator that you set for the session. If a simulator was not specified, it returns
nil.
June 2004 115 Product Version 5.1.41

OCEAN Reference
Simulation Commands
stimulusFile

stimulusFile(t_fileName [t_fileName2 … t_fileNameN] [?xlate b_xlate])
=> l_fileNames/nil

Description

Specifies stimulus files to be used by the simulator.

When the b_xlate variable is set to t, the schematic net expressions [#net] and instance
name expression [$instance] in the stimulus file are mapped into simulator names before
including. When a netlist is specified as the design, this option must be set to nil.

Note: This command does not work with socket simulators.

Arguments

t_fileName The name of the stimulus file to be included.

t_fileName2…t_fileNameN
The names of the additional stimulus files to be included.

b_xlate If set to t, net and instance expressions are translated to
simulator names. The default value of the b_xlate variable is
t.

Value Returned

l_fileNames A list of the stimulus file names is the output if the command is
successful.

nil Otherwise nil is returned

Example
stimulusFile("tran.stimulus rf.stimulus" ?xlate nil)
=> ("tran.stimulus rf.stimulus")

Includes tran.stimulus and rf.stimulus in the simulator input file. No net and instance
expressions are translated.

stimulusFile()
=> ("tran.stimulus" "rf.stimulus")
June 2004 116 Product Version 5.1.41

OCEAN Reference
Simulation Commands
Returns the stimulusFile, if one was set earlier. Otherwise, it returns nil.
June 2004 117 Product Version 5.1.41

OCEAN Reference
Simulation Commands
store

store(s_analysisType t_filename)
=> t_filename/nil

Description

Requests that the simulator store its node voltages to a file.

You can restore this file in a subsequent simulation to help with convergence or to specify a
certain starting point. This command is not available for the Spectre® circuit simulator, with
which you can use the store/restore options: readns, readforce, write, or writefinal.

Note: store is available for the cdsSpice and hspiceS simulators.

Arguments

s_analysisType Type of the analysis.
Valid values: dc or tran

t_filename Name of the file in which to store the simulator’s node voltages.

Value Returned

t_filename Returns the filename.

nil Returns nil and prints an error message if there are problems
storing the information to a file.

Examples
store(’dc "./storeFile")
=> ./storefile

Stores the simulator’s node voltages in a file named storeFile in the current directory.

store(’tran "./tranStoreFile")
=> ./transtorefile

Stores the node voltages for a transient analysis in a file named tranStoreFile in the
netlist (design) directory unless a full path is specified.
June 2004 118 Product Version 5.1.41

OCEAN Reference
Simulation Commands
temp

temp(f_tempValue)
=> f_tempValue/nil

Description

Specifies the circuit temperature.

Arguments

f_tempValue Temperature for the circuit.

Value Returned

f_tempValue Returns the temperature specified.

nil Returns nil and prints an error message if there are problems
setting the temperature.

Example
temp(125)
=> 125

Sets the circuit temperature to 125.

temp()
=> 125

Gets the value you had set for the circuit temperature. If you have not set a value for the
temperature, it returns the default value.
June 2004 119 Product Version 5.1.41

OCEAN Reference
Simulation Commands
tran

tran(g_fromValue g_toValue g_byValue)
=> g_byValue/nil

tran(g_toValue)
=> undefined/nil

Description

Specifies a transient analysis with limited options. If other analysis options are needed, use
the analysis command.

To know more about this analysis, see the simulator-specific user guide.

Note: The second instance of the tran command is valid only with the spectre, spectreS,
spectreVerilog and spectreSVerilog simulators.

Arguments

g_fromValue Starting time for the analysis.

g_toValue Ending time.

g_byValue Increment at which to step through the analysis.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the analysis is not
specified.

Examples
tran(1u)
=> “1e-06”

Specifies a transient analysis to 1u for the Spectre® circuit simulator

tran(0 1u 1n)
=> “1e-09”

Specifies a transient analysis from 0 to 1u by increments of 1n.
June 2004 120 Product Version 5.1.41

OCEAN Reference
7
Data Access Commands

The data access commands let you open results and select different types of results to
analyze. You can get the names and values of signals and components in the selected
results, and you can print different types of reports.

In this chapter, you can find information on the following data access commands

dataTypes on page 123

getData on page 124

getResult on page 126

i on page 127

ocnHelp on page 129

openResults on page 131

outputParams on page 133

outputs on page 135

phaseNoise on page 137

pv on page 139

resultParam on page 141

results on page 143

selectResult on page 144

sp on page 146

sweepNames on page 148
June 2004 121 Product Version 5.1.41

OCEAN Reference
Data Access Commands
sweepValues on page 150

sweepVarValues on page 151

v on page 153

vswr on page 155

zm on page 157

zref on page 159
June 2004 122 Product Version 5.1.41

OCEAN Reference
Data Access Commands
dataTypes

dataTypes()
=> l_dataTypes/nil

Description

Returns the list of data types that are used in an analysis previously specified with
selectResult.

Arguments

None.

Value Returned

l_dataTypes Returns the list of data types.

nil Returns nil and an error message if the list of datatypes cannot
be returned.

Example
selectResult(’dcOp)

dataTypes() => ("node" "vs" "resistor" "bjt")

Returns the data types used in the selected file, in this case, dcOp.
June 2004 123 Product Version 5.1.41

OCEAN Reference
Data Access Commands
getData

getData(t_name [?result s_resultName [?resultsDir t_resultsDir]])
=> x_number/o_waveform/nil

Description

Returns the number or waveform for the signal name specified.

The type of value returned depends on how the command is used.

Arguments

t_name Name of the signal.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

x_number Returns an integer simulation result.

o_waveform Returns a waveform object. A waveform object represents
simulation results that can be displayed as a series of points on
a grid. (A waveform object identifier looks like this:
drwave:XXXXX.)

nil Returns nil and an error message if the value cannot be
returned.

Examples
getData("/net6") => drwave:25178234
June 2004 124 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Returns the number or waveform for net6. In this example, the return value is equivalent to
v("/net6").

getData("/V1" ?result ’ac)
=> drwave:96879364

Returns the number or waveform for V1. In this example, the return value is equivalent to:
i("/V1" ?result ’ac).

selectResult(’tran) =>

ocnPrint(getData("net1")) =>

The getData("net1") command passes a waveform to the ocnPrint command. The
ocnPrint command then prints the data for the waveform. In this example, the return value
is equivalent to:
(v("net1")).

ocnPrint(getData("net1" ?result ’tran ?resultsDir "./simulation/testcell/
spectre/schematic/psf")

Returns a signal on net1 for the tran result strored in the path "./simulation/
testcell/spectre/schematic/psf".
June 2004 125 Product Version 5.1.41

OCEAN Reference
Data Access Commands
getResult

getResult ([?result s_resultName [?resultsDir t_resultsDir]])
=> o_results/nil

Description

Gets the data object for a specified analysis without overriding the status of any previously
executed selectResult() or openResults() commands.

Returns the data object for a particular analysis similar to the selectResult() function
does. Unlike the selectResult() function, all subsequent data access commands will not
internally use this information.

Arguments

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_results Returns the object representing the selected results.

nil Returns nil and an error message if there are problems
accessing the analysis.

Example
getResult(?result ’tran)
June 2004 126 Product Version 5.1.41

OCEAN Reference
Data Access Commands
i

i(t_component [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Returns the current through the specified component.

Arguments

t_component Name of the component.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Returns a waveform object. A waveform object represents
simulation results that can be displayed as a series of points on
a grid. (A waveform object identifier looks like this:
drwave:XXXXX.).

nil Returns an error message and nil if there is a problem.

Examples
selectResult(’tran)

i("/R1")

Returns the current through the R1 component.

ocnPrint(i("/R1"))
June 2004 127 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Prints the current through the R1 component.

ocnPrint(i("/R1" ?result ’dc))

Prints the current through the R1 component with respect to the dc swept component.

ocnPrint(i("/R1" ?resultsDir "./test2/psf" ?result ’dc))

Prints the current through the R1 component with respect to dc for the results from a different
run (stored in test2/psf).
June 2004 128 Product Version 5.1.41

OCEAN Reference
Data Access Commands
ocnHelp

ocnHelp([?output t_filename | p_port][s_command])
=> t/nil

Description

Provides online help for the specified command.

If no command is specified, provides information about how to use help and provides the
different categories of information contained in the help library. If you provide a filename as
the ?output argument, the ocnHelp command opens the file and writes the information to
it. If you provide a port (the return value of the SKILL outfile command), the ocnHelp
command appends the information to the file that is represented by the port. If you do not
specify ?output, the output goes to standard out (stdout).

Arguments

t_filename File in which to write the information. The ocnHelp command
opens the file, writes to the file, and closes the file. If you specify
the filename without a path, the ocnHelp command creates the
file in the directory pointed to by your Skill Path. To find out what
your Skill path is, type getSkillPath() at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

s_command Command for which you want help.

Value Returned

t Displays the online help and returns t.

nil Returns nil and an error message if help cannot be displayed.

Examples
ocnHelp()
=> t

Displays information about using online help.
June 2004 129 Product Version 5.1.41

OCEAN Reference
Data Access Commands
ocnHelp(’analysis)
=> t

Displays help for the analysis command.

ocnHelp(?output "helpInfo")
=> t

Writes information about using online help to a file named helpInfo.
June 2004 130 Product Version 5.1.41

OCEAN Reference
Data Access Commands
openResults

openResults(s_jobName | t_dirName [g_enableCalcExpressions])
=> t_dirName/nil

Description

Opens simulation results stored in PSF files or opens the results from a specified job,
depending on which parameter is called.

When openResults passes a symbol, it interprets the value as a job name and opens the
results for the specified job. s_jobName is a job name and is defined when a run command
is issued.

When openResults passes a text string, it opens simulation results stored in PSF files in
the specified directory. The results must have been created by a previous simulation run
through OCEAN or the Virtuoso® Analog Design Environment. The directory must contain a
file called logFile and might contain a file called runObjFile. When you perform tasks in
the design environment, the runObjFile is created. Otherwise, only logFile is created.

If you want to find out which results are currently open, you can use openResults with no
argument. The directory for the results that are currently open is returned.

Note: If you run a successful simulation with distributed processing disabled, the results are
automatically opened for you. Also, a job name is generated by every analysis, even if
distributed processing is not enabled.

Arguments

s_jobName The name of a distributed process job. s_jobName is a job
name and is defined when a run command is issued.

t_dirName The directory containing the PSF files.

g_enableCalcExpressions
An optional argument, which when set to t, allows the evaluation
of Calculator expressions. For this argument to work, the
directory mentioned in t_dirName must be an ADE data
directory; it must have the psf directory under it and the psf
directory must contain runObjFile.
June 2004 131 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Value Returned

t_dirName The directory containing the PSF files.

nil Returns nil and an error message if there are problems
opening the results.

Examples
openResults("./simulation/opamp/spectre/schematic/psf")
=> "./simulation/opamp/spectre/schematic/psf"

Opens the results in the psf directory within the specified path.

openResults("./psf")
=> psf

Opens the results in the psf directory in the current working directory.

openResults("./psf" t)
=> psf

Opens the results in the psf directory in the current working directory. It also allows the
evaluation of the Calculator expression.
June 2004 132 Product Version 5.1.41

OCEAN Reference
Data Access Commands
outputParams

outputParams(t_compType [?result s_resultName [?resultsDir t_resultsDir]])
=> l_outputParams/nil

Description

Returns the list of output parameters for the specified component.

You can use the dataTypes command to get the list of components for a particular set of
results.

Note: You can use any of the parameters in outputParams as the second argument to the
pv command.

Arguments

t_compType Name of a component.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

l_outputParams Returns the list of parameters.

nil Returns nil and an error message if there are no associated
parameters or if the specified component (compType) does not
exist.
June 2004 133 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Example
selectResult(’dcOp)
dataTypes() => ("node" "vs" "resistor" "bjt")
outputParams("bjt")

Selects the dcOp results, returns the list of components for these results, and returns the list
of output parameters for the bjt component.

outputParams("bjt" ?result ’dcOp ?resultsDir "./psf")

Returns a list of output parameters for the bjt component for dcOp (dc analysis with save dc
operating point) results stored at the location ./psf.
June 2004 134 Product Version 5.1.41

OCEAN Reference
Data Access Commands
outputs

outputs([?result s_resultName [?resultsDir t_resultsDir]]
[?type t_signalType])
=> l_outputs/nil

Description

Returns the names of the outputs whose results are stored for an analysis. You can plot these
outputs or use them in calculations.

Arguments

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

t_signalType Data type of the signal.

Value Returned

l_outputs Returns the list of outputs.

nil Returns nil and an error message if there are problems
returning the names of the stored outputs.

Example
outputs()
=> ("net13" "net16" "net18")

Returns the names of the outputs for the PSF file selected with selectResult.

outputs(?type "V")
June 2004 135 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Returns all the signal names that are node voltages. The dataType (signal) returns the data
type of the signal.

outputs(?result "tran" ?resultsDir "./psf")
=> ("net11" "net15" "net17")

Returns the names of the outputs for the tran results stored at the location ./psf.
June 2004 136 Product Version 5.1.41

OCEAN Reference
Data Access Commands
phaseNoise

phaseNoise(g_harmonic S_signalResultName [?result s_noiseResultName
[?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Returns the phase noise waveform which is calculated using information from two PSF data
files.

This command should be run on the results of the Spectre pss-pnoise analysis.

Arguments

g_harmonic List of harmonic frequencies.

S_signalResultName
Name of the result that stores the signal waveform. Use the
results() command to obtain the list results.

s_noiseResultName
Name of the result that stores the "positive output signal" and
"negative output signal" noise waveforms. When specified, this
argument will only be used internally and will not alter the current
result which was set by the selectResult command. The default
is the current result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the S_noiseResultName
argument. Both the S_signalResultName and
S_noiseResultName arguments are read from this directory.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Waveform representing the phase noise.

nil Returns nil if there is an error.
June 2004 137 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Example
plot(phaseNoise(0 "pss-fd.pss"))

phaseNoise(1 "pss_fd" ?result "pnoise" ?resultsDir “./PSF")
June 2004 138 Product Version 5.1.41

OCEAN Reference
Data Access Commands
pv

pv(t_name t_param [?result s_resultName [?resultsDir t_resultsDir]])
=> g_value/nil

Description

Returns the value for the specified component parameter. You can use the outputParams
command to get the list of parameters for a particular component.

Arguments

t_name Name of the node or component.

t_param Name of the parameter.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

g_value Returns the requested parameter value.

nil Returns nil and prints an error message.

Examples
selectResult(’dcOp)

pv("/Q19" "ib")

For the Q19 component, returns the value of the ib parameter.

pv("/Q19" "ib" ?resultsDir "./test2/psf")
June 2004 139 Product Version 5.1.41

OCEAN Reference
Data Access Commands
For the Q19 component, returns the value of the ib parameter for the results from a different
run (stored in test2/psf).

pv("/Q19" "ib" ?result "dcOp" ?resultDir "./test1/psf")

Returns the value of the ib parameter for the Q19 component for the dcOp results stored at
the location ./test1/psf.
June 2004 140 Product Version 5.1.41

OCEAN Reference
Data Access Commands
resultParam

resultParam(S_propertyName [?result s_resultName [?resultsDir t_resultsDir]])
=> L_value/nil

Description

Returns the value of a header property from the selected result data.

Arguments

s_propertyName
Name of the parameter

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

Value Returned

L_value Value of the parameter. The data type depends on the data type
of the parameter.

nil Returns nil and an error message if there are problems
returning the results.

Examples
resultParam("positive output signal" ?result "pnoise.pss")

=> "pif"

resultParam("negative output signal" ?result "pnoise.pss")

=> "0"

Returns the name of the positive and negative output signals from PSS-noise analysis result.
In this case, the data type of the returned value is a string.

resultParam("port1.r.value" ?result "sp")
June 2004 141 Product Version 5.1.41

OCEAN Reference
Data Access Commands
=> 40.0

resultParam("port2.r.value" ?result "sp")

=> 40.0

Returns the reference impedance of the ports in a two-port network from the S-parameter
analysis result. In this case, the data type of the returned value is a floating point number.

resultParam("positive output signal" ?result "pnoise.pss" ?resultsDir "./psf")

=> "0"

Returns the names of the positive output signals from the PSS-noise analysis results stored
at the location ./psf.
June 2004 142 Product Version 5.1.41

OCEAN Reference
Data Access Commands
results

results([?resultsDir t_resultsDir])
=> l_results/nil

Description

Returns a list of the type of results that can be selected.

Arguments

t_resultsDir Directory containing the PSF files (results). When specified, this
argument will only be used internally and will not alter the current
results directory which was set by the openResults command.
The default is the current results directory set by the openResults
command.

Value Returned

l_results Returns the list of result types.

nil Returns nil and an error message if there are problems
returning the results.

Example
results()
=> (dc tran ac)

Returns the list of results available.

results("./psf")

Returns a list of results stored at the location ./psf.
June 2004 143 Product Version 5.1.41

OCEAN Reference
Data Access Commands
selectResult

selectResult(S_resultsName [n_sweepValue])
=> o_results/nil

Description

Selects the results from a particular analysis whose data you want to examine.

The argument that you supply to this command is a data type representing the particular type
of analysis results you want. All subsequent data access commands use the information
specified with selectResult.

Note: Refer to the results command to get the list of analysis results that you can select.

Arguments

s_resultsName Results from an analysis.

n_sweepValue The sweep value you wish to select for an analysis.

Value Returned

o_results Returns the object representing the selected results.

nil Returns nil and an error message if there are problems
selecting the analysis.

Examples
selectResult(’tran)

Selects the results for a transient analysis.

sweepValues(3.0 3.333333 3.666667 4.0 4.333333 4.666667 5.0)

selectResult("tran" "3.333333")

The sweepValues command prints a list of sweep values.

The selectResult command selects a specific value for a transient analysis.

selectResult(’tran)

Selects the results for a transient analysis.

paramAnalysis("supply" ?start 3 ?stop 5 ?step 1.0/3)
June 2004 144 Product Version 5.1.41

OCEAN Reference
Data Access Commands
paramRun("supply")

selectResult((’tran car(sweepValues())

Selects the data corresponding to the first parametric run.

Note: selectResult(’tran) would select the entire family of parametric data.
June 2004 145 Product Version 5.1.41

OCEAN Reference
Data Access Commands
sp

sp(x_iIndex x_jIndex [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Returns S-parameters for N port networks.

This command should be run on the results of the Spectre sp (S-parameter) analysis.

Arguments

x_iIndex The ith index of the coefficient in the scattering matrix.

x_jIndex The jth index of the coefficient in the scattering matrix.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Waveform object representing the S-parameter.

nil Returns nil if there is an error.

Examples
s21 = sp(2 1)

s12 = sp(1 2)

plot(s21 s12)

s11 = sp(1 1 ?result "sp" ?resultsDir "./simResult/psf")
June 2004 146 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Returns the S-parameter s11 for results of S-parameter(sp) analysis stored at the location
./simResult/psf.
June 2004 147 Product Version 5.1.41

OCEAN Reference
Data Access Commands
sweepNames

sweepNames([o_waveForm] [?result s_resultName [?resultsDir t_resultsDir]])
=> l_sweepName/nil

Description

Returns the names of all the sweep variables for either a supplied waveform, a currently
selected result (via selectResult()) or a specified result.

Arguments

o_waveForm Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX). When this argument
is used, the t_resultsDir and s_resultName arguments are
ignored.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

l_sweepName Returns a list of the sweep names.

nil Returns nil and prints an error message if the sweep names
cannot be returned.

Example
selectResult(’tran)

sweepNames()
=> ("TEMPDC" "time")
June 2004 148 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Returns a list of sweep variables for the selected results. In this case, the return values
indicate that the data was swept over temperature and time.

sweepNames(?result ’ac)
=> ("TEMPDC" "freq")

sweepNames()
=> ("TEMPDC" "time")

w = VT("/vout")
sweepNames(w)
=> ("r" "time")

Returns the sweep variables for the waveform w.

sweepNames(?result ’ac ?resultsDir "./test/psf")
=> ("TEMPDC" "freq")

Returns the sweep variables for the results of the ac analysis stored at the location ./test/
psf.
June 2004 149 Product Version 5.1.41

OCEAN Reference
Data Access Commands
sweepValues

sweepValues([o_waveForm])
=> l_sweepValues/nil

Description

Returns the list of sweep values of the outermost sweep variable of either the selected results
or the supplied waveform. This command is particularly useful for parametric analyses.

Arguments

o_waveForm Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

l_sweepValues Returns the list of sweep values.

nil Returns nil and an error message if the list of sweep values
cannot be returned.

Example
sweepValues()
=> (-50 -15 20 55 90.0)

Returns a list of sweep values for the selected results. In this case, the return values indicate
the temperature over which the data was swept.

w = VT("/vout")

sweepNames(w)
=> ("r" "time")

sweepValues(w)
=> (2000 4000 6000)

Returns a list of sweep values for the wave w. In this case, the return values indicate the
resistance over which the data was swept.
June 2004 150 Product Version 5.1.41

OCEAN Reference
Data Access Commands
sweepVarValues

sweepVarValues([t_varName] [?result s_resultName [?resultsDir t_resultsDir]]
=> l_sweepName/nil

Description

Returns the list of sweep values for a particular swept variable name. This command is
particularly useful for parametric analyses.

Arguments

t_varName Name of the specific variable from which the values are
retrieved.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

l_sweepValues Returns the list of sweep values.

nil Returns nil and an error message if the list of sweep values
cannot be returned.

Examples
selectResult(’tran)

sweepNames()
=> ("TEMPDC" "Vsupply" "time")

sweepVarValues("TEMPDC")
=> (0 32)
June 2004 151 Product Version 5.1.41

OCEAN Reference
Data Access Commands
sweepNames(?result ’ac)
=> ("TEMPDC" "Vsupply" "freq")

sweepVarValues("Vsupply" ?result ’ac)
=> (5 12 15)

sweepNames(?result ’ac ?resultsDir "./simResult/psf")
=> ("TEMPDC" "freq")

sweepVarValues("TEMPDC" ?result ’ac ?resultsDir "./simResult/psf")
=> (-15 20 55)
June 2004 152 Product Version 5.1.41

OCEAN Reference
Data Access Commands
v

v(t_net [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Returns the voltage of the specified net.

Arguments

t_net Name of the net.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Returns a waveform object. A waveform object represents
simulation results that can be displayed as a series of points on
a grid. (A waveform object identifier looks like this:
drwave:XXXXX.).

nil Returns an error message and nil if there is a problem.

Example
selectResult(’tran)
v("/net56")

Returns the voltage for net56.

ocnPrint(v("/net56"))
June 2004 153 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Prints tabular information representing the voltage for net56.

ocnPrint(v("net5" ?result ’dc))

Prints the voltage of net5 with respect to the dc swept component.

ocnPrint(v("net5" ?resultsDir "./test2/psf" ?result ’dc))

Prints the voltage of net5 with respect to dc for the results from a different run (stored in
test2/psf).
June 2004 154 Product Version 5.1.41

OCEAN Reference
Data Access Commands
vswr

vswr(x_index [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Computes the voltage standing wave ratio.

This function is a higher level wrapper for the OCEAN expression

(1 + mag(s(x_index x_index))) / (1 - mag(s(x_index x_index)))

This command should be run on the results of the Spectre sp (S-parameter) analysis.

Arguments

x_index Index of the port.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Waveform object representing the voltage standing wave ratio.

nil Returns an error message or nil if there is a problem.

Example
plot(vswr(2))

vswr1 = vswr(1 ?result "sp" ?resultsDir "./simResult/psf")
June 2004 155 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Returns the voltage standing wave ratio value at port 1 for the results of S-parameter(sp)
analysis stored at the location ./simResult/psf.
June 2004 156 Product Version 5.1.41

OCEAN Reference
Data Access Commands
zm

zm(x_index [?result s_resultName [?resultsDir t_resultsDir]])
=> o_waveform/nil

Description

Computes the port input impedance.

The zm function is computed in terms of the S-parameters and the reference impedance. This
function is a higher level wrapper for the OCEAN expression

(1 + s(x_index x_index)) / (1 - s(x_index x_index))
* or(zref(x_index) 50)

This command should be run on the results of the Spectre sp (S-parameter) analysis.

Arguments

x_index Index of the port.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

o_waveform Waveform object representing the port input impedance.

nil Returns an error message and nil if there is a problem.

Example
plot(zm(2))

zm1 = zm(1 ?result "sp" ?resultsDir "./simResult/psf")
June 2004 157 Product Version 5.1.41

OCEAN Reference
Data Access Commands
Returns input impedance at port 1 for results of S-parameter (sp) analysis stored at the
location ./simResult/psf.
June 2004 158 Product Version 5.1.41

OCEAN Reference
Data Access Commands
zref

zref(x_portIndex [?result s_resultName [?resultsDir t_resultsDir]])
=> f_impedance/nil

Description

Returns the reference impedance for an N-port network.

This command should be run on the results of the Spectre sp (S-parameter) analysis.

Arguments

x_portIndex Index of the port.

s_resultName Results from an analysis. When specified, this argument will only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

Value Returned

f_impedance Reference impedance.

nil Returns an error message and nil if there is a problem.

Example
Zref = zref(2)

zref1 = zref(1 ?result "sp" ?resultsDir "./simResult/psf")

Returns the reference impedance at port 1 for the results of S-parameter(sp) analysis stored
at the location./simResult/psf.
June 2004 159 Product Version 5.1.41

OCEAN Reference
Data Access Commands
June 2004 160 Product Version 5.1.41

OCEAN Reference
8
Plotting and Printing Commands

This chapter contains information on the following plotting and printing commands:

addSubwindow on page 163

addSubwindowTitle on page 164

addTitle on page 165

addWaveLabel on page 166

addWindowLabel on page 168

clearAll on page 169

clearSubwindow on page 170

currentSubwindow on page 171

currentWindow on page 172

dbCompressionPlot on page 173

dcmatchSummary on page 174

deleteSubwindow on page 178

deleteWaveform on page 179

displayMode on page 180

getAsciiWave on page 181

graphicsOff on page 182

graphicsOn on page 183

hardCopy on page 184
June 2004 161 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
hardCopyOptions on page 185

ip3Plot on page 187

newWindow on page 188

noiseSummary on page 189

ocnPrint on page 193

ocnYvsYPlot on page 196

plot on page 198

plotStyle on page 200

pzPlot on page 201

pzSummary on page 203

removeLabel on page 205

report on page 206

xLimit on page 209

yLimit on page 210

This chapter also includes a topic, Plotting and Printing SpectreRF Functions in OCEAN on
page 212.
June 2004 162 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
addSubwindow

addSubwindow()
=> x_subwindowID/nil

Description

Adds a subwindow to the current Waveform window and returns the number for the new
subwindow, which is found in the upper right corner.

Arguments

None.

Value Returned

x_subwindowID Returns the window ID of the new subwindow.

nil Returns nil and an error message if there is no current
Waveform window.

Example
addSubwindow()
=>3

Adds a new subwindow to the Waveform window.
June 2004 163 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
addSubwindowTitle

addSubwindowTitle(x_windowtitle)
=> t/nil

Description

Adds a title to the current subwindow in the active window. The current subwindow is defined
using the currentSubwindow command.

Arguments

x_windowtitle
User-defined title for the subwindow.

Value Returned

t The user-supplied name of the current subwindow.

nil Returns nil if the title is not created.

Example
addSubwindowTitle("waveform 2")
=> t

Adds the title waveform 2 to the selected subwindow.
June 2004 164 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
addTitle

addTitle(x_windowtitle)
=> t/nil

Description

Adds a title to the current active OCEAN window. The current window is defined using the
currentWindow command.

Arguments

x_windowtitle
User-defined title for the window.

Value Returned

t The user-supplied name of the current window.

nil Returns nil if the title is not created.

Example
addTitle(“waveform 1”)
=> t

Adds the title waveform 1 to the selected window.
June 2004 165 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
addWaveLabel

addWaveLabel(x_waveIndex l_location t_label [?textOffset l_textOffset]
[?color x_color] [?justify t_justify] [?fontStyle t_fontStyle]
[?height x_height] [?orient t_orient] [?drafting g_drafting]
[?overBar g_overbar])
=> s_labelId/nil

Description

Attaches a label to the specified waveform curve in the current subwindow.

Arguments

x_waveIndex Integer identifying the waveform curve.

l_location List of two waveform coordinates that describe the location for
the label.

t_label Label for the waveform.

l_textOffset An offset of the label from l_location, in screen units of the
current subwindow. If l_textOffset is not specified, it
defaults to 0:0 and the label is displayed at the location. If
l_textOffset is specified, the label is offset from the location
and a directional arrow is drawn from the label to the location. For
example, if the offset is specified as 0:20, the label is drawn 20
units above the location and a directional label is drawn from the
label to the location. This feature is useful to label points on a
waveform and not obstruct the waveform.

x_color Label color specified as an index in the technology file.
Default value: 10

t_justify Justification, which is specified as "upperLeft",
"centerLeft", "lowerLeft", "upperCenter",
"centerCenter", "lowerCenter", "upperRight",
"centerRight", or "lowerRight".
Default value: "lowerLeft"

t_fontStyle Font style, which is specified as "euroStyle", "gothic",
"math", "roman", "script", "stick", "fixed",
June 2004 166 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
"swedish", "raster", or "milSpec".
Default value: the font style of the current subwindow

x_height Height of the font.
Default value: the font height of the current subwindow

t_orient Orientation of the text, specified as either "R0" or "R90".
Default value: "R0"

g_drafting Boolean that specifies whether the label stays backwards or
upside-down. If set to t, a backwards or upside-down label is
displayed in a readable form. If set to nil, a backwards or
upside-down label stays the way it is.
Default value: t

g_overbar Boolean that specifies whether underscores in labels are
displayed as overbars. If set to t, underscores in labels are
displayed as overbars. If set to nil, underbars are displayed as
underbars.
Default value: nil

Value Returned

s_labelId Returns an identification number for the waveform label.

nil Returns nil if there is an error.

Example
addWaveLabel(1 list(0 0.5) "R5 = ")

Attaches the "R5 = " label to the specified coordinates on waveform curve 1.

addWaveLabel(2 list(0 0.5) "R_6 = " ?textOffset 0:20 ?justify "lowerCenter"
?fontStyle "roman" ?height 10 ?orient "R20" ?drafting t ?overbar t)

Attaches the label "R6 = " to the specified coordinates on waveform curve. The label
specifications are as follows: Justification – lowerCenter, Font Style – roman, Font Height
– 10, and Orientation – R20.

The label will be displayed in a readable form. The underscore in the label will be displayed
as an overbar.
June 2004 167 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
addWindowLabel

addWindowLabel(l_location t_label)
=> s_labelId/nil

Description

Displays a label in the current subwindow. The location for the label is specified with a list of
two numbers between 0 and 1.

Arguments

l_location List of two waveform coordinates that describe the location for
the label.
Valid values: 0 through 1

t_label Label for the waveform.

Value Returned

s_labelId Returns an identification number for the subwindow label.

nil Returns nil if there is an error.

Example
label = addWindowLabel(list(0.75 0.75) "test")

Adds the test label to the current subwindow at the specified coordinates and stores the
label identification number in label.
June 2004 168 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
clearAll

clearAll()
=> t/nil

Description

Erases the contents of the current Waveform window and deletes the waveforms, title, date
stamp, and labels stored in internal memory.

Arguments

None.

Value Returned

t Returns t if the waveform information is deleted.

nil Returns nil and an error message if there is no current
Waveform window.

Example
clearAll()
=> t

Erases the contents of the current Waveform window.
June 2004 169 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
clearSubwindow

clearSubwindow()
=> t/nil

Description

Erases the contents of the current subwindow.

Arguments

None.

Value Returned

t Returns t if the contents of the subwindow are erased.

nil Returns nil and an error message otherwise.

Example
clearSubwindow()
=> t

Erases the contents of the current subwindow.
June 2004 170 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
currentSubwindow

currentSubwindow(x_subwindow)
=> t/nil

Description

Specifies x_subwindow as the current subwindow.

Arguments

x_subwindow Number of the subwindow, found in the upper right corner, that is
to become the current subwindow.

Value Returned

t Returns t when the subwindow is set to x_subwindow.

nil Returns nil if there is an error.

Example
currentSubwindow(2)

Specifies subwindow 2 as the current subwindow.
June 2004 171 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
currentWindow

currentWindow(w_windowId)
=> w_windowId/nil

Description

Specifies w_windowId as the current Waveform window.

Arguments

w_windowId Waveform window ID.

Value Returned

w_windowId Returns the current Waveform window ID.

nil Returns nil and an error if the current window cannot be set.

Example
currentWindow(window(2))

Specifies window 2 as the current Waveform window.
June 2004 172 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
dbCompressionPlot

dbCompressionPlot(o_wave x_harmonic x_extrapolationPoint
[?compression x_compression])
=> t/nil

Description

Plots the nth compression point plot. The x_compression argument is optional and defaults
to 1 for 1dB compression, if omitted.

This command should be run on the results of the Spectre swept pss analysis.

Arguments

o_wave The waveform for which to plot the compression.

x_harmonic Harmonic frequency index.

x_extrapolationPoint
The extrapolation point.

x_compression
The amount of dB compression.
Default value: 1

Value Returned

t Returns t if the point is plotted

nil returns nil if there was an error

Example
dbCompressionPlot(v("/Pif") 2 -25)

Plots a 1 dB compression point plot for the waveform v("/Pif").

dbCompressionPlot(v("/Pif") 2 -25 ?compression 3)

Plots a 3 dB compression point plot for the waveform v("/Pif").
June 2004 173 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
dcmatchSummary

dcmatchSummary([?resultsDir t_resultsDir] [?result S_resultName]
[?output t_fileName | p_port] [?paramValues ln_paramValues]
[?deviceType ls_deviceType] [?variations ls_variations]
[?includeInst lt_includeInst] [?excludeInst lt_excludeInst]
[?truncateData n_truncateData] [?truncateType s_truncateType]
[?sortType ls_sortType])
=> t_fileName/p_port/nil

Description

Prints a report showing the mismatch contribution of each component in a circuit. If you
specify a directory with resultsDir, it is equivalent to temporarily using the openResults
command. The dcmatchSummary command prints the results for that directory and resets
the openResults command to its previous setting. If you specify a particular result with
resultName, it is equivalent to temporarily using the selectResult command on the
specified results. The dcmatchSummary command prints the results and resets the
selectResult command to its previous setting.

This command should be run on the results of the Spectre dcmatch analysis.

Arguments

t_resultsDir The directory containing the dcmatch-analysis results.

S_resultName Results from an analysis for which you want to print the
dcmatchSummary report.

t_fileName File in which to write the information. The dcmatchSummary
command opens the file, writes to the file and closes the file. If
you specify the filename without a path, the dcmatchSummary
command creates the file in the directory pointed to by your Skill
Path. To find out what your Skill path is, type
getSkillPath() at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

ln_paramValues List of values for swept parameters at which the
dcmatchSummary is to be printed. In case there is just one
swept parameter the value can be specified as is.
June 2004 174 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
ls_deviceType List of device type strings to be included. Valid values are a list
of strings or ’all or a single device name. Default value is
’all.

ls_variations An association list containing the device name and the
associated variations to print. You can also specify the value ‘all
to print all available variations for a device. Default value is ‘all.
For Example: ’((“bsim3v3” (“sigmaOut”
“sigmaVth”)) (“resistor” (“sigmaOut”))

lt_includeInst List of instance name strings to definitely include in the
dcmatchSummary.

lt_excludeInst List of instance name strings to exclude in the dcmatchSummary.

x_truncateData Specifies a number that the truncateType argument uses to
define the components for which information is to be printed.

s_truncateType Specifies the method that is used to limit the data being included
in the report

Valid
Values Description

Sample Values
for
truncateData

 ’top Saves information for the
number of components specified
with truncateData. The
components with the highest
contributions are saved.

10

’relative Saves information for all
components that have a higher
contribution than truncateData *
maximum. Where maximum is
the maximum contribution
among all the devices of a given
type

1.9n

‘absolute Saves information for all the
components in the selected set
whose contribution are more
than truncateData.

0.1
June 2004 175 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
ls_sortType Specifies how the printed results are to be sorted. The valid
values are nil, ’name, ’output.

Value Returned

t_fileName Returns the name of the port.

p_port Returns the name of the file.

nil Returns nil and an error message if the summary cannot be
printed.

Examples
dcmatchSummary(?result ’dcmatch-mine)

Prints a report for non-swept DC-Mismatch analysis.

dcmatchSummary(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?result
’dcmatch)

Prints a report for non-swept DC-Mismatch analysis for the results from a different run (stored
in the schematic directory).

dcmatchSummary(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?result
’dcmatch ?paramValues ‘(25))

Prints a report for swept DC-Mismatch analysis at swept parameter value of 25.

dcmatchSummary(?result dcmatch-mine ?output "./summary.out")

Prints a report for non-swept DC-Mismatch analysis in the output file summary.out.

dcmatchSummary(?paramValues 25 ?deviceType "bsim3v3" ?variations ’(("bsim3v3"
("sigmaOut "sigmaVth")))

Prints a report for swept DC-Mismatch analysis at swept parameter value of 25 for bsim3v3
deviceType and sigmaOut and sigmaVth variations.

dcmatchSummary(?paramValues 25 ?truncateType ’top ?truncateData 1)

Prints a report for swept DC-Mismatch analysis at swept parameter value of 25 printing only
the component having the highest contribution.

dcmatchSummary(?paramValues 25 ?sortType ’name)

‘none Saves information for all the
components.

Not required
June 2004 176 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
Prints a report for swept DC-Mismatch analysis at swept parameter value of 25 sorted on
name.
June 2004 177 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
deleteSubwindow

deleteSubwindow()
=> t/nil

Description

Deletes the current subwindow from the current Waveform window.

Arguments

None.

Value Returned

t Returns t if the current subwindow is deleted.

nil Returns nil and an error message if there is no current
subwindow.

Example
deleteSubwindow()
=> t

Deletes the current subwindow from the Waveform window.
June 2004 178 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
deleteWaveform

deleteWaveform({x_index | all_string })
=> t/nil

Description

Deletes the specified waveform curve or all the waveform curves from the current subwindow
of a Waveform window.

Arguments

x_index Integer identifying a particular waveform curve.

all_string The string "all" specifying that all waveform curves are to be
deleted.

Value Returned

t Returns t if the curves are deleted.

nil Returns nil and an error message if the curves are not deleted.

Examples
deleteWaveform(’1)
=> t

Deletes waveform 1 from the current subwindow.

deleteWaveform("all")
=> t

Deletes all the curves from the current subwindow.
June 2004 179 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
displayMode

displayMode(t_mode)
=> t/nil

Description

Sets the display mode of the current subwindow.

Arguments

t_mode String representing the display mode for the subwindow.
Valid values: strip, smith, or composite

Value Returned

t Returns t when the display mode of the subwindow is set.

nil Returns nil and an error message if the display mode cannot
be set.

Example
displayMode("composite")
=> t

Sets the current subwindow to display in composite mode.
June 2004 180 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
getAsciiWave

getAsciiWave(t_filename x_xColumn x_yColumn [x_xskip] [x_yskip])
=> o_wave/nil

Description

Reads in an Ascii file of data and generates a waveform object from the specified data. The
X-axis data must be real numbers. The Y-axis data can be real or complex values. Complex
values are represented as (real imag) or complex(real imag). This function skips
blank lines and comment lines. Comments are defined as lines beginning with a semicolon.

Arguments

t_filename The name of the Ascii file to be read in.

x_xColumn The column in the data file that contains the X-axis data.

x_yColumn The column in the data file that contains the Y-axis data.

x_xskip The number of lines to skip in the X column.

x_yskip The number of lines to skip in the Y column.

Value Returned

o_wave The DRL waveform object

nil Returns nil if the function fails.

Example
getAsciiWave("~/mydatafile.txt " 1 2)
=> drwave:32538648

Reads in an ascii file ~/mydatafile.txt, which has x-axis data in the first column and y-
axis data in the second column, and returns a DRL waveform object.

getAsciiWave("~/mydatafile.txt " 1 2 ?xskip 1 ?yskip 2)
=> drwave:32538656

Reads in an ascii file ~/mydatafile.txt, which has x-axis data in the first column and y-
axis data in the second column and skips 1 line in the xcolumn and 2 lines in the ycolumn,
and returns a DRL waveform object.
June 2004 181 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
graphicsOff

graphicsOff()
=> t/nil

Description

Disables the redrawing of the current Waveform window.

You might use this command to freeze the Waveform window display, send several plots to
the window, and then unfreeze the window to display all the plots at once.

Arguments

None.

Value Returned

t Returns t if redrawing is disabled.

nil Returns nil if there is an error, such as there is no current
Waveform window.

Example
graphicsOff()
=> t

Disables the redrawing of the Waveform window.
June 2004 182 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
graphicsOn

graphicsOn()
=> t/nil

Description

Enables the redrawing of the current Waveform window.

Arguments

None.

Value Returned

t Returns t if redrawing is enabled.

nil Returns nil if there is an error, such as there is no current
Waveform window.

Example
graphicsOn()
=> t

Enables the redrawing of the current Waveform window.
June 2004 183 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
hardCopy

hardCopy(w_windowId)
=> t/nil

Description

Sends a Waveform window plot to a printer.

Note: You must first set any plotting options with the hardCopyOptions command.

Arguments

w_windowId The window ID of the waveform window whose plot is to be
printed. The default value is the window ID of the current window.

Value Returned

t Returns t if successful.

nil Returns nil if there is an error.

Example
hardCopy()
=> t

Sends a waveform plot to the printer.

w = newWindow()

plot(v("/vout"))

hardCopy(w)

Sends the waveform plot of w to the printer.
June 2004 184 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
hardCopyOptions

hardCopyOptions([?hcNumCopy x_hcNumCopy] [?hcDisplay t_hcDisplay]
[?hcOrientation s_hcOrientation] [?hcOutputFile g_hcOutputFile]
[?hcPaperSize t_hcPaperSize] [?hcPlotterName t_hcPlotterName]
[?hcTmpDir t_hcTmpDir])
=> g_value/nil

Description

Sets Waveform window hardcopy plotting options.

The option takes effect for any Waveform window or subwindow that is opened after the
option is set.

Arguments

x_hcNumCopy The number of copies to plot.
Valid values: any positive integer
Default value: 1

t_hcDisplay The display name.
Valid values: defined in the technology file
Default value: "display"

s_hcOrientation
The plot orientation.
Valid values: ’portrait, ’landscape, ’automatic
Default value: ’automatic

g_hcOutputFile
Name of the output file.
Valid values: a string or nil
Default value: nil

t_hcPaperSize
The plot paper size.
Valid values: specified in .cdsplotinit
Default value: specified in .cdsplotinit

t_hcPlotterName
The name of the plotter.
June 2004 185 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
Valid values: specified in .cdsplotinit
Default value: specified in .cdsplotinit

t_hcTmpDir The name of a temporary directory to be used for scratch space.
Valid values: name of a temporary directory
Default value: "/usr/tmp"

Value Returned

g_value Returns the new value of the option.

nil Returns nil if there is an error.

Examples
hardCopyOptions(?hcNumCopy 1)

Plots one copy of the window or subwindow.

hardCopyOptions(?hcNumCopy 3 ?hcOutputFile "myOutFile")

Plots three copies of the window or subwindow and sends them to the file myOutFile.

hardCopyOptions(?hcNumCopy 2 ?hcOrientation ’portrait ?hcOutputFile "myOutfile")

Plots 2 copies of the window in portrait orientation and sends them to the file myOutFile.
June 2004 186 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
ip3Plot

ip3Plot(o_wave x_sigHarmonic x_refHarmonic x_extrapolationPoint)
=> t/nil

Description

Plots the IP3 curves.

This command should be run on the results of the Spectre swept pss and pac analysis.

Refer to the chapter Simulating Mixers of the SpectreRF User Guide for more information
on ip3Plot.

Arguments

o_wave Waveform for which to plot the ip3.

x_sigHarmonic
Index of the third order harmonic.

x_refHarmonic
Index of the first order (fundamental) harmonic.

x_extrapolationPoint
Extrapolation point.

Value Returned

t Returns t if the curves are plotted.

nil Returns nil if there is an error.

Example
ip3Plot(v("/net28") 47 45 -25)
June 2004 187 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
newWindow

newWindow()
=> w_windowID/nil

Description

Creates a new Waveform window and returns the window ID.

Arguments

None.

Value Returned

w_windowId Returns the window ID of the new Waveform window.

nil Returns nil and an error message if the new Waveform window
cannot be created.

Example
newWindow()
=> window:3

Creates a new Waveform window that is numbered 3 in the upper right corner.
June 2004 188 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
noiseSummary

noiseSummary(s_type [?result s_resultName [?resultsDir t_resultsDir]]
[?frequency f_frequency] [?weight f_weight] [?output t_fileName | p_port]
[?noiseUnit t_noiseUnit] [?truncateData x_truncateData]
[?truncateType s_truncateType] [?digits x_digits]
[?percentDecimals x_percentDecimals] [?from f_from] [?to f_to]
[?deviceType ls_deviceType] [?weightFile t_weightFile])
=> t_fileName/p_port/nil

Description

Prints a report showing the noise contribution of each component in a circuit.

This command should be run on the results of the Spectre noise analysis.

Arguments

s_type Type of noise-analysis results for which to print the report.
Valid values: spot, to specify noise at a particular frequency, or
integrated, to specify noise integrated over a frequency
range.

s_resultName Results from an analysis. When specified, this argumentwill only
be used internally and will not alter the current result which was
set by the selectResult command. The default is the current
result selected with the selectResult command.

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.
When specified, this argument will only be used internally and
will not alter the current results directory which was set by the
openResults command. The default is the current results
directory set by the openResults command.

f_frequency Frequency value of interest.

f_weight Waveform representing the function with which the integral is
weighted.
Default value: 1.0

t_fileName File in which to write the information. The noiseSummary
command opens the file, writes to the file, and closes the file. If
June 2004 189 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
you specify the filename without a path, the noiseSummary
command creates the file in the directory pointed to by your Skill
Path. To find out what your Skill path is, type getSkillPath()
at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

t_noiseUnit Specifies the type of noise unit to be saved.
Valid values: "V^2" for V^2/Hz or
"V" for V/sqrt(Hz)

x_truncateData
Specifies a number that the truncateType argument uses to
define the components for which information is to be printed.

s_truncateType Specifies the method that is used to limit the data being included
in the report.

x_digits Number of significant digits with which the contributors are
printed.

x_percentDecimals
Number of decimals printed for any relative contribution.

Valid
Values Description Sample

Values

’top Saves information for the number of
components specified with
truncateData. The components
with the highest contributions are
saved.

10

’level Prints components which have noise
contribution higher than that
specified by ?truncateData.

10u

’relative Prints components which have noise
contribution (percent) higher than
that specified by ?truncateData.

.1

’none Saves information for all the
components.
June 2004 190 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
f_from For integrated noise, the start value for frequency.

f_to For integrated noise, the end value for frequency.

ls_deviceType
List of device type strings to be included.
Valid values: a list of strings or ’all

t_weightFile Absolute or relative path of the file that contains information
about weights. This data is used to compute weighted noise. If
the values are provided for both parameters, weight and
weightFile, the value for weight gets precedence..

Value Returned

t_fileName Returns the name of the port.

p_port Returns the name of the file.

nil Returns nil and an error message if the summary cannot be
printed.

Examples
noiseSummary(’integrated ?result ’noiseSweep-noise)

Prints a report for an integrated noise analysis.

noiseSummary(’integrated ?resultsDir
"/usr/simulation/lowpass/spectre/schematic"
?result ’noise)

Prints a report for an integrated noise analysis for the results from a different run (stored
in the schematic directory).

noiseSummary(’spot ?resultsDir
"/usr/simulation/lowpass/spectre/schematic"
?result ’noise ?frequency 100M)

Prints a report for a spot noise analysis at a frequency of 100M.

noiseSummary(’integrated ?truncateType ’none ?digits 10
?weightFile "./weights.dat")

Prints the weighted noise for an integrated noise analysis using information in the weight
file weights.dat.

noiseSummary(’integrated ?output "./NoiseSum1" ?noiseUnit "V" ?truncateData 20
?truncateType ’top ?from 10 ?to 10M ?deviceType list("bjt" "mos" "resistor"))
June 2004 191 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
Prints a report for an integrated noise analysis in the frequency range 10-10M for 20
components with deviceType bjt, mos or resistor.
June 2004 192 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
ocnPrint

ocnPrint([?output t_filename | p_port] [?precision x_precision]
[?numberNotation s_numberNotation] [?numSpaces x_numSpaces]
[?width x_width] [?from x_from] [?to x_to] [?step x_step] o_waveform1
[o_waveform2 ...])
=> t/nil

Description

Prints the text data of the waveforms specified in the list of waveforms.

If you provide a filename as the ?output argument, the ocnPrint command opens the file
and writes the information to it. If you provide a port (the return value of the SKILL outfile
command), the ocnPrint command appends the information to the file that is represented
by the port. There is a limitation of ocnPrint for precision. It works upto 30 digits for the
Solaris port and 18 digits for HP and AIX.

Arguments

t_filename File in which to write the information. The ocnPrint command
opens the file, writes to the file, and closes the file. If you specify
the filename without a path, the OCEAN environment creates the
file in the directory pointed to by your Skill Path. To find out what
your Skill path is, type getSkillPath() at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

x_precision The number of significant digits to print. This value overrides any
global precision value set with the setup command.
Valid values: 1 through 16
Default value: 6

s_numberNotation
The notation for printed information. This value overrides any
global format value set with the setup command.
Valid values: ’suffix, ’engineering, ’scientific,
’none
Default value: ’suffix
June 2004 193 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
The format for each value is ’suffix: 1m, 1u, 1n, etc.;
’engineering: 1e-3, 1e-6, 1e-9, etc.; ’scientific:
1.0e-2, 1.768e-5, etc.; ’none.

The value ’none is provided so that you can turn off formatting
and therefore greatly speed up printing for large data files. For
the fastest printing, use the ’none value and set the ?output
argument to a filename or a port, so that output does not go to
the CIW.

x_numSpaces The number of spaces between columns.
Valid values: 1 or greater
Default value: 4

x_width The width of each column.
Valid values: 4 or greater
Default value: 14

x_from The start value at x axis for the waveform to be printed.

x_to The end value at x axis for the waveform to be printed.

?step The step by which text data to be printed is incremented.

o_waveform1 Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

o_waveform2 Additional waveform object.

Value Returned

t Returns t if the text for the waveforms is printed.

nil Returns nil and an error message if the text for the waveforms
cannot be printed.

Examples
ocnPrint(v("/net56"))
=> t

Prints the text for the waveform for the voltage of net56.
June 2004 194 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
ocnPrint(vm("/net56") vp("/net56"))
=> t

Prints the text for the waveforms for the magnitude of the voltage of net56 and the phase of
the voltage of net56.

ocnPrint(?output "myFile" v("net55"))
=> t

Prints the text for the specified waveform to a file named myFile.

ocnPrint(?output "./myOutputFile" v("net1") ?from 0 ?to 0.5n ?step 0.1n)

Prints the text for the specified waveform from 0 to 0.5n on the x axis in the incremental steps
of 0.1n.
June 2004 195 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
ocnYvsYPlot

ocnYvsYPlot([?wavex o_wavex ?wavey o_wavey] [?exprx o_exprx ?expry o_expry]
[?title l_titleList] [?color l_colorList])
=> wave/nil

Description

Plots a wave against another wave or an expression against another expression.

This is currently supported for a family of waveforms generated from simple parametric
simulation results data. It is not supported for a family of waveforms generated from
parametric simulation with paramset, Corners or MonteCarlo results data.

Arguments

o_wavex Reference wave against which the wave provided needs to be
plotted.

o_wavey Wave to be plotted against the reference wave.

o_exprx Reference expression against which the expression provided
needs to be plotted.

o_expry Expression to be plotted against the reference expression.

l_titleList List of waveform titles. If the waveform is simple, only one label
will be required. If the waveform is param, a list of labels needs
to be provided.

l_colorList List of waveform colors. If the waveform is simple, only one color
will be required. If the waveform is param, a list of colors needs
to be provided.

Value Returned

wave Returns the waveform specified.

nil Returns nil if the plot could not be generated.
June 2004 196 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
Examples
wy = VT("/vout")

wx = VT("/vin")

ex = "VT('/vin')"

ey = "VT('/vout')"

ocnYvsYplot(?wavex wx ?wavey wy ?titleList ’("simpleWave") ?colorList ’(3))

Plots wave wy against wave wx with the title being simpleWave and the color being 3.

ocnYvsYplot(?exprx ex ?expry ey ?titleList ’("simpleWave") ?colorList ’(3))

Plots expression ey against expression ex with the title being simpleWave and the color being
3.
June 2004 197 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
plot

plot(o_waveform1 [o_waveform2 ...] [?yNumber l_yNumberList] [?expr l_exprList]
)
=> t/nil

Description

Plots waveforms in the current subwindow. If there is no Waveform window, this command
opens one.

Arguments

o_waveform1 Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

o_waveform2 Additional waveform object.

l_yNumberList List that specifies the Y axes where the waveforms are to be
plotted. The number of Y axes must match the number of
waveform objects specified.
Valid values: 1, 2, 3, and 4

l_exprList List of strings used to give names to the waveform objects.

Value Returned

t Returns t if the waveforms are plotted.

nil Returns nil and an error message if the waveforms cannot be
plotted.

Examples
plot(v("/net56"))

Plots the waveform for the voltage of net56.

plot(vm("/net56") vp("/net56"))

Plots the waveforms for the magnitude of the voltage of net56 and the phase of the voltage
of net56.
June 2004 198 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
plot(v("OUT") i("VFB") ?expr list("voltage" "current"))

Plots the waveforms, but changes one legend label from v("OUT") to voltage and
changes the other legend label from i("VFB") to current.

plot(v("OUT") i("VFB") ?yNumber list(1 2))

Plots the waveforms v("OUT") and i("VFB") on the Y axes 1 and 2, respectively.
June 2004 199 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
plotStyle

plotStyle(S_style)
=> t/nil

Description

Sets the plotting style for all the waveforms in the current subwindow.

If the plotting style is bar and the display mode is smith, the plotting style is ignored until
the display mode is set to strip or composite.

Arguments

S_style Plotting style for the subwindow.
Valid values: auto, scatterplot, bar, joined

Value Returned

t Returns t if the plotting style is set.

nil Returns nil and an error message if the plotting style is not set.

Example
plotStyle(’auto)
=> t

Sets the plot style to auto.

Argument Description

auto The appropriate plotting style is
automatically chosen.

scatterplot Data points are not joined.

bar Vertical bars are drawn at each data
point that extend from the point to the
bottom of the graph.

joined Each data point is joined to adjacent
data points by straight-line segments.
June 2004 200 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
pzPlot

pzPlot([?resultsDir t_resultsDir] [?result S_resultName] [?plot S_toPlot]
[?freqfilter f_fval] [?realfilter f_rval])
=>t/nil

Description

Plots a report showing the poles and zeros of the network. If you specify a directory with
resultsDir, the pzPlot command plots the results for that directory. The S_toPlot
option can be used to plot only poles, only zeros or both poles and zeros information.

This command should be run on the results of the Spectre pz (pole-zero) analysis.

Arguments

t_resultsDir Directory containing the results. If you specify a directory with
resultsDir, the pzPlot command plots the results for that
directory.

S_resultName Pointer to results from the analysis for which you want to plot the
report.

S_toPlot Use this option to plot only poles, only zeros or both poles and
zeros information.
Valid values: ’poles, ’zeros, ’polesZeros.

f_fval Maximum pole and zero frequency value to filter out poles and
zeros that are outside the frequency band of interest (FBOI) and
that do not influence the transfer function in the FBOI.

f_rval Real value which is used to filter out poles and zeros whose real
value are less than or equal to the value specified.

Value Returned

t Returns t if it plots a report.

nil Returns nil otherwise.
June 2004 201 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
Examples
pzPlot(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?result ’pz)

Plots a report for all the poles and zeros for the specified results.

pzPlot(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?plot ’poles)

Plots a report containing only poles for the specified results.

pzPlot(?plot ’zeros ?realfilter -1.69e-01)

Plots a report for all those zeros whose real values are greater than the real value specified.

pzPlot(?plot ’polesZeros ?freqfilter 2.6e-01)

Plots a report for all those poles and zeros whose frequency is within the frequency band of
interest (2.6e-01).
June 2004 202 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
pzSummary

pzSummary([?resultsDir t_resultsDir] [?result S_resultName]
[?print S_toPrint] [?freqfilter f_fval] [?realfilter f_rval])
=>t/nil

Description

Prints a report with the poles and zeros of the network. If you specify a directory with
resultsDir, the pzSummary command prints the results for that directory. Use the
S_toPrint option to print only poles, only zeros or both poles and zeros information.

This command should be run on the results of the Spectre pz (pole-zero) analysis.

Arguments

t_resultsDir Directory containing the results. If you specify a directory with
resultsDir, the pzSummary command plots the results for that
directory.

S_resultName Pointer to results from the analysis for which you want to print the
report.

S_toPlot Use this option to plot only poles, only zeros or both poles and
zeros information.
Valid values: ’poles, ’zeros, ’polesZeros.

f_fval Maximum pole and zero frequency value to filter out poles and
zeros that are outside the frequency band of interest (FBOI) and
that do not influence the transfer function in the FBOI.

f_rval Real value which is used to filter out poles and zeros whose real
value are less than or equal to the value specified.

Value Returned

t Returns t if it prints a report.

nil Returns nil otherwise.
June 2004 203 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
Examples
pzSummary(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?result ’pz)

Prints a report for all the poles and zeros for the specified results.

pzSummary(?resultsDir "/usr/simulation/lowpass/spectre/schematic" ?print ’poles)

Prints a report containing only poles for the specified results.

pzSummary(?print ’zeros ?realfilter -1.69e-01)

Prints a report for all those zeros whose real values are greater than the real value specified.

pzSummary(?print ’polesZeros ?freqfilter 2.6e-01)

Prints a report for all those poles and zeros whose frequency is within the frequency band of
interest (2.6e-01).
June 2004 204 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
removeLabel

removeLabel(l_id)
=> t/nil

Description

Removes the label, or all the labels identified in a list, from the current subwindow.

Arguments

l_id List of labels to remove.

Value Returned

t Returns t when the label or labels are removed.

nil Returns nil if there is an error.

Examples
label = addWindowLabel(list(0.75 0.75) "test")

Adds the "test" label to the current subwindow at the specified coordinates and stores the
label identification number in label.

removeLabel(label)

Removes the label whose identification number is stored in label. In this case, the "test"
label is removed.
June 2004 205 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
report

report([?output t_filename | p_port] [?type t_type] [?name t_name]
[?param t_param] [?format s_reportStyle] [?report s_reportStyle]
[?maxLineWidth charsPerLine])
=> t/nil

Description

Prints a report of the information contained in an analysis previously specified with
selectResult.

You can use this command to print operating-point, model, or component information. If you
provide a filename as the ?output argument, the report command opens the file and
writes the information to it. If you provide a port (the return value of the SKILL outfile
command), the report command appends the information to the file that is represented by
the port.

Note: You can use the dataTypes command to see what types of reports you can choose.
For Spectre® circuit simulator operating points, be sure to choose dcOp and opBegin.

Arguments

t_filename File in which to write the information. The report command
opens the file, writes to the file, and closes the file. If you specify
the filename without a path, the OCEAN environment creates the
file in the directory pointed to by your Skill Path. To find out what
your Skill path is, type getSkillPath() at the OCEAN prompt.

p_port Port (previously opened with outfile) through which to
append the information to a file. You are responsible for closing
the port. See the outfile command for more information.

t_type Type of information to print, such as all bjts.

t_name Name of the node or component.

t_param Name of the parameter to print. It is also a list.

s_reportStyle Specifies the format of the output.
Valid values: spice and paramValPair
Default value: paramValPair
June 2004 206 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
The spice format looks like this:

The paramValPair format looks like this:

Name1
Param1=value Param2=value Param3=value

Name2
Param1=value Param2=value Param3=value

Name3
Param1=value Param2=value Param3=value

charsPerLine Number of characters to be printed per line.

Value Returned

t Returns t if the information is printed.

nil Returns nil and an error message if the information cannot be
printed.

Examples
selectResult(dcOp)
= > t

report()

Prints all the operating-point parameters.

report(?type "bjt")
= > t

Prints all the bjt operating-point parameters.

report(?type "bjt" ?param "ib")
= > t

Prints the ib parameter for all bjts.

Param1 Param2 Param3

Name1 value value value

Name2 value value value

Name3 value value value
June 2004 207 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
report(?type "bjt" ?name "/Q1" ?param "ib")
= > t

Prints the ib parameter for the bjt named Q1.

report(?output "myFile")
=> t

Prints all the operating-point parameters to a file named myFile.

report(?output myAlreadyOpenedPort)
=> t

Prints all the operating-point parameters to a port named myAlreadyOpenedPort.

The report() can also be used by providing the set of parameters as a list as follows:
Type : bsim3v3
Params : cdg cgb gm ids
report(?type "bsim3v3" ?param "cdg")
report(?type "bsim3v3" ?param ’("cdg" "cgb"))
report(?type "bsim3v3" ?param ’("cdg" "cgb" "gm" "ids"))

report(?format ’spice ?maxLineWidth 200)
=> t

Prints the report in spice format wrapping at column 200.
June 2004 208 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
xLimit

xLimit(l_minMax)
=> t/nil

Description

Sets the X axis display limits for the current subwindow. This command does not take effect
if the display mode is set to smith.

Arguments

l_minMax List of two numbers in waveform coordinates that describe the
limits for the display. The first number is the minimum and the
second is the maximum. If this argument is set to nil, the limit
is set to auto.

Value Returned

t Returns t when the X axis display limits are set.

nil Returns nil and an error message if the X axis display limits are
not set.

Example
xLimit(list(1 100))
=> t

Sets the X axis to display between 1 and 100.
June 2004 209 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
yLimit

yLimit(l_minMax [?yNumber x_yNumber] [?stripNumber x_stripNumber])
=> t/nil

Description

Sets the Y axis display limits for the waveforms associated with a particular Y axis and strip
in the current subwindow.

If you do not specify x_stripNumber, the limits are applied when the subwindow is in
composite mode.

Arguments

l_minMax List of two numbers in waveform coordinates that describe the
limits for the display. The first number is the minimum and the
second is the maximum. If this argument is set to nil, the limit
is set to auto.

x_yNumber Specifies the Y axis that will have limited display with the range
specified by l_minMax.
Valid values: 1 through 4

x_stripNumber Specifies the strip in which the y display is to be limited as
specified by x_yNumber.
Valid values: 1 through 20

Value Returned

t Returns t if the Y axis display limits are set.

nil Returns nil and an error message if the Y axis display limits
cannot be set.

Example
yLimit(list(4.5 7.5) ?yNumber 1)
=> t

Sets Y axis 1 to display from 4.5 to 7.5.

yLimit(list(4.5 7.5) ?yNumber 1 ?stripNumber 3)
June 2004 210 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
Sets Y axis 1 to display from 4.5 to 7.5 in stripNumber 3.
June 2004 211 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
Plotting and Printing SpectreRF Functions in OCEAN

You can access SpectreRF functions in OCEAN by using the getData function and then plot
or print them in OCEAN using the ocnPrint and plot functions.

To take an example, after performing a spectre sp analysis in the Artist environment, click
Results – Direct Plot – S-param. In the S-Parameter Results form, select the function and
other options that you want to plot. Also, select the Add to Outputs option under the Plot
button. Then, click OK. The expression will be added to the Outputs pane of the Artist
environment. When all the desired expressions are created in the Outputs pane, use the
ADE – Session – Save Script command to create the OCEAN script for these plots.

To plot the expression in OCEAN, use the following command:

plot(<expression in Output pane>)

For example,

plot(Gmax()) for Gmax in S-parameter analysis

You can print the functions using the ocnPrint command. For example:

ocnPrint(Gmax() Kf())

After a spectre sp noise analysis, use the following command to access the sp noise data.

selectResult("sp_noise")

A sample OCEAN script to help you print or plot NFmin (minimum noise figure), N F (noise
figure), and RN (noise resistance) results follows. Plotting NNR (normalized noise resistance)
is very similar to plotting RN.

; start ocean with SpectreS as the simulator.

simulator(’spectreS)

; if you wanted to use Spectre as the simulator, then

; simulator(’spectre)

;specify design and model path

design("/usr1/mnt4/myhome/simulation/myckt/spectreS/schematic/netlist/
myckt.c")

path("/usr1/mnt4/myhome/models")

; specify analysis used: sp with noise

analysis(’sp ?start "100M" ?stop "10G" ?donoise "yes"

?oprobe "/PORT1" ?iprobe "/PORT0")

;set design variables

desVar("r2" 37)

desVar("r1" 150)

;set temperature

temp(25)
June 2004 212 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
;run sp noise analysis with the above desVar list.

run()

printf("\n simulation has finished.")

printf("\n selecting sp noise results")

selectResult("sp_noise")

printf("\n print NFmin and plot NF")

NFmin = getData("NFmin")

NF = getData("NF")

ocnPrint(NFmin)

plot(NF)

printf("\n plot Rn")

Rn = getData("RN" ?result "sp_noise")

plot(Rn ?expr ’("Rn"))

exit

For more information, see the section Periodic Noise Analysis and the appendix Plotting
Spectre S-Parameter Simulation Data in the SpectreRF User Guide.

For more information on these functions, click these links: getData, sp, ocnPrint,and plot.
June 2004 213 Product Version 5.1.41

OCEAN Reference
Plotting and Printing Commands
June 2004 214 Product Version 5.1.41

OCEAN Reference
9
OCEAN Aliases

The aliases in this chapter provide you with shortcuts to commonly used pairs of commands.
By default, these aliases operate on results previously selected with selectResult. However,
you can also use an alias on a different set of results. For example, to specify a different set
of results for the vm alias, use the following syntax.

vm(t_net [?result s_resultName])

where s_resultName is the name of the datatype for the particular analysis you want.

You can use the vm alias on results stored in a different directory as follows:

vm(t_net [?resultsDir t_resultsDir] [?result s_resultName])

where t_resultsDir is the name of a different directory containing PSF results, and
s_resultName is the name of a datatype contained in that directory. (If you specify another
directory with t_resultsDir, you must also specify the particular results with
s_resultName.)
List of Aliases

Alias Syntax Description

vm vm(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to mag(v()). Gets the
magnitude of the voltage of a net.

vdb vdb(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to db20(v()). Gets the
power gain in decibels from net in
to net out.

vp vp(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to phase(v()). Gets the
phase of the voltage of a net.
June 2004 215 Product Version 5.1.41

OCEAN Reference
OCEAN Aliases
vr vr(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to real(v()). Gets the
real part of a complex number
representing the voltage of a net.

vim vim(t_net [?resultsDir
t_resultsDir][?result
s_resultname]) => o_waveform/
nil

Aliased to imag(v()). Gets the
imaginary part of a complex
number representing the voltage of
a net.

im im(t_component [?resultsDir
t_resultsDir][?result
s_resultName]) => o_waveform/
nil

Aliased to mag(i()). Gets the
magnitude of the AC current
through a component.

ip ip(t_component [?resultsDir
t_resultsDir][?result
s_resultName]) => o_waveform/
nil

Aliased to phase(i()). Gets the
phase of the AC current through a
component.

ir ir(t_component [?resultsDir
t_resultsDir][?result
s_resultName]) => o_waveform/
nil

Aliased to real(i()). Gets the
real part of a complex number
representing the AC current through
a component.

iim iim(t_component [?resultsDir
t_resultsDir][?result
s_resultName]) => o_waveform/
nil

Aliased to imag(i()). Gets the
imaginary part of a complex
number representing the AC current
through a component.

List of Aliases, continued
June 2004 216 Product Version 5.1.41

OCEAN Reference
10
Predefined Functions and Waveform
(Calculator) Functions

This chapter contains information about the following functions. Some additional predefined
data access commands are described in the Virtuoso® Analog Design Environment
SKILL Language Reference manual.

■ Predefined Arithmetic Functions on page 221

abs on page 223

acos on page 224

add1 on page 225

asin on page 226

atan on page 227

cos on page 228

exp on page 229

linRg on page 230

log on page 231

logRg on page 232

max on page 233

min on page 234

mod on page 235

random on page 236

round on page 237

sin on page 238
June 2004 217 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
sqrt on page 239

srandom on page 240

sub1 on page 241

tan on page 242

■ Waveform (Calculator) Functions on page 243

average on page 244

awvPlaceXMarker on page 246

awvPlaceYMarker on page 247

b1f on page 248

bandwidth on page 249

clip on page 250

compression on page 252

compressionVRI on page 254

compressionVRICurves on page 256

conjugate on page 258

convolve on page 261

cPwrContour on page 263

cReflContour on page 265

cross on page 267

db10 on page 269

db20 on page 270

dbm on page 271

delay on page 272

deriv on page 275

dft on page 276

dftbb on page 278

flip on page 281
June 2004 218 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
fourEval on page 282

frequency on page 283

ga on page 284

gac on page 285

gainBwProd on page 287

gainMargin on page 289

gmax on page 290

gmin on page 291

gmsg on page 292

gmux on page 293

gp on page 294

gpc on page 295

groupDelay on page 297

gt on page 298

harmonic on page 299

harmonicFreqList on page 301

harmonicList on page 303

iinteg on page 305

imag on page 306

integ on page 307

ipn on page 309

ipnVRI on page 312

ipnVRICurves on page 315

kf on page 318

ln on page 319

log10 on page 320

lsb on page 321
June 2004 219 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
lshift on page 322

mag on page 323

nc on page 324

overshoot on page 326

peakToPeak on page 328

phase on page 329

phaseDeg on page 331

phaseDegUnwrapped on page 332

phaseMargin on page 333

phaseRad on page 335

phaseRadUnwrapped on page 336

pow on page 337

psd on page 339

psdbb on page 343

real on page 347

riseTime on page 348

rms on page 350

rmsNoise on page 351

root on page 352

rshift on page 354

sample on page 355

settlingTime on page 357

slewRate on page 359

spectralPower on page 361

ssb on page 362

stddev on page 363

tangent on page 364
June 2004 220 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
thd on page 365

value on page 367

xmax on page 369

xmin on page 371

xval on page 373

ymax on page 374

ymin on page 375

Predefined Arithmetic Functions

Several functions are predefined in the Virtuoso® SKILL language. The full syntax and brief
definitions for these functions follows the table.
Predefined Arithmetic Functions

Synopsis Result

General Functions

add1(n) n + 1

abs | n |

sub1(n) n – 1

exp(n) e raised to the power n

linRg(n_from, n_to,
n_by)

Returns list of numbers in linear range from n_from to
n_to in n_by steps

log(n) Natural logarithm of n

logRg(n_from, n_to,
n_by)

Returns list of numbers in log10 range from n_from to
n_to in n_by steps

max(n1 n2 …) Maximum of the given arguments

min(n1 n2 …) Minimum of the given arguments

mod(x1 x2) x1 modulo x2, that is, the integer remainder of dividing
x1 by x2

round(n) Integer whose value is closest to n

sqrt(n) Square root of n
June 2004 221 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Trigonometric Functions

sin(n) sine, argument n is in radians

cos(n) cosine

tan(n) tangent

asin(n) arc sine, result is in radians

acos(n) arc cosine

atan(n) arc tangent

Random Number Generator

random(x) Returns a random integer between 0 and x-1. If random
is called with no arguments, it returns an integer that has
all of its bits randomly set.

srandom(x) Sets the initial state of the random number generator to x.

Predefined Arithmetic Functions

Synopsis Result
June 2004 222 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
abs

abs(n_number)
=> n_result

Description

Returns the absolute value of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

n_result The absolute value of n_number.

Example
abs(-209.625)
=> 209.625

abs(-23)
=> 23
June 2004 223 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
acos

acos(n_number)
=> f_result

Description

Returns the arc cosine of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result Returns the arc cosine of n_number.

Example
acos(0.3)
=> 1.266104
June 2004 224 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
add1

add1(n_number)
=> n_result

Description

Adds 1 to a floating-point number or integer.

Arguments

n_number Floating-point number or integer to increase by 1.

Value Returned

n_result n_number plus 1.

Example
add1(59)
=> 60

Adds 1 to 59.
June 2004 225 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
asin

asin(n_number)
=> f_result

Description

Returns the arc sine of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The arc sine of n_number.

Example
asin(0.3)
=> 0.3046927
June 2004 226 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
atan

atan(n_number)
=> f_result

Description

Returns the arc tangent of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The arc tangent of n_number.

Example
atan(0.3)
=> 0.2914568
June 2004 227 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
cos

cos(n_number)
=> f_result

Description

Returns the cosine of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The cosine of n_number.

Examples
cos(0.3)
=> 0.9553365

cos(3.14/2)
=> 0.0007963
June 2004 228 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
exp

exp(n_number)
=> f_result

Description

Raises e to a given power.

Arguments

n_number Power to raise e to.

Value Returned

f_result The value of e raised to the power n_number.

Examples
exp(1)
=> 2.718282

exp(3.0)
=> 20.08554
June 2004 229 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
linRg

linRg(n_from n_to n_by)
=> l_range/nil

Description

Returns a list of numbers in the linear range from n_from to n_to incremented by n_by.

 Arguments

n_from Smaller number in the linear range.

n_to Larger number in the linear range.

n_by Increment value when stepping through the range.

Value Returned

l_range List of numbers in the linear range.

nil Returned if error.

Example
range = linRg(-30 30 5)

(-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30)
June 2004 230 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
log

log(n_number)
=> f_result

Description

Returns the natural logarithm of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The natural logarithm of n_number.

Example
log(3.0)
=> 1.098612
June 2004 231 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
logRg

logRg(n_from n_to n_by)
=> l_range/nil

Description

Returns a list of numbers in the log10 range from n_from to n_to advanced by n_by.

The list is a geometric progression where the multiplier is 10 raised to the 1/n_by power. For
example if n_by is 0.5, the multiplier is 10 raised to the 2nd power or 100.

 Arguments

n_from Smaller number in the linear range.

n_to Larger number in the linear range.

n_by Increment value when stepping through the range.

Value Returned

l_range List of numbers in the linear range.

nil Returned if error.

Example
logRg(1 1M 0.5)

(1.0 100.0 10000.0 1000000.0)
June 2004 232 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
max

max(n_num1 n_num2 [n_num3 …])
=> n_result

Description

Returns the maximum of the values passed in. Requires a minimum of two arguments.

Arguments

n_num1 First value to check.

n_num2 Next value to check.

[n_num3…] Additional values to check.

Value Returned

n_result The maximum of the values passed in.

Examples
max(3 2 1)
=> 3

max(-3 -2 -1)
=> -1
June 2004 233 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
min

min(n_num1 n_num2 [n_num3 …])
=> n_result

Description

Returns the minimum of the values passed in. Requires a minimum of two arguments.

Arguments

n_num1 First value to check.

n_num2 Next value to check.

[n_num3…] Additional values to check.

Value Returned

n_result The minimum of the values passed in.

Examples
min(1 2 3)
=> 1

min(-1 -2.0 -3)
=> -3.0
June 2004 234 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
mod

mod(x_integer1 x_integer2)
=> x_result

Description

Returns the integer remainder of dividing two integers. The remainder is either zero or has
the sign of the dividend.

Arguments

x_integer1 Dividend.

x_integer2 Divisor.

Value Returned

x_result The integer remainder of the division. The sign is determined by
the dividend.

Example
mod(4 3)
=> 1
June 2004 235 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
random

random([x_number])
=> x_result

Description

Returns a random integer between 0 and x_number minus 1.

If you call random with no arguments, it returns an integer that has all of its bits randomly set.

Arguments

x_number An integer.

Value Returned

x_result Returns a random integer between 0 and x_number minus 1.

Example
random(93)
=> 26
June 2004 236 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
round

round(n_arg)
=> x_result

Description

Rounds a floating-point number to its closest integer value.

Arguments

n_arg Floating-point number.

Value Returned

x_result The integer whose value is closest to n_arg.

Examples
round(1.5)
=> 2

round(-1.49)
=> -1

round(1.49)
=> 1
June 2004 237 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
sin

sin(n_number)
=> f_result

Description

Returns the sine of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The sine of n_number.

Examples
sin(3.14/2)
=> 0.9999997

sin(3.14159/2)
=> 1.0

Floating-point results from evaluating the same expressions might be machine-dependent.
June 2004 238 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
sqrt

sqrt(n_number)
=> f_result

Description

Returns the square root of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The square root of n_number.

Examples
sqrt(49)
=> 7.0

sqrt(43942)
=> 209.6235
June 2004 239 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
srandom

srandom(x_number)
=> t

Description

Sets the seed of the random number generator to a given number.

Arguments

x_number An integer.

Value Returned

t This function always returns t.

Example
srandom(89)
=> t
June 2004 240 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
sub1

sub1(n_number)
=> n_result

Description

Subtracts 1 from a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

n_result Returns n_number minus 1.

Example
sub1(59)
=> 58

Subtracts 1 from 59.
June 2004 241 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
tan

tan(n_number)
=> f_result

Description

Returns the tangent of a floating-point number or integer.

Arguments

n_number Floating-point number or integer.

Value Returned

f_result The tangent of n_number.

Example
tan(3.0)
=> -0.1425465
June 2004 242 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Waveform (Calculator) Functions

The calculator commands are described in this section.
June 2004 243 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
average

average(o_waveform)
=> n_average/o_waveformAverage/nil

Description

Computes the average of a waveform over its entire range.

Average is defined as the integral of the expression f(x) over the range of x, divided by the
range of x.

For example, if y=f(x), average(y)=

where from is the initial value for x and to is the final value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

n_average Returns a number representing the average value of the input
waveform.

o_waveformAverage
Returns a waveform (or family of waveforms) representing the
average value if the input is a family of waveforms.

nil Returns nil and an error message otherwise.

f x()dx

from

to

∫

to from–

June 2004 244 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Example
average(v("/net9"))

Gets the average voltage (Y-axis value) of /net9 over the entire time range specified in the
simulation analysis.
June 2004 245 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
awvPlaceXMarker

awvPlaceXMarker(w_windowId n_xLoc [?subwindow x_subwindowId])
=> t_xLoc/t/nil

Description

Places a vertical marker at a specific x-coordinate in the optionally specified subwindow of
the specified window.

Arguments

w_windowId Waveform window ID.

n_xLoc The x-coordinate at which to place the marker.

x_subwindowId Waveform subwindow ID.

Value Returned

t_xLoc Returns a string of x-coordinates if the command is successful
and the vertical marker info form is opened.

t Returns this when the command is successful but the vertical
marker info form is not opened.

nil Returns nil or an error message.

Examples
awvPlaceXMarker(window 5)
=> "5"

Vertical marker info form is opened when the command is executed.

awvPlaceXMarker(window 6 ?subwindow 2)
=> t

Vertical marker info form is not opened.
June 2004 246 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
awvPlaceYMarker

awvPlaceYMarker(w_windowId n_yLoc [?subwindow x_subwindowId])
=> t_yLoc/t/nil

Description

Places a horizontal marker at a specific y-coordinate in the optionally specified subwindow of
the specified window.

Arguments

w_windowId Waveform window ID.

n_yLoc The y-coordinate at which to place the marker.

x_subwindowId Waveform subwindow ID.

Value Returned

t_yLoc Returns a string of y-coordinates if the command is successful
and the horizontal marker info form is opened.

t Returns this when the command is successful but the horizontal
marker info form is not opened.

nil Returns nil or an error message.

Examples
awvPlaceYMarker(window 5)
=> "5"

Horizontal marker info form is opened when the command is executed.

awvPlaceYMarker(window 6 ?subwindow 2)
=> t

Horizontal marker info form is not opened.
June 2004 247 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
b1f

b1f(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the alternative stability factor in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Waveform object representing the alternative stability factor.

nil Returns nil and an error message otherwise.

Examples
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(b1f(s11 s12 s21 s22))
June 2004 248 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
bandwidth

bandwidth(o_waveform n_db t_type)
=> n_value/o_waveform/nil

Description

Calculates the bandwidth of a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_db Positive number that defines the bandwidth.

t_type Type of input filter.
Valid values: "low", "high" or "band".

Value Returned

n_value Returns a number representing the value of the bandwidth if the
input argument is a single waveform.

o_waveform Returns a waveform (or family of waveforms) representing the
bandwidth if the input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Examples
bandwidth(v("/OUT") 3 "low")

Gets the 3 dB bandwidth of a low-pass filter.

bandwidth(v("/OUT") 4 "band")

Gets the 4 dB bandwidth of a band-pass filter.
June 2004 249 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
clip

clip(o_waveform n_from n_to)
=> o_waveform/nil

Description

Restricts the waveform to the range defined by n_from and n_to.

You can use the clip function to restrict the range of action of other commands. If n_from is
nil, n_from is taken to be the first X value of the waveform, and if n_to is nil, n_to is
taken to be the last X value of the waveform. If both n_to and n_from are nil, the original
waveform is returned.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_from Starting value for the range on the X axis.

n_to Ending value for the range on the X axis.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

nil Returns nil and an error message otherwise.

Examples
x = clip(v("/net9") 2m 4m)

plot(x)

Plots the portion of a waveform that ranges from 2 ms to 4 ms.

plot(clip(v("/net9") nil nil))

Plots the original waveform.

plot(clip(v("/net9") nil 3m))
June 2004 250 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Plots the portion of a waveform that ranges from 0 to 3 ms.
June 2004 251 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
compression

compression(o_waveform [?x f_x] [?y f_y] [?compression f_compression]
[?io s_measure])
=> f_compPoint/nil

Description

Performs an nth compression point measurement on a power waveform.

The compression function uses the power waveform to extrapolate a line of constant slope
(dB/dB) according to a specified input or output power level. This line represents constant
small-signal power gain (ideal gain). The function finds the point where the power waveform
drops n dB from the constant slope line and returns either the X coordinate (input referred)
value or the Y coordinate (output referred) value.

Arguments

o_waveform Waveform object representing output power (in dBm) versus
input power (in dBm).

f_x The X coordinate value (in dBm) used to indicate the point on the
output power waveform where the constant-slope power line
begins. This point should be in the linear region of operation.
Default value: Unless f_y is specified, defaults to the X
coordinate of the first point of the o_waveform wave.

f_y The Y coordinate value (in dBm) used to indicate the point on the
output power waveform where the constant-slope power line
begins. This point should be in the linear region of operation.
Default value: Unless f_x is specified, defaults to the Y
coordinate of the first point of the o_waveform wave.

f_compression
The delta (in dB) between the power waveform and the ideal gain
line that marks the compression point
Default value: 1

s_measure Symbol indicating whether the measurement is to be input
referred (’input) or output referred (’output)
Default value: ’input
June 2004 252 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Value Returned

f_compPoint Depending on the setting of s_measure, returns either input
referred or output referred compression point.

nil Returns nil and an error message otherwise.

Examples
xloc = compression(wave ?x -25 ?compress 1)
yloc = compression(wave ?x -25 ?measure "Output")

; Each of following returns a compression measurement:

compression(dB20(harmonic(v("/Pif" ?result "pss_fd") 2)))

compression(dbm(harmonic(spectralPower(v("/Pif"
?result "pss_fd")/ 50.0
v("/Pif" ?result "pss_fd")) 2)))

compression(dbm(harmonic(spectralPower(v("/Pif"
?result "pss_fd")/resultParam("rif:r"
?result "pss_td") v("/Pif"
?result "pss_fd")) 2)))

compression(dbm(harmonic(spectralPower(i("/rif/PLUS"
?result "pss_fd") v("/Pif" ?result "pss_fd")) 2))
?x -25 ?compress 0.1 ?measure "Output")
June 2004 253 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
compressionVRI

compressionVRI(o_vport x_harm [?iport o_iport] [?rport f_rport]
[?epoint f_epoint] [?gcomp f_gcomp] [?measure s_measure])
=> o_waveform/n_number/nil

Description

Performs an nth compression point measurement on a power waveform.

Use this function to simplify the declaration of a compression measurement. This function
extracts the specified harmonic from the input waveform(s), and uses
dBm(spectralPower((i or v/r),v)) to calculate a power waveform. The function
passes this power curve and the remaining arguments to the compression function to
complete the measurement.

The compression function uses the power waveform to extrapolate a line of constant slope
(dB/dB) according to a specified input or output power level. This line represents constant
small-signal power gain (ideal gain). The function finds the point where the power waveform
drops n dB from the constant slope line and returns either the X coordinate (input referred)
value or the Y coordinate (output referred) value.

Arguments

o_vport Voltage across the output port. This argument must be a family
of spectrum waveforms (1 point per harmonic) created by
parametrically sweeping an input power (in dBm) of the circuit.

x_harm Harmonic index of the voltage wave contained in o_vport.
When o_iport is specified, also applies to a current waveform
contained in o_iport.

o_iport Current into the output port. This argument must be a family of
spectrum waveforms (1 point per harmonic) created by
parametrically sweeping an input power (in dBm) of the circuit.
When specified, the output power is calculated using voltage and
current.
Default value: nil

f_rport Resistance into the output port. When specified and o_iport
is nil, the output power is calculated using voltage and
resistance.
Default value: 50
June 2004 254 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
f_epoint The X coordinate value (in dBm) used to indicate the point on the
output power waveform where the constant-slope power line
begins. This point should be in the linear region of operation.
Default value: the X coordinate of the first point of the
o_waveform wave

f_gcomp The delta (in dB) between the power waveform and the ideal gain
line that marks the compression point.
Default value: 1

s_measure Symbol indicating if measurement is to be input referred
(’input) or output referred (’output).
Default value: ’input

Value Returned

o_waveform Returns a waveform when o_waveform1 is a family of
waveforms.

f_number Returns a number when o_waveform1 is a waveform.

nil Returns nil and an error message otherwise.

Examples
Each of the following returns a compression measurement:

compressionVRI(v("/Pif" ?result "pss_fd") 2)

compressionVRI(v("/Pif" ?result "pss_fd") 2
?rport resultParam("rif:r" ?result "pss_td"))

compressionVRI(v("/Pif" ?result "pss_fd") 2
?iport i("/rif/PLUS" ?result "pss_fd") ?epoint -25
?gcomp 0.1 ?measure "Output")
June 2004 255 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
compressionVRICurves

compressionVRICurves(o_vport x_harm [?iport o_iport] [?rport f_rport]
[?epoint f_epoint] [?gcomp f_gcomp])
=> o_waveform/nil

Description

Constructs the waveforms associated with an nth compression measurement.

Use this function to simplify the creation of waveforms associated with a compression
measurement. This function extracts the specified harmonic from the input waveform(s), and
uses dBm(spectralPower((i or v/r),v)) to calculate a power waveform.

The compressionVRICurves function uses the power waveform to extrapolate a line of
constant slope (1dB/1dB) according to a specified input or output power level. This line
represents constant small-signal power gain (ideal gain). The function shifts the line down by
n dB and returns it, along with the power waveform, as a family of waveforms.

This function only creates waveforms and neither performs a compression measurement nor
includes labels with the waveforms. Use the compression or compressionVRI function
for making measurements.

Arguments

o_vport Voltage across the output port. This argument must be a family
of spectrum waveforms (1 point per harmonic) created by
parametrically sweeping an input power (in dBm) of the circuit.

x_harm Harmonic index of the wave contained in o_vport. When
o_iport is specified, also applies to a current waveform
contained in o_iport.

o_iport Current into the output port. This argument must be a family of
spectrum waveforms (1 point per harmonic) created by
parametrically sweeping an input power (in dBm) of the circuit.
When specified, the output power is calculated using voltage and
current
Default value: nil

f_rport Resistance into the output port. When specified and o_iport
is nil, the output power is calculated using voltage and
June 2004 256 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
resistance.
Default value: 50

f_epoint The X coordinate value (in dBm) used to indicate the point on the
output power waveform where the constant-slope power line
begins. This point should be in the linear region of operation.
Default value: the X coordinate of the first point of the
o_waveform wave

f_gcomp The delta (in dB) between the power waveform and the ideal gain
line that marks the compression point.
Default value: 1

Value Returned

o_waveform Returns a family of waveforms containing the output power and
tangent line.

nil Returns nil and an error message otherwise.

Examples
Each of following examples returns curves related to a compression measurement:

compressionVRICurves(v("/Pif" ?result "pss_fd") 2)

compressionVRICurves(v("/Pif" ?result "pss_fd") 2
?rport resultParam("rif:r" ?result "pss_td"))

compressionVRICurves(v("/Pif" ?result "pss_fd") 2
?iport i("/rif/PLUS" ?result "pss_fd") ?epoint -25
?gcomp 0.1)
June 2004 257 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
conjugate

conjugate({o_waveform | n_x})
=> o_waveform/n_y/nil

Description

Returns the conjugate of a waveform or number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_x Complex or imaginary number.

Value Returned

o_waveform Returns the conjugate of a waveform if the input argument is a
waveform.

n_y Returns the result of n_x being mirrored against the real axis (X
axis) if the input argument is a number.

nil Returns nil and an error message otherwise.

Example

For this example, assume that the first three statements are true for the conjugate function
that follows them.

x=complex(-1 -2)

real(x) = -1.0

imag(x) = -2.0

conjugate(x) = complex(-1, 2)

Returns the conjugate of the input complex number.
June 2004 258 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
complex

complex(f_real f_imaginary)
=> o_complex

Description

Creates a complex number of which the real part is equal to the real argument, and the
imaginary part is equal to the imaginary argument.

Arguments

f_real The real part of the complex number.

f_imaginary The imaginary part of the complex number.

Value Returned

o_complex Returns the complex number.

Example
complex(1.0 2.0)
=> complex(1, 2)
June 2004 259 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
complexp

complexp(g_value)
=> t/nil

Description

Checks if an object is a complex number. The suffix p is added to the name of a function to
indicate that it is a predicate function.

Arguements

g_value A skill object.

Values Returned

t Returns t when g_value is a complex number.

nil Returns nil if there is an error.

Example
complexp((complex 0 1))
=> t

complexp(1.0)
=> nil
June 2004 260 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
convolve

convolve(o_waveform1 o_waveform2 n_from n_to t_type n_by)
=> o_waveform/n_number/nil

Description

Computes the convolution of two waveforms.

Convolution is defined as

f1 and f2 are the functions defined by the first and second waveforms.

Note: The convolve function is numerically intensive and might take longer than the other
functions to compute.

Arguments

o_waveform1 Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

o_waveform2 Additional waveform object.

n_from Starting point (X-axis value) of the integration range.

n_to Ending point (X-axis value) of the integration range.

t_type Type of interpolation.
Valid values: "linear" or "log".

n_by Increment.

f 1 s() f 2 t s–()ds

from

to

∫

June 2004 261 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform object representing the convolution if one of
the input arguments is a waveform. Returns a family of
waveforms if either of the input arguments is a family of
waveforms.

n_number Returns a value representing the convolution if both of the input
arguments are numbers.

nil Returns nil and an error message otherwise.

Example
sinWave = expr(n sin(n) linRg(0 20 0.01))

triWave = artListToWaveform(’((-4, 0) (-3, 1) (-2, 0) (-1, -1) (0, 0)
(1, 1) (2, 0) (3, -1) (4, 0))

plot(convolve(sinWave triWave 0 10 "linear" 1))

Gets the waveform from the convolution of the sine waveform and triangle waveform within
the range of 0 to 10.
June 2004 262 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
cPwrContour

cPwrContour(o_iwave o_vwave x_harm [?iwaveLoad o_iwaveLoad]
[?vwaveLoad o_vwaveLoad] [?maxPower f_maxPower] [?minPower f_minPower]
[?numCont x_numCont] [?refImp f_refImp] [?closeCont b_closeCont]
[?modifier s_modifier])
=> o_waveform/nil

Description

Constructs constant power contours for Z-Smith plotting. The trace of each contour correlates
to reference reflection coefficients that all result in the same power level.

The x_harm harmonic is extracted from all the input waveforms. Power is calculated using
the spectralPower function. The reference reflection coefficients are calculated using
voltage, current, and a reference resistance.

Arguments

o_iwave Current used to calculate power, expected to be a two-
dimensional family of harmonic waveforms.

o_vwave Voltage used to calculate power, expected to be a two-
dimensional family of harmonic waveforms.

x_harm Harmonic index of the waves contained in o_iwave and
o_vwave.

o_iwaveLoad Current used to calculate reflection coefficient, expected to be a
two-dimensional family of harmonic waveforms.
Default value: o_iwave

o_vwaveLoad Voltage used to calculate reflection coefficient, expected to be a
two-dimensional family of harmonic waveforms.
Default value: o_vwave

f_maxPower Maximum power magnitude value for contours.
Default value: automatic

f_minPower Minimum power magnitude value for contours.
Default value: automatic
June 2004 263 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
x_numCont Total number of contours returned.
Default value: 8

f_refImp Reference resistance used to calculate reflection coefficients.
Default value: 50

b_closeCont Boolean indicating when to close the contours. When nil,
largest segment of each contour is left open.
Default value: nil

s_modifier Symbol indicating the modifier function to apply to the calculated
power. The modifier function can be any single argument
OCEAN function such as ’db10 or ’dBm.
Default value: ’mag

Value Returned

o_waveform Returns a family of waveforms (contours) for Z-Smith plotting.

nil Returns nil and an error message otherwise.

Examples

The following example plots constant output power contours according to output:

cPwrContour(i("/I8/out" ?result "pss_fd") v("/net28"
?result "pss_fd")1)

The following example plots constant output power contours according to output reflection
coefficients:

cPwrContour(i("/I8/out" ?result "pss_fd") v("/net28"
?result "pss_fd") 1 ?maxPower 0.002 ?minPower 0.001 ?numCont 9)

The following example plots constant input power contours according to output reflection
coefficients:

cPwrContour(i("/C25/PLUS" ?result "pss_fd") v("/net30"
?result "pss_fd") 1 ?iwaveLoad i("/I8/out" ?result "pss_fd")
?vwaveLoad v("/net28" ?result "pss_fd") ?refImp 50.0
?numCont 9 ?modifier "mag")
June 2004 264 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
cReflContour

cReflContour(o_iwave o_vwave x_harm [?iwaveLoad o_iwaveLoad]
[?vwaveLoad o_vwaveLoad] [?maxRefl f_maxRefl] [?minRefl f_minRefl]
[?numCont x_numCont] [?refImp f_refImp] [?closeCont b_closeCont])
=> o_waveform/nil

Description

Constructs constant reflection coefficient magnitude contours for Z-Smith plotting. The trace
of each contour correlates to reference reflection coefficients that all result in the same
reflection coefficient magnitude.

The x_harm harmonic is extracted from all the input waveforms. Reflection coefficient
magnitude is calculated using voltage, current, reference resistance, and the mag function.
The reference reflection coefficients are calculated separately by using voltage, current, and
a reference resistance.

Arguments

o_iwave Current used to calculate reflection coefficient magnitude,
expected to be a two-dimensional family of spectrum waveforms.

o_vwave Voltage used to calculate reflection coefficient magnitude,
expected to be a two-dimensional family of spectrum waveforms.

x_harm Harmonic index of the waves contained in o_iwave and
o_vwave.

o_iwaveLoad Current used to calculate reference reflection coefficient,
expected to be a two-dimensional family of harmonic waveforms.
Default value: o_iwave

o_vwaveLoad Voltage used to calculate reference reflection coefficient,
expected to be a two-dimensional family of spectrum waveforms.
Default value: o_vwave

f_maxRefl Maximum reflection coefficient magnitude value for contours.
Default value: automatic

f_minRefl Minimum reflection coefficient magnitude value for contours.
Default value: automatic
June 2004 265 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
x_numCont Total number of contours returned.
Default value: 8

f_refImp Reference resistance used to calculate reflection coefficients.
Default value: 50

b_closeCont Boolean indicating when to close the contours. When nil, the
largest segment of each contour is left open.
Default value: nil

Value Returned

o_waveform Returns a family of waveforms (contours) for Z-Smith plotting.

nil Returns nil and an error message otherwise.

Examples

The following example plots constant output reflection coefficient contours according to
output reflection coefficients:

cReflContour(i("/I8/out" ?result "pss_fd") v("/net28"
?result "pss_fd") 1)

The following example plots constant output reflection coefficient contours according to
output reflection coefficients:

cReflContour(i("/I8/out" ?result "pss_fd") v("/net28"
?result "pss_fd") 1 ?maxRefl 0.7 ?minRefl 0.1 ?numCont 7)

The following example plots constant output reflection coefficient contours according to
output reflection coefficients:

cReflContour(i("/C25/PLUS" ?result "pss_fd")
v("/net30" ?result "pss_fd") 1
?iwaveLoad i("/I8/out" ?result "pss_fd")
?vwaveLoad v("/net28" ?result "pss_fd") ?refImp 50.0
?numCont 9)
June 2004 266 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
cross

cross(o_waveform n_crossVal x_n s_crossType)
=> o_waveform/g_value/nil

Description

Computes the X-axis value at which a particular crossing of the specified edge type of the
threshold value occurs.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_crossVal Y-axis value at which the corresponding values of X are
calculated.

x_n Number that specifies which X value to return. If x_n equals 1,
the first X value with a crossing is returned. If x_n equals 2, the
second X value with a crossing is returned, and so on. If you
specify a negative integer for x_n, the X values with crossings
are counted from right to left (from maximum to minimum).

s_crossType Type of the crossing.
Valid values: ’rising, ’falling, ’either.

Value Returned

o_waveform Returns a waveform if the input argument is a family of
waveforms.

g_value Returns the X-axis value of the crossing point if the input
argument is a single waveform.

nil Returns nil and an error message otherwise.

Examples
cross(v("/net9") 2.5 2 ’rising)
June 2004 267 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Gets the time value (X axis) corresponding to specified voltage "/net9"=2.5V (Y axis) for
the second rising edge.

cross(v("/net9") 1.2 1 ’either)

Gets the time value (X axis) corresponding to specified voltage "/net9"=1.2V (Y axis) for
the first edge, which can be a rising or falling edge.
June 2004 268 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
db10

db10({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Returns 10 times the log10 of the specified waveform object or number. This function can also
be written as dB10.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Examples
db10(ymax(v("/net9")))

Returns a waveform representing log10(ymax(v("/net9")) multiplied by 10.

db10(1000)
=> 30.0

Gets the value log10(1000) multiplied by 10, or 30.
June 2004 269 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
db20

db20({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Returns 20 times the log10 of the specified waveform object or number. This function can also
be written as dB20.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Examples
db20(ymax(v("/net9")))

Returns a waveform representing 20 times log10(ymax(v("/net9")).

db20(1000)
=> 60.0

Returns the value of 20 times log10(1000), or 60.
June 2004 270 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
dbm

dbm({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Returns 10 times the log10 of the specified waveform object plus 30. This function can also
be written as dBm.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
dbm(ymax(v("/net9")))

Returns a waveform representing 10 times log10(ymax(v("/net9")) plus 30.
June 2004 271 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
delay

delay(?wf1 o_wf1 ?value1 n_value1 ?edge1 s_edge1 ?nth1 x_nth1 ?td1 n_td1
?wf2 o_wf2 ?value2 n_value2 ?edge2 s_edge2 ?nth2 x_nth2 {[?td2 n_td2] |
[?td2r0 n_td2r0]} ?stop n_stop)
=> o_waveform/n_value/nil

Description

Calculates the delay between a trigger event and a target event.

The delay command computes the delay between two points using the cross command.

Arguments

o_wf1 First waveform object.

n_value1 Value at which the crossing is significant for the first waveform
object.

s_edge1 Type of the edge that must cross n_value1.
Valid values: ’rising, ’falling, ’either

x_nth1 Number that specifies which crossing is to be the trigger event.
For example, if x_nth1 is 2, the trigger event is the second
edge of the first waveform with the specified type that crosses
n_value1.

n_td1 Time at which to start the delay measurement. The simulator
begins looking for the trigger event, as defined by o_wf1,
n_value1, t_edge1, and x_nth1, only after the n_td1
time is reached.

o_wf2 Second waveform object.

n_value2 Value at which the crossing is significant for the second
waveform.

s_edge2 Type of the edge for the second waveform.
Valid values: ’rising, ’falling, ’either

x_nth2 Number that specifies which crossing is to be the target event.
For example, if x_nth2 is 2, the target event is the second edge
June 2004 272 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
of the second waveform with the specified type that crosses
n_value2.

n_td2 Time to start observing the target event. n_td2 is specified
relative to the trigger event. This parameter cannot be specified
at the same time as n_td2r0.

The simulator begins looking for the target event, as defined by
o_wf2, n_value2, t_edge2, and x_nth2, only after the
n_td2 time is reached.

If you specify neither n_td2 nor n_td2r0, the simulator begins
looking for the target event at t = 0.

n_td2r0 Time to start observing the target event, relative to t = 0. Only
applicable if both o_wf1 and o_wf2 are specified. This
parameter cannot be specified at the same time with n_td2.

The simulator begins looking for the target event, as defined by
o_wf2, n_value2, t_edge2, and x_nth2, only after the
n_tdr0 time is reached.

If you specify neither n_td2 nor n_td2r0, the simulator begins
looking for the target event at t = 0.

?td2 and ?td2r0 take precedence over other
options.

n_stop Time to stop observing the target event.

Value Returned

o_waveform Returns a waveform representing the delay if the input argument
is a family of waveforms.

n_value Returns the delay value if the input argument is a single
waveform.

nil Returns nil and an error message otherwise.
June 2004 273 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Examples
delay(?wf1 wf1 ?value1 2.5 ?nth1 2 ?edge1 ’either ?wf2 wf2 ?value2 2.5 ?nth2 1
?edge2 ’falling)

Calculates the delay starting from the time when the second edge of the first waveform
reaches the value of 2.5 to the time when the first falling edge of the second waveform
crosses 2.5.

delay(?td1 5 ?wf2 wf2 ?value2 2.5 ?nth2 1 ?edge2 ’rising ?td2 5)

Calculates the delay starting when the time equals 5 seconds and stopping when the value
of the second waveform reaches 2.5 on the first rising edge 5 seconds after the trigger.

delay(?wf1 wf2 ?value1 2.5 ?nth1 1 ?edge1 ’rising ?td1 5 ?wf2 wf2 ?value2 2.5 ?nth2
1 ?edge2 ’rising ?td2 0)

Waits until after the time equals 5 seconds, and calculates the delay between the first and the
second rising edges of wf2 when the voltage values reach 2.5.
June 2004 274 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
deriv

deriv(o_waveform)
=> o_waveform/nil

Description

Computes the derivative of a waveform with respect to the X axis.

Note: After the second derivative, the results become inaccurate because the derivative is
obtained numerically.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform object representing the derivative with
respect to the X axis of the input waveform. Returns a family of
waveforms if the input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
plot(deriv(v("/net8")))

Plots the waveform representing the derivative of the voltage of "/net8".
June 2004 275 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
dft

dft(o_waveform n_from n_to x_num [t_windowName [n_param1]])
=> o_waveform/nil

Description

Computes the discrete Fourier transform and fast Fourier transform of the input waveform.

The waveform is sampled at the following n timepoints:

from, from + deltaT, from + 2 * deltaT,…,
from + (N - 1) * deltaT

The output of dft is a frequency waveform, W(f), which has (N/2 + 1) complex values—
the DC term, the fundamental, and (N/2 - 1) harmonics.

Note: The last time point, (from + (N - 1) * deltaT), is (to - deltaT) rather than
to. The dft command assumes that w(from) equals w(to).

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_from Starting value for the dft computation.

n_to Ending value for the dft computation.

x_num Number of timepoints. If x_num is not a power of 2, it is forced
to be the next higher power of 2.

t_windowName Variable representing different methods for taking a dft
computation.
Valid values: Rectangular, ExtCosBell, HalfCycleSine,
Hanning or Cosine2, Triangle or Triangular,
Half3CycleSine or HalfCycleSine3, Hamming, Cosine4,
Parzen, Half6CycleSine or HalfCycleSine6, Blackman,
or Kaiser.
June 2004 276 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
For more information about windowName, see the information
about Discrete Fourier Transform (dft) in the Virtuoso® Analog
Design Environment User Guide.

n_param1 Smoothing parameter.
Applies only if the t_windowName argument is set to Kaiser.

Value Returned

o_waveform Returns a waveform representing the magnitude of the various
harmonics for the specified range of frequencies. Returns a
family of waveforms if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example

plot(dft(v("/net8") 10u 20m 64 "rectangular"))

Computes the discrete Fourier transform, fast Fourier transform, of the waveform
representing the voltage of "/net8". The computation is done from 10u to 20m with 64
timepoints. The resulting waveform is plotted.
June 2004 277 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
dftbb

dftbb(o_waveform1 o_waveform2 f_timeStart f_timeEnd x_num
?windowName t_windowName ?smooth x_smooth ?cohGain f_cohGain
?spectrumType s_spectrumType)
=> o_waveformComplex/nil

Description

Computes the discrete Fourier transform (fast Fourier transform) of a complex signal.

Arguments

o_waveform1 Time domain waveform object with units of volts or amps.

o_waveform2 Time domain waveform object with units of volts or amps.

f_timeStart Start time for the spectral analysis interval. Use this parameter
and f_timeEnd to exclude part of the interval. For example, you
might set these values to discard initial transient data.

f_timeEnd End time for the spectral analysis interval.

x_num The number of time domain points to use. The maximum
frequency in the Fourier analysis is directly proportionate to
x_num and inversely proportional to the difference between
f_timeStart and f_timeEnd.

t_windowName The window to be used for applying the moving window FFT.
Valid values: Rectangular, ExtCosBell, HalfCycleSine,
Hanning, Cosine2, Triangle or Triangular,
Half3CycleSineorHalfCycleSine3,Hamming,Cosine3,
Cosine4, Parzen, Half6CycleSine or HalfCycleSine6,
Blackman, or Kaiser. Default value: Hanning.

x_smooth The Kaiser window smoothing parameter. If there are no
requests, there is no smoothing.
Valid values: 0 <= x_smooth <= 15
Default value: 1

f_cohGain A scaling parameter. A non-zero value scales the power spectral
density by 1/(f_cohGain).
Valid values: 0 <= f_cohGain <= 1. You can use 1 if you do
June 2004 278 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
not want the scaling parameter to be used.
Default value: 1

t_spectrumType A string that can be either singleSided or doubleSided.
When this option is single-sided, the resultant waveform is only
on one side of the y axis starting from 0 to N-1. When it is double-
sided, it is symmetric to the Y axis from -N/2 to N/2.

Value Returned

o_waveformComplex The discrete Fourier transform for baseband signals of the two
waveforms returned when the command is successful.

nil Returns nil and an error message otherwise.

Example
dftbb(VT("/net32") VT("/net11") , 0, 16m, 12000, ?windowName ’Hanning,?smooth 1,
?cohGain 1, ?spectrumType "SingleSided")
June 2004 279 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
eyeDiagram

eyeDiagram (o_waveform n_start n_stop n_period)
=> o_waveform/nil

Description

This function gives an eye-diagram plot of the input waveform signal. It returns the waveform
object of the eye-diagram plot.

Arguments

n_start x-axis start value from where the eye-diagram plot is to
commence

n_stop x-axis stop value where the eye-diagram plot will terminate

n_period period value

Value Returned

o_waveform Returns a waveform object representing the eye-diagram plot of
the input waveform

nil Returns nil and an error message otherwise

Example
eyeDiagram(v("/out") 0n 500n 12.5n)
June 2004 280 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
flip

flip(o_waveform)
=> o_waveform/nil

Description

Returns a waveform with the X vector values negated.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform object representing the input waveform
mirrored about its Y axis. Returns a family of waveforms if the
input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
plot(flip(v("/net4")))

Plots the waveform for the voltage of "/net4" with the X vector values negated.
June 2004 281 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
fourEval

fourEval(o_waveform n_from n_to n_by)
=> o_waveform/nil

Description

Evaluates the Fourier series represented by an expression.

This function is an inverse Fourier transformation and thus the inverse of the dft command.
The fourEval function transforms the expression from the frequency domain to the time
domain.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_from Starting point on the X axis at which to start the evaluation.

n_to Increment.

n_by Ending point on the X axis.

Value Returned

o_waveform Returns a waveform object representing the inverse Fourier
transformation of the input waveform. Returns a family of
waveforms if the input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
plot(fourEval(v("/net3") 1k 10k 10)

Plots the waveform representing the inverse Fourier transformation of the voltage of "/net3"
from 1k to 10k.
June 2004 282 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
frequency

frequency(o_waveform)
=> o_waveform/n_value/nil

Description

Computes the reciprocal of the average time between two successive midpoint crossings of
the rising waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the frequency of a family of
waveforms if the input argument is a family of waveforms.

n_value Returns a number representing the frequency of the specified
waveform.

nil Returns nil and an error message otherwise.

Example
frequency(v("/net12"))

Returns the frequency of "/net12".
June 2004 283 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
ga

ga(o_s11 o_s12 o_s21 o_s22 [?gs n_gs])
=> o_waveform/nil

Description

Returns the available gain in terms of the supplied parameters and the optional source
reflection coefficient (Gs).

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

n_gs Source reflection coefficient.
Default value: 0

Value Returned

o_waveform Waveform object representing the available gain.

nil Returns nil and an error message otherwise.

Examples
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(ga(s11 s12 s21 s22))
June 2004 284 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gac

gac(o_s11 o_s12 o_s21 o_s22 g_level g_frequency)
=> o_waveform/nil

Description

Computes the available gain circles.

The g data type on g_level and g_frequency allows either the level or the frequency to
be swept while the other remains fixed.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

g_level Level in dB. It can be specified as a scalar or a vector. If it is
specified as a vector, the level is swept. The linRg function can
be called to generate a linear range. For example, linRg(-30
30 5) is the same as list(-30 -25 -20 -15 -10 -5 0
5 10 15 20 25 30) and the g_level argument can be
specified as either of the above. In that case, an available gain
circle is calculated at each one of the 13 levels.

g_frequency Frequency, which can be specified as a scalar or a linear range.
If it is specified as a linear range, the frequency is swept. The
linear range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M, 800M, 900M,
1G }

In that case, an available gain circle is calculated at each one of
the 10 frequencies.
June 2004 285 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Value Returned

o_waveform Waveform object representing the available gain circles.

nil Returns nil and an error message otherwise.

Examples
s11 = sp(1 1 ?result "sp")

s12 = sp(1 2 ?result "sp")

s21 = sp(2 1 ?result "sp")

s22 = sp(2 2 ?result "sp")

plot(gac(s11 s12 s21 s22 linRg(-30 30 5) 900M))
June 2004 286 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gainBwProd

gainBwProd(o_waveform)
=> o_waveform/n_value/nil

Description

Calculates the gain-bandwidth product of a waveform representing the frequency response
of interest over a sufficiently large frequency range.

Returns the product of the zero-frequency-gain and 3dB-gain-frequency.
.

The gain-bandwidth product is calculated as the product of the DC gain Ao and the critical
frequency f2. The critical frequency f2 is the smallest frequency for which the gain equals

 times the DC gain Ao.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the gain-bandwidth product for
a family of waveforms if the input argument is a family of
waveforms.

n_value Returns a value for the gain-bandwidth product for the specified
waveform.

nil Returns nil and an error message otherwise.

gainBwProd (gain) Ao * f 2=

1 2⁄
June 2004 287 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Example
gainBwProd(v("/OUT"))

Returns the gain-bandwidth product for the waveform representing the voltage of the "/OUT"
net.
June 2004 288 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gainMargin

gainMargin(o_waveform [b_stable])
=> o_waveform/n_value/nil

Description

Computes the gain margin of the loop gain of an amplifier.

The first argument is a waveform representing the loop gain of interest over a sufficiently large
frequency range. This command returns the dB value of the waveform when its phase
crosses negative pi.

gainMargin(gain) = 20 * log10(value(gain f0))

The gain margin is calculated as the magnitude of the gain in dB at f0. The frequency f0 is
the lowest frequency in which the phase of the gain provided is -180 degrees. For stability,
the gain margin will be negative when b_stable is set to nil. If b_stable value is set to t, then
a stable design will have a positive value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

b_stable Boolean optional value that takes the value nil by default.

Value Returned

o_waveform Returns a waveform representing the gain margin for a family of
waveforms if the input argument is a family of waveforms.

n_value Returns the value for the gain margin of the specified waveform.

nil Returns nil and an error message otherwise.

Example
gainMargin(v("/OUT")) = -9.234

gainMargin(v("/OUT") nil) = -9.234

gainMargin(v("/OUT") t) = 9.234
June 2004 289 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gmax

gmax(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the maximum power gain in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Load reflection coefficient.

nil Returns nil and an error message otherwise.

Examples
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gmax(s11 s12 s21 s22))
June 2004 290 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gmin

gmin(o_Gopt o_Bopt f_zref)
=> o_gminWave/nil

Description

Returns the optimum noise reflection coefficient in terms of o_Gopt, o_Bopt, and f_zref.

gmin is returned as follows:

yOpt = o_Gopt + (complex 0 1) * o_Bopt
return (1 / f_zref(1) - yOpt) / (1 / f_zref(1) + yOpt)

Arguments

o_Gopt Waveform object representing the optimum source conductance.

o_Bopt Waveform object representing the optimum source susceptance.

f_zref Reference impedance.

Value Returned

o_gminWave Waveform object representing the optimum noise reflection
coefficient.

nil Returns nil and an error message otherwise.

Examples
Gopt = getData("Gopt")

Bopt = getData("Bopt")

Zref = zref(1 ?result "sp")

plot(gmin(Gopt Bopt Zref))
June 2004 291 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gmsg

gmsg(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the maximum stable power gain in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Waveform object representing the maximum stable power gain.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gmsg(s11 s12 s21 s22))
June 2004 292 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gmux

gmux(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the maximum unilateral power gain in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Waveform object representing the maximum unilateral power
gain.

nil Returns nil and an error message otherwise.

Examples
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gmux(s11 s12 s21 s22))
June 2004 293 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gp

gp(o_s11 o_s12 o_s21 o_s22 [?gl n_gl])
=> o_waveform/nil

Description

Computes the power gain in terms of the S-parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22

n_gl Load reflection coefficient. Default value: 0

Value Returned

o_waveform Waveform object representing the power gain.

nil Returns nil and an error message otherwise.

Example
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gp(s11 s12 s21 s22))

Note: gl is an imaginary number which should be input in the following format:
gp(s11 s12 s21 s22 ?gl complex(<realPart> <imagPart>))
June 2004 294 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gpc

gpc(o_s11 o_s12 o_s21 o_s22 g_level g_frequency)
=> o_waveform/nil

Description

Computes the power gain circles.

The g datatype on g_level and g_frequency allows either the level or the frequency to
be swept while the other remains fixed.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

g_level Level in dB. It can be specified as a scalar or a vector. If it is
specified as a vector, the level is swept. The linRg function can
be called to generate a linear range. For example, linRg(-30
30 5) is the same as list(-30 -25 -20 -15 -10 -5 0
5 10 15 20 25 30) and the g_level argument can be
specified as either. In that case, a power gain circle is calculated
at each one of the 13 levels.

g_frequency The frequency. It can be specified as a scalar or a linear range.
If it is specified as a linear range, the frequency is swept. The
linear range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M, 800M, 900M,
1G }

In that case, a power gain circle is calculated at each one of the
10 frequencies.
June 2004 295 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Value Returned

o_waveform Waveform object representing the power gain circles.

nil Returns nil and an error message otherwise.
June 2004 296 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
groupDelay

groupDelay(o_waveform)
=> o_waveform/nil

Description

Computes the group delay of a waveform.

This command returns the derivative of the phase of o_waveform / 2pi. Group delay is
defined as the derivative of the phase with respect to frequency. Group delay is expressed in
seconds.

It is calculated using the vp function as shown below:

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the group delay of the
specified waveform.

nil Returns nil and an error message otherwise.

Example
plot(groupDelay(v("/net3")))

Plots the waveform representing the group delay of the voltage of "/net3".

Group Delay = ωd
dφ

fd
d phase /netX()

360
----------------------------------=
June 2004 297 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
gt

gt(o_s11 o_s12 o_s21 o_s22 [?gs n_gs] [?gl n_gl])
=> o_waveform/nil

Description

Returns the transducer gain in terms of the supplied parameters and the optional source
reflection coefficient (Gs) and the input reflection coefficient (Gl).

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

n_gs Source reflection coefficient. Default value: 0

n_gl Input reflection coefficient. Default value: 0

Value Returned

o_waveform Waveform object representing the transducer gain.

nil Returns nil and displays a message if there is an error.

Examples
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(gt(s11 s12 s21 s22))

Note: gl is an imaginary number which should be input in the following format:
gt(s11 s12 s21 s22 ?gl complex(<realPart> <imagPart>))
June 2004 298 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
harmonic

harmonic(o_waveform h_index)
=> o_waveform/g_value/nil

Description

Returns the waveform for a given harmonic index.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

h_index The index number that designates the harmonic information to
be returned. For the ’pss, ’pac, and ’pxf analyses, the index
is an integer number. For the ’pdisto analysis, the index is a
list of integers that correspond with the frequency names listed
in the funds analysis parameter in the netlist. If more than one
h_index is desired at one time, a list can be specified.

Value Returned

o_waveform Returns a waveform (when a single h_index is specified) or
family of waveforms (when more than one h_index is
specified) if the input argument is a family of waveforms.

g_value Returns the harmonic value if the input is a single waveform with
the X values being harmonics

nil Returns nil and displays a message if there is an error.

Examples

For each of the following commands:

harmonic(v("/net49" ?result "pss-fd.pss") 1)

harmonic(v("/Pif" ?result "pdisto-fi.pdisto") list(1 -1))

Each result is a complex number.
June 2004 299 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
For each of the following commands:

harmonic(v("/net54" ?result "pac-pac") 1)

harmonic(v("/net51" ?result "sweeppss_pss_fd-sweep") list(8))

harmonic(v("/Pif" ?result "sweeppss_pac-sweep") -8)

harmonic(v("/net36" ?result "sweeppdisto_pdisto_fi-sweep") ’(1 -1))

Each result is a waveform.

For each of the following commands:

harmonic(v("/net54" ?result "pac-pac") list(1 5))

harmonic(v("/net51" ?result "sweeppss_pss_fd-sweep") ’(1 8))

harmonic(v("/Pif" ?result "sweeppss_pac-sweep") list(-8 0))

harmonic(v("/net36" ?result "sweeppdisto_pdisto_fi-sweep") ’((1 -1) (2 -2) (-1 2)))

Each result is a family of waveforms.

Neither of the following commands should be entered:

harmonic(v("/net49" ?result "pss-fd.pss") list(0 1))

harmonic(v("/Pif" ?result "pdisto-fi.pdisto") ’((1 -1) (-1 2)))

Each resulting waveform is not in a useful format.
June 2004 300 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
harmonicFreqList

harmonicFreqList([?resultsDir t_resultsDir] [?result S_resultName])
=> n_list/nil

Description

Returns a list of lists, with each sublist containing a harmonic index and the minimum and
maximum frequency values that the particular harmonic ranges between.

If both of these frequency values are the same, just one frequency value is returned.

Arguments

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.

S_resultName Results from an analysis.

Value Returned

n_list Returns a list of lists. For the ’pss, ’pac, and ’pxf analyses,
the first element of each sublist is an integer number. For the
’pdisto analysis, the first element of each sublist is a list of
integers that correspond with the frequency names listed in the
funds analysis parameter in the netlist. For all sublists, the
remaining entries are the minimum and maximum frequency
values that the particular harmonic ranges between. If both of
these frequency values are the same, just one frequency value
is returned.

nil Returns nil if no harmonics are found in the data.

Examples

For each of the following commands:

harmonicFreqList(?result "pss-fd.pss")

harmonicFreqList(?result "pac-pac")

harmonicFreqList(?result "sweeppss_pss_fd-sweep")

harmonicFreqList(?result "sweeppss_pac-sweep")
June 2004 301 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Each result is a list of integers.

For each of the following commands:

harmonicFreqList(?result "pdisto-fi.pdisto")

harmonicFreqList(?result "sweeppdisto_pdisto_fi-sweep")

Each result is a list of lists, with each sublist containing a combination of integer numbers that
correspond with the frequency names listed in the funds analysis parameter in the netlist.
These names can also be extracted from the PSF data by using the resultParam function
to find the ’largefundname and ’moderatefundnames values. For example:

strcat(resultParam(’largefundname ?result "pdisto-fi.pdisto") " "

resultParam(’moderatefundnames ?result "pdisto-fi.pdisto"))

Returns a string representing the order of the frequency names.
June 2004 302 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
harmonicList

harmonicList([?resultsDir t_resultsDir] [?result S_resultName])
=> n_list

Description

Returns the list of harmonic indices available in the resultName or current result data.

Arguments

t_resultsDir Directory containing the PSF files (results). If you supply this
argument, you must also supply the resultName argument.

S_resultName Results from an analysis.

Value Returned

n_list Returns a list of harmonic indices. For the ’pss, ’pac, and
’pxf analyses, the index is an integer number. For the ’pdisto
analysis, the index is a list of integers that correspond with the
frequency names listed in the ’funds analysis parameter in the
netlist.

nil Returns nil if no harmonics are found in the data.

Examples

For each of the following commands:

harmonicList(?result "pss-fd.pss")

harmonicList(?result "pac-pac")

harmonicList(?result "sweeppss_pss_fd-sweep")

harmonicList(?result "sweeppss_pac-sweep")

Each result is a list of integers.

For each of the following commands:

harmonicList(?result "pdisto-fi.pdisto")

harmonicList(?result "sweeppdisto_pdisto_fi-sweep")
June 2004 303 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Each result is a list of lists, with each sublist containing a combination of integer numbers that
correspond with the frequency names listed in the ’funds analysis parameter in the netlist.
These names can also be extracted from the PSF data by using the ’resultParam function
to find the ’largefundname and ’moderatefundnames values. For example:

strcat(resultParam(’largefundname ?result "pdisto-fi.pdisto") " "

resultParam(’moderatefundnames ?result "pdisto-fi.pdisto"))

Returns a string representing the order of the frequency names.
June 2004 304 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
iinteg

iinteg(o_waveform)
=> o_waveform/nil

Description

Computes the indefinite integral of a waveform with respect to the X-axis variable.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the indefinite integral of the
input waveform.

nil Returns nil and an error message otherwise.

Example
plot(iinteg(v("/net8")))

Computes the indefinite integral of the waveform representing the voltage of
"/net8".
June 2004 305 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
imag

imag({o_waveform | n_input})
=> o_waveformImag/n_numberImag/nil

Description

Returns the imaginary part of a waveform representing a complex number or returns the
imaginary part of a complex number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_input Complex number.

Value Returned

o_waveformImag
Returns a waveform when the input argument is a waveform.

n_numberImag Returns a number when the input argument is a number.

nil Returns nil and an error message otherwise.

Examples
imag(v("/net8"))

Returns a waveform representing the imaginary part of the voltage of "/net8". You also can
use the vim alias to perform the same command, as in
vim("net8").

x=complex(-1 -2) => complex(-1, -2)

imag(x) => -2.0

Creates a variable x representing a complex number, and returns the real portion of that
complex number.
June 2004 306 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
integ

integ(o_waveform,[n_intial_limit,n_final_limit])
=> o_waveform/n_value/nil

Description

Computes the definite integral of the waveform with respect to a range specifed on the X-axis
of the waveform. The result is the value of the area under the curve over the range specified
on the X-axis.

You should specify either both the limits or neither. In case you do specify the limits, they
become the end points of the range on the X-axis for definite integration. If you do not specify
the limits, then the range for definite integration is the entire range of the sweep on the X-axis.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

initial_limit_n Initial limit for definite integration.

final_limit_n Final limit for definite integration.

Value Returned

o_waveform Returns a waveform representing the definite integral for a family
of waveforms if the input argument is a family of waveforms.

n_value Returns a numerical value representing the definite integral of
the input waveform if the input argument is a single waveform.

nil Returns nil and an error message otherwise.

Example
integ(v("/out"))

Returns the definite integral of the waveform representing the voltage of "/out" over its
entire range.

integ(VT("/out"),12.5n,18n)
June 2004 307 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Returns the definite integral of the waveform representing the voltage of "/out" within a
specified range.
June 2004 308 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
ipn

ipn(o_spurious o_reference [f_ordspur f_ordref f_epspur f_epref b_psweep
s_measure])
=> o_waveform/f_number/nil

Description

Performs an intermodulation nth-order intercept measurement.

The data for this measurement can be either a single input power value or a parametric input
power sweep.

From each of the spurious and reference power waveforms (or points), the ipn function
extrapolates a line of constant slope (dB/dB) according to the specified order and input power
level. These lines represent constant small-signal power gain (ideal gain). The ipn function
calculates the intersection of these two lines and returns the value of either the X coordinate
(input referred) or Y coordinate.

Arguments

o_spurious Waveform or number representing the spurious output power (in
dBm).

o_reference Waveform or number representing the reference output power (in
dBm).

f_ordspur Order or slope of the spurious constant-slope power line. Default
value: 3

f_ordref Order or slope of the reference constant-slope power line.
Default value: 1

f_epspur Value (in dBm) used to indicate the point where the spurious
constant-slope power line begins. If b_psweep is t, this value
is the input power value of the point on the o_spurious
waveform, otherwise this value is paired with the o_spurious
value to define the point. This point should be in the linear region
of operation. (If b_psweep is t, f_spspur defaults to the X
coordinate of the first point of the o_spurious wave; if
s_measure is ’input, a number must be specified.)
June 2004 309 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
f_epref Value (in dBm) used to indicate the point where the reference
constant-slope power line begins. If b_psweep is t, this value
is the input power value of the point on the o_reference
waveform, otherwise this value is paired with the
o_reference value to define the point. This point should be in
the linear region of operation. (If b_psweep is t, f_epref
defaults to the X coordinate of the first point of the
o_reference wave; if s_measure is ’input, a number
must be specified.)

b_psweep Boolean indicating that the input power to the circuit was a
parametric sweep. The power sweep must both be in dBm and
be performed at the lowest parametric level.
Default value: t

s_measure Name indicating if measurement is to be input referred (’input)
or output referred (’output).
Default value: ’input

Value Returned

o_waveform Depending on setting of b_psweep and the dimension of the
input waveforms, returns either a waveform or a family of
waveforms.

f_number If o_spurious and o_reference are numbers or they are
waveforms when b_psweep is t, returns a number.

nil Returns nil and an error message otherwise.

Examples
spurWave = db20(harmonic(wave signalHarmonic))
refWave = db20(harmonic(wave referenceHarmonic))
xloc = ipn(spurWave refWave 3.0 1.0 -25 -25)
yloc = ipn(spurWave refWave 3.0 1.0 -25 -25 t "Output")

Computes the IP3 point for the given wave.

Each of the following examples returns an ip3 measurement.

ipn(dB20(harmonic(v("/Pif" ?result "pss_fd") 9))
dB20(harmonic(v("/Pif" ?result "pss_fd") 8)))

ipn(dbm(harmonic(spectralPower(v("/Pif" ?result "pss_fd")/50.0
v("/Pif" ?result "pss_fd")) 9))
June 2004 310 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
dbm(harmonic(spectralPower(v("/Pif" ?result "pss_fd")/50.0
v("/Pif" ?result "pss_fd")) 8)))

ipn(dbm(harmonic(spectralPower(v("/Pif" ?result "pss_fd")
/resultParam("rif:r" ?result "pss_td")
v("/Pif" ?result "pss_fd")) 9))
dbm(harmonic(spectralPower(v("/Pif" ?result "pss_fd")
/resultParam("rif:r" ?result "pss_td")
v("/Pif" ?result "pss_fd")) 8)))

ipn(dbm(harmonic(spectralPower(i("/rif/PLUS" ?result "pss_fd")
v("/Pif" ?result "pss_fd")) 9))
dbm(harmonic(spectralPower(i("/rif/PLUS" ?result "pss_fd")
v("/Pif" ?result "pss_fd")) 8))
3. 1. -25 -25 t "Output")

ipn(dbm(harmonic(spectralPower(v("/Pif" ?result "pac")
/resultParam("rif:r" ?result "pss_td")
v("/Pif" ?result "pac")) -21))
dbm(harmonic(spectralPower(v("/Pif" ?result "pac")
/resultParam("rif:r" ?result "pss_td")
v("/Pif" ?result "pac")) -25)))
June 2004 311 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
ipnVRI

ipnVRI(o_vport x_harmspur x_harmref [?iport o_iport] [?rport f_rport]
[?ordspur f_ordspur] [?epoint f_epoint] [?psweep b_psweep] [?epref f_epref]
[?ordref f_ordref] [?measure s_measure])
=> o_waveform/f_number/nil

Description

Performs an intermodulation nth-order intercept point measurement.

Use this function to simplify the declaration of an ipn measurement. This function extracts the
spurious and reference harmonics from the input waveform(s), and uses
dBm(spectralPower((i or v/r),v)) to calculate the respective powers. The function
passes these power curves or numbers and the remaining arguments to the ipn function to
complete the measurement.

From each of the spurious and reference power waveforms (or points), the ipn function
extrapolates a line of constant slope (dB/dB) according to the specified order and input power
level. These lines represent constant small-signal power gain (ideal gain). The ipn function
calculates the intersection of these two lines and returns the value of either the X coordinate
(input referred) or the Y coordinate.

Arguments

o_vport Voltage across the output port. This argument must be a family
of spectrum waveforms (1 point per harmonic), with the option of
containing a parametric input power sweep (in dBm).

x_harmspur Harmonic number of the spurious voltage contained in
o_vport. When o_iport is specified, also applies to a
current waveform contained in o_iport.

x_harmref Harmonic index of the reference voltage contained in o_vport.
When o_iport is specified, also applies to a current waveform
contained in o_iport.

o_iport Current into the output port. This argument must be a family of
spectrum waveforms (1 point per harmonic), with the option of
containing a parametric input power sweep (in dBm). When
specified, power is calculated using voltage and current.

f_rport Resistance into the output port. When specified and o_iport
is nil, the output power is calculated using voltage and
June 2004 312 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
resistance.
Default value: 50

f_ordspur Order or slope of the spurious constant-slope power line.
Default value: 3

f_epoint Value (in dBm) used to indicate the point where the spurious
constant-slope power line begins. If b_psweep is t, this value
is the input power value of the point on the o_spurious
waveform, otherwise this value is paired with the o_spurious
value to define the point. This point should be in the linear region
of operation.
Default value: If b_psweep is t, the lowest input power value; if
s_measure is ’input, a number must be specified.

b_psweep Boolean indicating that the input power to the circuit was a
parametric sweep. The power sweep must be in dBm and must
be performed at the lowest parametric level.
Default value: t

f_epref Value (in dBm) used to indicate the point where the reference
constant-slope power line begins. If b_psweep is t, this value
is the input power value of the point on the o_reference
waveform, otherwise this value is paired with the
o_reference value to define the point. This point should be in
the linear region of operation.
Default value: If f_epoint is not nil, f_epoint; else if
b_psweep is t, the X coordinate of the first point of the
o_reference wave; else if s_measure is ’input, a number
must be specified.

f_ordref Order or slope of the reference constant-slope power line.
Default value: 1

s_measure Symbol indicating if measurement is to be input referred
(’input) or output referred (’output).
Default value: ’input

Value Returned

o_waveform Depending on the setting of b_psweep and the dimension of
input waveform(s), the ipnVRI function returns either a
waveform or a family of waveforms.
June 2004 313 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
f_number Depending on the setting of b_psweep and the dimension of
input waveform(s), the ipnVRI function returns a number.

nil Returns nil and an error message otherwise.

Example

Each of following examples returns an ip3 measurement:

ipnVRI(v("/Pif" ?result "pss_fd") 9 8)

ipnVRI(v("/Pif" ?result "pss_fd") 9 8
?rport resultParam("rif:r" ?result "pss_td"))

ipnVRI(v("/Pif" ?result "pss_fd") 9 8
?iport i("/rif/PLUS" ?result "pss_fd") ?epoint -25
?measure "Output")

ipnVRI(v("/Pif" ?result "pac") -21 -25
?rport resultParam("rif:r" ?result "pss_td"))
June 2004 314 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
ipnVRICurves

ipnVRICurves(o_vport x_harmspur x_harmref [?iport o_iport] [?rport f_rport]
[?ordspur f_ordspur] [?epoint f_epoint] [?psweep b_psweep] [?epref f_epref]
[?ordref f_ordref])
=> o_waveform/nil

Description

Constructs the waveforms associated with an ipn measurement.

Use this function to simplify the creation of waves associated with an ipn measurement. This
function extracts the spurious and reference harmonics from the input waveform(s), and uses
dBm(spectralPower((i or v/r),v)) to calculate the respective powers.

From each of the spurious and reference power waveforms (or points), the ipnVRICurves
function extrapolates a line of constant slope (dB/dB) according to the specified order and
input power level. These lines represent constant small-signal power gain (ideal gain). The
function returns these lines and power waveforms (when present) as a family of waveforms.

This function only creates waveforms and does not perform an ipn measurement or include
labels with the waveforms. Use the ipn or ipnVRI function for making measurements.

Arguments

o_vport Voltage across the output port. This argument must be a family
of spectrum waveforms (1 point per harmonic), with the option of
containing a parametric input power sweep (in dBm).

x_harmspur Harmonic index of the spurious voltage contained in o_vport.
When o_iport is specified, also applies to a current waveform
contained in o_iport.

x_harmref Harmonic index of the reference voltage contained in o_vport.
When o_iport is specified, also applies to a current waveform
contained in o_iport.

o_iport Current into the output port. This argument must be a family of
spectrum waveforms (1 point per harmonic), with the option of
containing a parametric input power sweep (in dBm). When
specified, power is calculated using voltage and current.
June 2004 315 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
f_rport Resistance into the output port. When specified and o_iport
is nil, the output power is calculated using voltage and
resistance.
Default value: 50

f_ordspur Order or slope of the spurious constant-slope power line.
Default value: 3

f_epoint Value (in dBm) used to indicate the point where the spurious
constant-slope power line begins. If b_psweep is t, this value
is the input power value of the point on the o_spurious
waveform, otherwise this value is paired with the o_spurious
value to define the point. This point should be in the linear region
of operation.
Default value: If b_psweep is t, the X coordinate of the first
point of the o_spurious wave; otherwise a number must be
specified.

b_psweep Boolean indicating that the input power to the circuit was a
parametric sweep. The power sweep must be in dBm and must
be performed at the lowest parametric level.
Default value: t

f_epref Value (in dBm) used to indicate the point where the reference
constant-slope power line begins. If b_psweep is t, this value
is the input power value of the point on the o_reference
waveform, otherwise this value is paired with the
o_reference value to define the point. This point should be in
the linear region of operation.
Default value: If f_epoint is not nil, f_epoint; else if
b_psweep is t, the X coordinate of the first point of the
o_reference wave; else a number must be specified.

f_ordref Order or slope of the reference constant-slope power line.
Default value: 1

Value Returned

o_waveform A family of waveforms that contains the spurious and reference
tangent lines, and when b_psweep is t, contains the spurious
and reference waveforms.

nil Returns nil and an error message otherwise.
June 2004 316 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Examples

Each of following examples returns curves related to an ip3 measurement:

ipnVRICurves(v("/Pif" ?result "pss_fd") 9 8)

ipnVRICurves(v("/Pif" ?result "pss_fd") 9 8
?rport resultParam("rif:r" ?result "pss_td"))

ipnVRICurves(v("/Pif" ?result "pss_fd") 9 8
?iport i("/rif/PLUS" ?result "pss_fd") ?epoint -25)

ipnVRICurves(v("/Pif" ?result "pac") -21 -25
?rport resultParam("rif:r" ?result "pss_td"))
June 2004 317 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
kf

kf(o_s11 o_s12 o_s21 o_s22)
=> o_waveform/nil

Description

Returns the stability factor in terms of the supplied parameters.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

Value Returned

o_waveform Waveform object representing the stability factor.

nil Returns nil if there is an error.

Examples
s11 = sp(1 1)

s12 = sp(1 2)

s21 = sp(2 1)

s22 = sp(2 2)

plot(kf(s11 s12 s21 s22))
June 2004 318 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
ln

ln({o_waveform | n_number})
=> o_waveform/f_number/nil

Description

Gets the base-e (natural) logarithm of a waveform or number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object representing the base-e (natural)
logarithm of the input waveform if the input argument is a
waveform object, or returns a family of waveforms if the input
argument is a family of waveforms

f_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Examples
ln(v("/net9"))

Gets a waveform that is calculated as the natural logarithm of the input waveform.

ln(ymax(v("/net9")))

Gets a waveform that is calculated as the natural logarithm of the following: ymax(v("/
net9")).

ln(100)
=> 4.60517

Gets the natural logarithm of 100.
June 2004 319 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
log10

log10({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Gets the base-10 logarithm of a waveform or a number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number that is calculated as the base-10 logarithm of
the input number.

nil Returns nil and an error message otherwise.

Examples
log10(v("/net9"))

Gets a waveform that is calculated as the base-10 logarithm of the input waveform.

log10(ymax(v("/net9")))

Gets a waveform representing the base-10 logarithm of ymax(v("/net9")).

log10(100)
=> 2.0

Gets the base-10 logarithm of 100, or 2.
June 2004 320 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
lsb

lsb(o_s11 o_s12 o_s21 o_s22 g_frequency)
=> o_waveform/nil

Description

Computes the load stability circles.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

g_frequency Frequency. It can be specified as a scalar or a linear range. If it
is specified as a linear range, the frequency is swept. The linear
range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M,
800M, 900M, 1G }

In that case, a load stability circle is calculated at each one of the
10 frequencies

Value Returned

o_waveform Waveform object representing the load stability circles.

nil Returns nil and an error message otherwise.

Examples
plot(lsb(s11 s12 s21 s22 list(800M 1G 100M)))
June 2004 321 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
lshift

lshift(o_waveform n_delta)
=> o_waveform/nil

Description

Shifts the waveform to the left by the delta value.

This command is the inverse of the rshift command.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_delta Value by which the waveform is to be shifted.

Value Returned

o_waveform Returns a waveform object representing the input waveform
shifted to the left. Returns a family of waveforms if the input
argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
plot(lshift(v("/net8") 30u))

Shifts the waveform representing the voltage of "/net8" to the left by 30u and plots the
resulting waveform.
June 2004 322 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
mag

mag({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Gets the magnitude of a waveform or number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Examples
mag(v("5"))

Gets the magnitude of the waveform representing the voltage at net 5. You can also use the
vm alias to perform the same command, as in vm("5").

mag(i("VFB"))

Gets the magnitude of the waveform representing current through the VFB component. You
can also use the im alias to perform the same command, as in im("VFB").

mag(-10) => 10

Returns the magnitude of -10.
June 2004 323 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
nc

nc(o_Fmin o_Gmin o_rn g_level g_frequency)
=> o_waveform/nil

Description

Computes the noise circles.

Arguments

o_Fmin Waveform object representing the minimum noise factor.

o_Gmin Waveform object representing the optimum noise reflection.

o_rn Waveform object representing the normalized equivalent noise
resistance.

g_level Level in dB. It can be specified as a scalar or a vector. The level
is swept, if it is specified as a vector. The linRg function can be
called to generate a linear range. For example, linRg(-30 30
5) is the same as list(-30 -25 -20 -15 -10 -5 0 5
10 15 20 25 30) and the g_level argument can be
specified as either of the above. In that case, a noise circle is
calculated at each one of the 13 levels.

g_frequency Frequency. It can be specified as a scalar or a linear range. The
frequency is swept if it is specified as a linear range. The linear
range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M, 800M, 900M,
1G }

In that case, a noise circle is calculated at each one of the 10
frequencies.

Value Returned

o_waveform Waveform object representing the noise circles.
June 2004 324 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
nil Returns nil and an error message otherwise.

Examples
Gopt = getData("Gopt")

Bopt = getData("Bopt")

Zref = zref(1 ?result "sp")

Gmin = gmin(Gopt Bopt Zref)

Fmin = getData("Fmin")

rn = getData("NNR")

NC = nc(Fmin Gmin rn 10 list(100M 1G 100M))

displayMode("smith")

smithType("impedance")

plot(NC)
June 2004 325 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
overshoot

overshoot(o_waveform n_initVal g_initType n_finalVal g_finalType)
=> o_waveform/n_value/nil

Description

Computes the percentage by which an expression overshoots a step going from the initial
value to the final value you enter.

This command returns the overshoot of o_waveform as a percentage of the difference
between the initial value and the final value.

In the equation below, M represents Maximum Value of the peak wave, F represents Final
Value of the settled wave, and I represents Initial Value of the wave.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_initVal Initial X value at which to start the computation.

g_initType Specifies how initVal functions.
Valid values: a non-nil value specifies that the initial value is
taken to be the value of the waveform, interpolated at
initVal, and the waveform is clipped from below, as follows:
o_waveform = clip(o_waveform initVal nil)

I

F

Step

M

Overshoot M F–()x100
F I–

--------------------------------=
June 2004 326 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
nil specifies that initVal is defined by the X value entered.
(The command gets the Y value for the specified X value and
uses that value for initVal.)

n_finalVal Final value at which to end the computation.

g_finalType Specifies how finalVal functions.
Valid values: a non-nil value specifies that the final value is
taken to be the value of the waveform, interpolated at
finalVal, and the waveform is clipped from above, as
follows:

o_waveform = clip(o_waveform nil finalVal)

nil specifies that finalVal is defined by the X value entered.
(The command gets the Y value for the specified X value and
uses that value for finalVal.)

Value Returned

o_waveform Returns a waveform (or family of waveforms) representing the
amount of overshoot in comparison to the whole signal if the
input argument is a family of waveforms.

n_value Returns a value for the amount of overshoot in comparison to the
whole signal if the input is a single waveform.

nil Returns nil and an error message otherwise.

Example
overshoot(v("/net8") 7n t 3.99u t)

Returns the value of the overshoot for the waveform representing the voltage of "/net8".
June 2004 327 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
peakToPeak

peakToPeak(o_waveform)
=> o_waveform/n_value/nil

Description

Returns the difference between the maximum and minimum values of a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform or a family of waveforms if the input
argument is a family of waveforms.

n_value Returns the difference between the maximum and minimum
values of a waveform if the input argument is a single waveform.

nil Returns nil and an error message otherwise.

Example
peakToPeak(v("/net2"))

Returns the difference between the maximum and minimum values of the waveform
representing the voltage of the "/net2" net.
June 2004 328 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
phase

phase({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Gets the phase of the waveform or number.

The phase command is similar to the phaseDegUnwrapped command and returns the
unwrapped phase in degrees.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object if the input argument is a waveform
object or returns a family of waveforms if the input argument is a
family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Examples
phase(v("5"))

Gets the phase of the waveform representing the voltage at net 5. You can also use the vp
alias to perform the same command, as in vp("5").

phase(i("VFB"))

Gets the phase of the waveform representing the current through the VFB component. You
can also use the ip alias to perform the same command, as in ip("VFB").

phase(-2.0) => 180.0
June 2004 329 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Gets the phase of -2.
June 2004 330 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
phaseDeg

phaseDeg({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Calculates the wrapped phase in degrees of a waveform and returns a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object representing the wrapped phase in
degrees of the input waveform. Returns a family of waveforms if
the input argument is a family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
phaseDeg(v("vout"))

Takes the input waveform, representing the voltage of the "vout" net, and returns the
waveform object representing the wrapped phase in degrees.
June 2004 331 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
phaseDegUnwrapped

phaseDegUnwrapped({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Calculates the unwrapped phase in degrees of a waveform and returns a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform object representing the unwrapped phase in
degrees of the input waveform. Returns a family of waveforms if
the input argument is a family of waveforms.

n_number Returns a number if the input argument is a number.

nil Returns nil and an error message otherwise.

Example
phaseDegUnwrapped(v("vout"))

Takes the input waveform, representing the voltage of the "vout" net, and returns the
waveform object representing the unwrapped phase in degrees.
June 2004 332 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
phaseMargin

phaseMargin(o_waveform)
=> o_waveform/n_value/nil

Description

Computes the phase margin of the loop gain of an amplifier.

You supply a waveform representing the loop gain of interest over a sufficiently large
frequency range.

phaseMargin(gain) = 180 + phase(value(gain f0))

The phase margin is calculated as the difference between the phase of the gain in degrees
at f0 and at -180 degrees. The frequency f0 is the lowest frequency where the gain is 1. For
stability, the phase margin must be positive.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Phase
Margin

Frequency

Frequency

|A |

1

|Φ|

-180

0

Gain crossover frequency

f0
June 2004 333 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform representing the phase margin of the loop
gain of an amplifier for a family of waveforms if the input
argument is a family of waveforms.

n_value Returns the value (in degrees) equivalent to the phase margin of
the input waveform.

nil Returns nil and an error message otherwise.

Example
phaseMargin(v("/OUT"))

Returns the phase margin for the waveform representing the voltage of the
"/OUT" net.
June 2004 334 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
phaseRad

phaseRad({o_waveform | n_number})
=> o_waveform/n_number/nil

Description

Calculates the wrapped (discontinuous) phase in radians of a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_number Number.

Value Returned

o_waveform Returns a waveform representing a discontinuous value (in
radians) for the phase of the input waveform. Returns a family of
waveforms if the input argument is a family of waveforms.

n_number Returns a number when the input argument is a number.

nil Returns nil and an error message otherwise.

Example
plot(phaseRad(v("/OUT")))

Returns the wrapped phase of the waveform representing the voltage of the "/OUT" net.
June 2004 335 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
phaseRadUnwrapped

phaseRadUnwrapped(o_waveform)
=> o_waveform/nil

Description

Calculates the unwrapped (continuous) phase in radians of a waveform and returns a
waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the unwrapped (continuous)
value for the phase of the input waveform in radians. Returns a
family of waveforms if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
plot(phaseRadUnwrapped(v("/OUT"))

Returns the unwrapped phase of the waveform representing the voltage of the
"/OUT" net.
June 2004 336 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
pow

pow({o_waveformBase | n_numberBas} {o_waveformExpn | n_numberExpn})
=> o_waveform/n_result/nil

Description

Takes the exponent of a given waveform or number.

Arguments

o_waveformBase
Waveform object to be used as the base for the expression.

o_waveformExpn
Waveform object to be used as the exponent for the expression.

n_numberBase Number to be used as the base for the expression.

n_numberExpn Number to used as the exponent for the expression.

Value Returned

o_waveform Returns a family of waveforms if one of the input arguments is a
family of waveforms or returns a waveform if one of the input
arguments is a waveform (and none is a family).

n_result Returns a number if both the input arguments are numbers.

nil Returns nil and an error message otherwise.

Examples
pow(average(v("/net9")) 0.5)

Gets the square root of the average value of the voltage at "/net9".

pow(2 3)
=> 8

Gets the value of 2 to the third power, or 8.

pow(-2 2)
=> 4
June 2004 337 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Gets the value of -2 to the second power.

pow(2.5 -1.2)
=> 0.3330213

Gets the value of 2.5 to the power of -1.2.
June 2004 338 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
psd

psd(o_waveform f_timeStart f_timeEnd x_num ?windowName t_windowName
?smooth x_smooth ?cohGain f_cohGain ?windowsize x_windowsize
?detrending t_detrending)
=> o_waveformReal/nil

Description

Returns an estimate for the power spectral density of o_waveform. If x_windowsize is
not a power of 2, it is forced to the next higher power of 2. If x_num is less than
x_windowsize, x_num is forced to x_windowsize.

Arguments

o_waveform Time domain waveform object with units of volts or amps.

f_timeStart Starting time for the spectral analysis interval. Use this
parameter and f_timeEnd to exclude part of the interval. For
example, you might set these values to discard initial transient
data.

f_timeEnd Ending time for the spectral analysis interval.

x_num The number of time domain points to use. The maximum
frequency in the Fourier analysis is proportional to x_num and
inversely proportional to the difference between f_timeStart
and f_timeEnd.
Default value: 512

t_windowName The window to be used for applying the moving window FFT.

Valid values: ’Blackman, ’Cosine2, ’Cosine4,
’ExtCosBell, ’HalfCycleSine, ’Half3CycleSine or
’HalfCycleSine3, ’Half6CycleSine or
’HalfCycleSine6,’Hamming, ’Hanning, ’Kaiser,
’Parzen, ’Rectangular, ’Triangle or ’Triangular.
Default value: ’Hanning

x_smooth The Kaiser window smoothing parameter. The 0 value requests
no smoothing.
Valid values: 0 <= x_smooth <= 15.
Default value: 1
June 2004 339 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
f_cohGain A scaling parameter. A non-zero value scales the power spectral
density by 1/(f_cohGain).
Valid values: 0 < f_cohGain < 1 (You can use 1 if you do not
want the scaling parameter to be used)
Default value: 1

x_windowsize The number of frequency domain points to use in the Fourier
analysis. A larger window size results in an expectation operation
over fewer samples, which leads to larger variations in the power
spectral density. A small window size can smear out sharp steps
in the power spectral density that might really be present.
Default value: 256

t_detrending The detrending mode to use.
Valid values: ’mean, ’linear, ’none
Default value: ’none

The psd function works by applying a moving windowed FFT to
time-series data. If there is a deterministic trend to the underlying
data, you might want to remove the trend before performing the
spectral analysis. For example, consider analyzing phase noise
in a VCO model. Without the noise, the phase increases more or
less linearly with time, so it is appropriate to set the detrending
mode to ’linear. To subtract an average value, set the
detrending mode to ’mean. Where the spectrum of raw data is
desired, set the detrending mode to ’none.

Value Returned

o_waveformReal
The power spectral density waveform returned when the
command is successful.

nil Returns nil when the command fails.

Example
psd(VT("/net32" "/hm/test_bench/spectre/schematic"), 0, 16m, 12000,

?windowName ’Hanning,?smooth 1, ?windowSize 256,
?detrending ’None, ?cohGain 1)
June 2004 340 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Consider applying this command to one of the waveforms in the following illustration.
June 2004 341 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
The result is the following spectrum, which is displayed with a logarithmic vertical scale.
June 2004 342 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
psdbb

psdbb(o_waveform1 o_waveform2 f_timeStart f_timeEnd x_num
?windowName t_windowName ?smooth x_smooth ?cohGain f_cohGain
?windowsize x_windowsize ?detrending t_detrending)
=> o_waveformReal/nil

Description

Returns an estimate for the power spectral density of o_waveform1+j*o_waveform2.
If x_windowsize is not a power of 2, it is forced to the next higher power of 2. If x_num is
less than x_windowsize, x_num is forced to x_windowsize.

Arguments

o_waveform1 Time domain waveform object with units of volts or amps.

o_waveform2 Time domain waveform object with units of volts or amps.

f_timeStart Starting time for the spectral analysis interval. Use this
parameter and f_timeEnd to exclude part of the interval. For
example, you might set these values to discard initial transient
data.

f_timeEnd Ending time for the spectral analysis interval.

x_num The number of time domain points to use. The maximum
frequency in the Fourier analysis is proportional to x_num and
inversely proportional to the difference between f_timeStart
and f_timeEnd.

t_windowName The window to be used for applying the moving window FFT.
Valid values: ’Blackman, ’Cosine2, ’Cosine4,
’ExtCosBell, ’HalfCycleSine, ’Half3CycleSine or
’HalfCycleSine3, ’Half6CycleSine or
’HalfCycleSine6,’Hamming, ’Hanning, ’Kaiser,
’Parzen, ’Rectangular, ’Triangle or ’Triangular.
Default value: ’Hanning

x_smooth The Kaiser window smoothing parameter. 0 requests no
smoothing.
Valid values: 0 <= x_smooth <= 15.
Default value: 1
June 2004 343 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
f_cohGain A scaling parameter. A non-zero value scales the power spectral
density by 1/(f_cohGain).
Valid values: 0 < f_cohGain < 1 (You can use 1 if you do not
want the scaling parameter to be used)
Default value: 1

x_windowsize The number of frequency domain points to use in the Fourier
analysis. A larger window size results in an expectation operation
over fewer samples, which leads to larger variations in the power
spectral density. A small window size can smear out sharp steps
in the power spectral density that might really be present.

t_detrending The detrending mode to use.
Valid values: ’mean, ’linear, ’none
Default value: ’none

The psd function works by applying a moving windowed FFT to
time-series data. If there is a deterministic trend to the underlying
data, you might want to remove the trend before performing the
spectral analysis. For example, consider analyzing phase noise
in a VCO model. Without the noise, the phase increases more or
less linearly with time, so it is appropriate to set the detrending
mode to ’linear. To subtract an average value, set the
detrending mode to ’mean. Where the spectrum of raw data is
desired, set the detrending mode to ’none.

Value Returned

o_waveformReal
The power spectral density waveform returned when the
command is successful.

nil Returns nil when the command fails.

Example
psdbb(VT("/net32" "/hm/test_bench/spectre/schematic"),

VT("/net11" "/hm/test_bench/spectre/schematic"), 0, 16m, 12000,
?windowName ’Hanning,?smooth 1, ?windowSize 256,
?detrending ’None, ?cohGain 1)
June 2004 344 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Consider applying this command to both of the waveforms in the following illustration.
June 2004 345 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
The result is the following spectrum, which is displayed with a logarithmic vertical scale.
June 2004 346 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
real

real({o_waveform | n_input})
=> o_waveformReal/n_numberReal/nil

Description

Returns the real part of a waveform representing a complex number, or returns the real part
of a complex number.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_input Complex number.

Value Returned

o_waveformReal
Returns a waveform when the input argument is a waveform.

n_numberReal Returns a number when the input argument is a number.

nil Returns nil and an error message otherwise.

Example
real(v("/net8"))

Returns a waveform representing the real part of the voltage of "/net8". You also can use
the vr alias to perform the same command, as in vr("net8").

x=complex(-1 -2) => complex(-1, -2)

real(x) => -1.0

Creates a variable x representing a complex number, and returns the real portion of that
complex number.
June 2004 347 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
riseTime

riseTime(o_waveform n_initVal g_initType n_finalVal g_finalType n_theta1
n_theta2)
=> o_waveform/n_value/nil

Description

Returns the rise time measured between theta1 (percent low) to theta2 (percent high)
of the difference between the initial value and the final value.

The riseTime function can also be used to compute the fall time if initVal is higher than
finalVal.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_initVal Initial value at which to start the computation.

g_initType Specifies how n_initVal functions.
Valid values: a non-nil value specifies that the initial value is
taken to be the value of the waveform, interpolated at
n_initVal, and the waveform is clipped from below as
follows:

Value returned by
riseTime function

10%

90%

2

5

10

1

9

theta1

theta2

Initial Value

Final Value
June 2004 348 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
o_waveform = clip(o_waveform g_initVal nil)

nil specifies that n_initVal is defined by the X value
entered. (The command gets the Y value for the specified X
value and uses that value for n_initVal.)

n_finalVal Final value at which to end the computation.

g_finalType Specifies how the n_finalVal argument functions.
Valid values: a non-nil value specifies that the final value is taken
to be the value of the waveform, interpolated at n_finalVal,
and the waveform is clipped from above, as follows:

o_waveform = clip(o_waveform nil n_finalVal)

nil specifies that the n_finalVal argument is defined by the
X value entered. (The command gets the Y value for the
specified X value and uses that value for n_finalVal.)

n_theta1 Percent low.

n_theta2 Percent high.

Value Returned

o_waveform Returns a waveform representing the rise time for a family of
waveforms if the input argument is a family of waveforms.

n_value Returns a value for the rise time if the input is a single waveform.

nil Returns nil and an error message otherwise.

Examples
riseTime(v("/net8") 0 t 2 t 10 90)

Computes the rise time for the waveform representing the voltage of "/net8" from 0 to 2.

For the next example, assume that v is the following sinusoidal waveform:

sin(2 * pi * time)

riseTime(v 0.25 t 0.5 t 10 90)

Computes the fall time of the first falling edge from 1 to 0.
June 2004 349 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
rms

rms(o_waveform)
=> o_waveform/n_value/nil

Description

Returns the root-mean-square value of a waveform.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform representing the root-mean-square value
for a family of waveforms if the input argument is a family of
waveforms.

n_value Returns a value for the root-mean-square value for the specified
waveform if the input is a single waveform.

nil Returns nil and an error message otherwise.

Example
rms(v("/out"))

Returns the root-mean-square value of the waveform representing the voltage of the "/out"
net.
June 2004 350 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
rmsNoise

rmsNoise(n_from n_to)
=> o_waveform/n_value/nil

Description

Computes the integrated root-mean-square noise over the specified bandwidth.

Arguments

n_from Frequency in hertz that specifies the minimum value for the
bandwidth.

n_to Frequency in hertz that specifies the maximum value for the
bandwidth.

Value Returned

o_waveform Returns a waveform (or a family of waveforms) representing the
integrated root-mean-square noise if the data being analyzed is
parametric.

n_value Returns a value for the integrated root-mean-square noise if the
data being analyzed is from a single simulation run.

nil Returns nil and an error message otherwise.

Example
rmsNoise(100 100M)
=> 250e-6

Computes the integrated root-mean-square noise from 100 to 100M.
June 2004 351 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
root

root(o_waveform n_rootVal x_n)
=> o_waveform/n_value/l_value/nil

Description

Returns the nth X value at which the Y value equals the specified Y value (rootVal).

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_rootVal Y value of interest.

x_n Number that specifies which X value to return. If n equals 1, the
first X value that crosses over the Y rootVal is returned. If n
equals 2, the second X value that crosses over the Y rootVal
is returned, and so on. If you specify a negative integer for n, the
X values that cross the rootVal are counted from right to left
(from maximum to minimum). If you specify n as 0, the list of root
values is returned.

Value Returned

o_waveform Returns a waveform if the input argument is a family of
waveforms.

n_value Returns an X value when the input argument is a single
waveform.

l_value Returns a list of all the root values when n is 0.

nil Returns nil and an error message otherwise.

Example
root(v("vout"), 1.0, 4)
June 2004 352 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Returns the X value for the point at which the waveform curve crosses the 1.0 Y value for the
fourth time.

X

Y

1.0

2.5

-2.5 n = 4

rootVal = 1.0
June 2004 353 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
rshift

rshift(o_waveform n_delta)
=> o_waveform/nil

Description

Shifts the waveform to the right by the n_delta value.

This command is the inverse of the lshift command.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_delta Value by which the waveform is to be shifted.

Value Returned

o_waveform Returns a waveform object. Returns a family of waveforms if the
input argument is a family of waveforms.

nil Returns nil and an error message otherwise.

Example
rshift(v("vout")) 10n)

Shifts the waveform representing the voltage through the "vout" net to the right by 10n.

X

Y
10n 20n

V
ol

ta
ge
June 2004 354 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
sample

sample(o_waveform n_from n_to t_type n_by)
=> o_waveform/n_number/nil

Description

Samples a waveform at the specified interval.

You can use this function to reduce the time it takes to plot waveforms that have many data
points. If you sample a waveform beyond its range, you get the final value of the waveform.
You can use this function to demodulate a signal. Consider an AM modulated sine wave.
Assume the carrier frequency is 1 GHz, and the modulation frequency is 1 MHz. If the
waveform is sampled every 1 ns, the resulting signal is cleanly demodulated (the 1 GHz
carrier is completely eliminated by the sampling).

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_from Starting value for the sampling.

n_to Ending value for the sampling.

t_type Type of the sampling.
Valid values: "linear" or "log"

n_by Interval at which to sample.

Value Returned

o_waveform Returns a waveform representing the sampling you specified.

n_number Returns a number if the output contains only one point.

nil Returns nil and an error message otherwise.

Examples
sample(v("vout") 0 50n "linear" 0.1n)
June 2004 355 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Takes a linear sample of the waveform representing the voltage of the "vout" net.

sample(v("vout") 0 100m "log" 10)

Takes a logarithmic sample of the waveform representing the voltage of the "vout" net.
June 2004 356 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
settlingTime

settlingTime(o_waveform n_initVal g_initType n_finalVal g_finalType n_theta)
=> o_waveform/n_value/nil

Description

The settling time is the time by which the signal settles within the specified Percent of step
(theta) of the difference beween the Final Value and Initial Value from the Final Value.

Note: The above graph represents the Initial value of the signal as 0% and Final
value as 100%. The Percent of Step is taken as 5%.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_initVal Initial value at which to start the computation.

g_initType Specifies whether the values entered are X values or Y values.
Valid values: t specifies that initVal is defined by the X value
entered; nil specifies that initVal is defined by the Y value
entered

n_finalVal Final value at which to start the computation.

Final value - 100%

Initial value - 0%

95%

105%

5%

5%

time

signal Value

Settling Time
June 2004 357 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
g_finalType Specifies whether the values entered are X values or Y values.
Valid values: t specifies that finalVal is defined by the X
value entered; nil specifies that finalVal is defined by the Y
value entered

n_theta Percent of the total step.

Value Returned

o_waveform Returns a waveform representing the settling time for a family of
waveforms if the input argument is a family of waveforms.

n_value Returns a value for the settling time for the specified waveform if
the input is a single waveform.

nil Returns nil and an error message otherwise.

Example
settlingTime(v("/out") 0 t 2 t 90)

Computes the time required for the waveform representing the voltage of
the "/out" net to settle within 90 percent of the step from 0 to 2.
June 2004 358 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
slewRate

slewRate(o_waveform n_initVal g_initType n_finalVal g_finalType n_theta1
n_theta2)
=> o_waveform/n_value/nil

Description

Computes the average rate at which an expression changes from theta1 (percent low) to
theta2 (percent high) of the difference between the initial value and final value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_initVal Initial X-axis value at which to start the computation.

g_initType Specifies whether the values entered are X values or Y values.
Valid values: t specifies that initVal is defined by the X value
entered; nil specifies that initVal is defined by the Y value
entered

n_finalVal Final value at which to end the computation.

g_finalType Specifies whether the values entered are X values or Y values.
Valid values: t specifies that finalVal is defined by the X
value entered; nil specifies that finalVal is defined by the Y
value entered

n_theta1 Percent low (percentage of the total step).

X

Y

theta1

theta2

∆ Y

∆ X

slewRate =
∆ Y

∆ X
June 2004 359 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
n_theta2 Percent high (percentage of the total step).

Value Returned

o_waveform Returns a waveform representing the slew rate for a family of
waveforms if the input argument is a family of waveforms.

n_value Returns a value for the slew rate for the specified waveform if the
input is a single waveform.

nil Returns nil and an error message otherwise.

Example
slewRate(v("vout") 10n t 30n t 10 90)

Computes the slew rate for the waveform representing the voltage of the "vout" net from
10n to 30n.

slewRate(v("vout") 0 nil 10 nil 5 95)

Computes the slew rate for the waveform representing the voltage of the "vout" net from 0
to 10. In this example, the initial value and final value are entered as Y values.
June 2004 360 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
spectralPower

spectralPower(o_current o_voltage)
=> o_power/nil

Description

Returns the spectral power given the spectral current and voltage.

To obtain a list of the harmonic frequencies, use harmonicList.

Arguments

o_current Waveform representing the current. The current can be obtained
by calling the i data access function for the desired terminal.

o_voltage Waveform representing the voltage. The voltage can be obtained
by calling the v data access function for the desired net. To
obtain meaningful results, the terminal used to obtain the current
must be a member of the net used to obtain the voltage.

Value Returned

o_power Waveform representing the power of the net.

nil Returns nil if there is an error.

Example
plot(db10(spectralPower(i("/PORT0/PLUS") v("/net28"))))

Plots power of the output "/net28". "/PORT0/PLUS" is a member of "/net28".
June 2004 361 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
ssb

ssb(o_s11 o_s12 o_s21 o_s22 g_frequency)
=> o_waveform/nil

Description

Computes the source stability circles.

Arguments

o_s11 Waveform object representing s11.

o_s12 Waveform object representing s12.

o_s21 Waveform object representing s21.

o_s22 Waveform object representing s22.

g_frequency Frequency. It can be specified as a scalar or a linear range. The
frequency is swept if it is specified as a linear range. The linear
range is specified as a list with three values: the start of the
range, the end of the range, and the increment. For example,
list(100M 1G 100M) specifies a linear range with the
following values:

{ 100M, 200M, 300M, 400M, 500M, 600M, 700M,
800M, 900M, 1G }

In that case, a source stability circle is calculated at each one of
the 10 frequencies.

Value Returned

o_waveform Waveform object representing the source stability circles.

nil Returns nil and an error message otherwise.

Example
plot(ssb(s11 s12 s21 s22 list(800M 1G 100M)))
June 2004 362 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
stddev

stddev(o_waveform)
=> n_stddev/o_waveformStddev/nil

Description

Computes the standard deviation of a waveform (or a family of waveforms) over its entire
range. Standard deviation (stddev) is defined as the square-root of the variance where
variance is the integral of the square of the difference of the expression f(x) from average
(f(x)), divided by the range of x.

For example, if y=f(x)

Arguments

o_waveform Waveform object or family of waveforms representing simulation
results that can be displayed as a series of points. (A waveform
object identifier looks like this: drwave:XXXXX)

Value Returned

n_stddev Returns a number representing the standard deviation value of
the input waveform.

o_waveformStddev Returns a waveform representing the average value if the input
is a family of waveforms.

nil Returns nil or an error message.

Example
stddev(v("/net9"))

Gets the standard deviation of the voltage (Y-axis value) of /net9 over the entire time range
specified in the simulation analysis.

stddev(y)

y average y()–()2

from

to

∫

to from–
--=
June 2004 363 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
tangent

tangent(o_waveform [?x n_x] [?y n_y] [?slope n_slope])
=> o_waveform/nil

Description

Returns the tangent to a waveform through the point (n_x, n_y) with the given slope.

Arguments

o_waveform Waveform object representing the wave.

n_x X coordinate of the point. The default value is the X coordinate of
the first point on the wave.

n_y Y coordinate of the point. The default value is the Y coordinate at
the given or default X coordinate.

n_slope Slope of the line.
Default value: 1.0

Value Returned

o_waveform Wave object representing the line.

nil Returns nil if there is an error.

Example
refLine
=> tangent(refWave ?x -25 ?slope 1.0)
June 2004 364 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
thd

thd(o_waveform n_from n_to x_num n_fund)
=> o_waveform/n_thdValue/nil

Description

The thd function computes the percentage of total harmonic content of a signal with respect
to the fundamental frequency.

The computation uses the dft function. Assume that the dft function returns complex
coefficients A0, A1…, Af , Please note that fundamental frequency f is the frequency
contributing to the largest power in the signal. A0 is the complex coefficient for the
DC component and Ai is the complex coefficient for the ith harmonic where . Then, total
harmonic distortion is computed as:

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

n_from Starting value for the computation.

n_to Ending value for the computation.

x_num Number of timepoints. If x_num is not a power of 2, it is forced
to be the next higher power of 2.

n_fund Fundamental Frequency of the signal. If it is nil or zero then the
non-zero frequency contributing to the largest power in the signal
is used as the fundamental frequency. Otherwise, the harmonic
frequency nearest to its value is used as the fundamental
frequency.

i 0 f,≠

Ai
2

i 1 i 0 f,≠,=
∑

A f
--- 100× %
June 2004 365 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Value Returned

o_waveform Returns a waveform representing the absolute value of the total
harmonic distortion if the input argument is a family of
waveforms.

n_thdValue Returns the absolute value of the total harmonic distortion of the
input waveform.

nil Returns nil and an error message otherwise.

Example
plot(thd(v("/net8") 10u 20m 64 0))

Computes the absolute value of the total harmonic distortion for the waveform representing
the voltage of "/net8". The computation is done from 10u to 20m with 64 time points using the
non-zero frequency contributing to the largest power in the signal as the fundamental
frequency. The resulting waveform is plotted.

plot(thd(v("/net8") 10u 20m 64 90))

Computes the absolute value of the total harmonic distortion for the waveform representing
the voltage of "/net8". The computation is done from 10u to 20m with 64 timepoints using a
harmonic frequency, whose absolute difference w.r.t 90 is minimum, as the fundamental
frequency. The resulting waveform is plotted.
June 2004 366 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
value

value(o_waveform [s_name] g_value)
=> o_waveform/g_value/nil

Description

Returns the Y value of a waveform for a given X value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

s_name The name of the innermost or outermost sweep variable. If the
sweep variable name is not supplied, the innermost sweep
variable is used.

g_value Value (X value) at which to provide the Y value. If a string has
been defined for a value or set of values, the string may be used
instead of the value.

Value Returned

o_waveform Returns a waveform or a family of waveforms if the input
argument is a family of waveforms.

g_value Returns the Y value if the input argument is a single waveform.

Note: For parametric sweeps, the value might be a waveform that can be printed with
the ocnPrint command.

nil Returns nil and an error message if the value cannot be
printed.

Examples
value(v("/net18") 4.428e-05)

Prints the value of "/net18" at time=4.428e-05. This is a parametric sweep of
temperature over time.
June 2004 367 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
value(v("/OUT")’TEMPDC 20.0)

Returns drwave:XXXXX, indicating that the result is a waveform.

print(value(v("/OUT")’TEMPDC 20.0))

Prints the value of v("/OUT") at every time point for TEMPDC=20.
June 2004 368 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
xmax

xmax(o_waveform x_numberOfPeaks)
=> o_waveform/g_value/l_value/nil

Description

Computes the value of the independent variable (X) at which the Y value attains its maximum
value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

x_numberOfPeaks
Specifies the nth X value corresponding to the maximum Y
value. For example, if x_numberOfPeaks is 3, the X value
corresponding to the third maximum Y value is returned. If you
specify a negative integer for x_numberOfPeaks, the X
values are counted from right to left (from maximum to
minimum). If x_numberOfPeaks is 0, xmax returns a list of X
locations.

Value Returned

o_waveform Returns a waveform (or a family of waveforms) if the input
argument is a family of waveforms.

g_value Returns the X value corresponding to the peak specified with
x_numberOfPeaks if the input argument is a single waveform.

l_value Returns a list of X locations when x_numberOfPeaks is 0 and
the input argument is a single waveform.

nil Returns nil and an error message otherwise.

Examples
xmax(v("/net9") 1)
June 2004 369 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Gets the time value (X-axis value) at which the voltage of "/net9" attains its first peak value.

xmax(v("/net9") 0)

Gets the list of time values (X-axis values) at which the voltage of "/net9" attains each of
its peak values.
June 2004 370 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
xmin

xmin(o_waveform x_numberOfValleys)
=> o_waveform/g_value/l_value/nil

Description

Computes the value of the independent variable (X) at which the Y value attains its minimum
value.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

x_numberOfValleys
Specifies the nth X value corresponding to the minimum Y value.
For example, if x_numberOfValleys is 3, the X value
corresponding to the third minimum Y value is returned. If you
specify a negative integer for x_numberOfValleys, the X-
values are counted from right to left (from maximum to
minimum). If x_numberOfValleys is 0, xmin returns a list of
X locations.

Value Returned

o_waveform Returns a waveform (or a family of waveforms) if the input
argument is a family of waveforms.

g_value Returns the X value corresponding to the valley specified with
x_numberOfValleys if the input argument is a single
waveform.

l_value Returns a list of X locations when x_numberOfValleys is 0
and the input argument is a single waveform.

nil Returns nil and an error message otherwise.

Examples
xmin(v("/net9") 1)
June 2004 371 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
Gets the time value (X axis) at which the voltage of "/net9" has its first low point or valley.

xmin(v("/net9") 0)

Gets the list of time values (X axis) at which the voltage of "/net9" has low points or valleys.
June 2004 372 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
xval

xval(o_waveform)
=> o_waveform/nil

Description

Returns a waveform whose X vector and Y vector are equal to the input waveform’s X vector.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

o_waveform Returns a waveform if the input argument is a single waveform.
Returns a family of waveforms if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
xval(v("/net8"))

Returns a waveform in which the X vector for the voltage of "/net8" is also used for the Y
vector.
June 2004 373 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
ymax

ymax(o_waveform)
=> n_max/o_waveformMax/nil

Description

Computes the maximum value of the waveform’s Y vector.

A waveform consists of an independent-variable X vector and a corresponding Y vector.

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

n_max Returns a number representing the maximum value of Y if the
input argument is a single waveform.

o_waveformMax Returns a waveform (or family of waveforms) representing the
maximum value of Y if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
ymax(v("/net9"))

Gets the maximum voltage (Y value) of "/net9".
June 2004 374 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
ymin

ymin(o_waveform)
=> n_min/o_waveformMin/nil

Description

Computes the minimum value of a waveform’s Y vector.

(A waveform consists of an independent-variable X vector and a corresponding Y vector.)

Arguments

o_waveform Waveform object representing simulation results that can be
displayed as a series of points on a grid. (A waveform object
identifier looks like this: drwave:XXXXX.)

Value Returned

n_min Returns a number representing the minimum value of Y if the
input argument is a single waveform.

o_waveformMin Returns a waveform (or family of waveforms) representing the
minimum value of Y if the input argument is a family of
waveforms.

nil Returns nil and an error message otherwise.

Example
ymin(v("/net9"))

Gets the minimum voltage (Y value) of "/net9".
June 2004 375 Product Version 5.1.41

OCEAN Reference
Predefined Functions and Waveform (Calculator) Functions
June 2004 376 Product Version 5.1.41

OCEAN Reference
11
Advanced Analysis

The OCEAN commands for advanced analyses let you run parametric analysis, corners
analysis, Monte Carlo analysis, and Optimization. This chapter includes setup commands for
these analyses and the special data-access or plot commands that are used for these
analyses.

The following sections contain the commands and other information relating to advanced
analyses.

■ Parametric Analysis Commands on page 377

■ Corners Analysis Commands on page 383

■ Monte Carlo Analysis Commands on page 391

■ Optimization Commands on page 413

Parametric Analysis Commands

These commands set up a parametric analysis. When you run a parametric analysis, you can
plot the resulting data as a family of curves.
June 2004 377 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
paramAnalysis

paramAnalysis(t_desVar [?start n_start] [?stop n_stop] [?center n_center]
[?span n_span] [?step f_step] [?lin n_lin] [?log n_log] [?dec n_dec]
[?oct n_oct] [?times n_times] [?spanPercent n_spanPercent]
[?values l_values] [o_paramAnalysis])
=> undefined/nil

Description

Sets up a parametric analysis.

Groups the PSF data so that it can be plotted as a family of curves when the analysis is
finished. The commands can be nested as shown in the syntax of the command.

If you specify more than one range, the OCEAN environment uses the following precedence
to select a single range to use.

Similarly, if you specify more than one step control, the OCEAN environment uses the
following precedence.

To run the analysis, use the paramRun command described in “paramRun” on page 382.

Arguments

t_desVar Name of the design variable to be swept.

n_start Beginning value for the design variable.

n_start, n_stop highest precedence

n_center, n_span

n_center, n_spanPercent lowest precedence

f_step highest precedence

n_lin

n_dec

n_log

n_oct

n_times lowest precedence
June 2004 378 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
n_stop Final value for the design variable.

n_center Center point for a range of values that you want to sweep.

n_span Range of values that you want to sweep around the center point.
For example, if n_center is 100 and n_span is 20 then the
sweep range extends from 90 to 110.

f_step Increment by which the value of the design variable changes. For
example, if n_start is 1.0, n_stop is 2.1, and f_step is
0.2, the parametric analyzer simulates at values 1.0, 1.2, 1.4,
1.6, 1.8, and 2.0.

n_lin The number of steps in the analysis. The parametric analyzer
automatically assigns equal intervals between the steps. With
this option, there is always a simulation at both n_start and
n_stop. The value for the n_lin argument must be an integer
greater than 0.

For example, if n_start is 0.5, n_stop is 2.0, and n_lin
is 4, the parametric analyzer simulates at values 0.5, 1.0, 1.5,
and 2.0.

n_log The number of steps between the starting and stopping points at
equal-ratio intervals using the following formula:

log multiplier = (n_stop/n_start)(n_log -1)

The number of steps can be any positive number, such as 0.5, 2,
or 6.25.
Default value: 5

For example, if n_start is 3, n_stop is 15, and n_log is 5,
the parametric analyzer simulates at values 3, 4.48605, 6.7082,
10.0311, and 15.

The ratios of consecutive values are equal, as shown below.

3/4.48605 = 4.48605/6.7082 = 6.7082/10.0311 = 10.0311/15 =
.67

n_dec The number of steps between the starting and stopping points
calculated using the following formula:
June 2004 379 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
decade multiplier = 10 1/n_dec

The number of steps can be any positive number, such as 0.5, 2,
or 6.25.
Default value: 5

For example, if n_start is 1, n_stop is 10, and n_dec is 5,
the parametric analyzer simulates at values 1, 1.58489, 2.51189,
3.98107, 6.30957, and 10.

The values are 100, 10.2, 10.4, 10.6, 10.8, and 101.

n_oct The number of steps between the starting and stopping points
using the following formula:
The number of steps can be any positive number, such as 0.5, 2,
or 6.25.
Default value: 5

For example, if n_start is 2, n_stop is 4, and n_oct is 5, the
parametric analyzer simulates at values 2, 2.2974, 2.63902,
3.03143, 3.4822, and 4.

These values are 21, 21.2, 21.4, 21.6, 21.8, and 22.

n_times A multiplier. The parametric analyzer simulates at the points
between n_start and n_stop that are consecutive multiples
of n_times.

For example, if n_start is 1, n_stop is 1000, and n_times
is 2, the parametric analyzer simulates at values 1, 2, 4, 8, 16,
32, 64, 128, 256, and 512.

n_spanPercent
Range specified as a percentage of the center value. For
example, if n_center is 100 and n_spanPercent is 40, the
sweep range extends from 80 to 120.

octave multiplier 21 n_oct()⁄=
June 2004 380 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
l_values List of values to be swept. You can use l_values by itself or in
conjunction with n_start, n_stop, and f_step to specify
the set of values to sweep.

o_paramAnalysis
Value returned from another paramAnalysis call used to
achieve multidimensional parametric analysis.

Value Returned

undefined The return value for this command is undefined.

nil Returns nil and prints an error message if there are problems
setting the option.

Examples
paramAnalysis("rs" ?start 200 ?stop 1000 ?step 200

?values ’(1030 1050 1090))

Sets up a parametric analysis for the rs design variable. The swept values are 200, 400, 600,
800, 1000, 1030, 1050, and 1090.

paramAnalysis("rl" ?start 200 ?stop 600 ?step 200
paramAnalysis("rs" ?start 300 ?stop 700 ?step 200
)

)

Sets up a nested parametric analysis for the rl design variable.

paramAnalysis("temp" ?start -50 ?stop 100 ?step 50)

Sets up a parametric analysis for temperature.
June 2004 381 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
paramRun

paramRun([s_paramAnalysis])
=> t/nil

Description

Runs the specified parametric analysis.

If you do not specify a parametric analysis, all specified analyses are run. Distributed
processing must be enabled using the hostmode command before parametric analyses can
be run in distributed mode.

When the paramRun command finishes, the PSF directory contains a file named
runObjFile that points to a family of data. To plot the family, use a normal plot command.
For example, you might use plot(v("/out")).

For information about specifying a parametric analysis, see the paramAnalysis command
described in “paramAnalysis” on page 378.

Arguments

s_paramAnalysis Parametric analysis.

Value Returned

t Returned if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
paramRun() => t

Runs all specified parametric analyses.

rsAnalysis = paramAnalysis("CAP" ?values ’(10 20))

paramRun(’rsAnalysis)

OR

rsAnalysis = paramAnalysis("CAP" ?values ’(10 20) paramAnalysis("RES" ?values ’(10
20)))

paramRun(’rsAnalysis)
June 2004 382 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
Runs the rs parametric analysis.

Corners Analysis Commands

The corners analysis commands let you set up and run analyses to measure circuit
performance with respect to variations in a semiconductor manufacturing process. This
section lists the commands that you can use to configure and run corners analyses in the
OCEAN environment. The following manuals provide more information on corners analysis.

■ Advanced Analysis Tools User Guide

■ Virtuoso® Analog Design Environment SKILL Language Reference

The corners analysis commands follow.
June 2004 383 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
cornerDesVar

cornerDesVar(t_cornerName t_desVarName t_value)
=> t/nil

Description

Sets the design variable value for the specified corner.

Arguments

t_cornerName Name of the corner.

t_desVarName Name of the design variable.

t_value Value of the design variable.

Value Returned

t Returned if successful.

nil Returns nil and prints an error message.

Example
cornerDesVar("slow" "vcc" "5")

Sets the value of vcc to 5 for corner slow.
June 2004 384 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
cornerMeas

cornerMeas()
=> t/nil

Description

Displays all the predefined enabled measurements from a Design Customization file, either
graphically (plot) or textually (print), according to your choices.

Each measurement is plotted or printed in a separate subwindow.

Arguments

None.

Value Returned

t Returned if successful.

nil Returns nil and prints an error message.

Example
cornerMeas()
June 2004 385 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
cornerRun

cornerRun([t_cornerName1 t_cornerName2 …] [?jobName t_jobName] [?host
t_hostName] [?queue t_queueName] [?startTime t_startTime]
[?termTime t_termTime] [?dependentOn t_dependentOn] [?mail t_mailingList]
[?block s_block] [?notify s_notifyFlag])
=> t/s_jobName/nil

Description

Runs the corner analysis that has been predefined in the .pcf and .dcf files and selected
via the selectProcess command. If specific corners are specified, only those corners
run; otherwise all the corners run.

You can load your .pcf and .dcf files with the loadPcf and loadDcf commands. See the
Virtuoso® Analog Design Environment SKILL Language Reference for information on these
commands.

Arguments

t_cornerName A specific corner to be run. If you do not specify one or more
corners, then all the enabled corners run.

Note: The following arguments are valid only when running in distributed processing mode.

t_jobName Used as the basis of the job name. The value entered for
t_jobName is used as the job name and return value if the run
command is successful. If the name given is not unique, a
number is appended to create a unique job name.

t_hostName Name of the host on which to run the analysis. If no host is
specified, the system assigns the analysis to an available host.

t_queueName Name of the queue. If no queue is defined, the analysis is placed
in the default queue (your home machine).

t_startTime Desired start time for the job. If dependencies are specified, the
job does not start until all dependencies are satisfied.

t_termTime Termination time for job. If the job is not completed by
t_termTime, the job is terminated.
June 2004 386 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
t_dependentOn
List of jobs on which the specified analysis is dependent. The
analysis is not started until after dependent jobs are complete.

t_mailingList
List of users to be notified by e-mail when the analysis is
complete.

s_block When s_block is not nil, the OCEAN script halts until the job
is complete.
Default value: nil

s_notifyFlag When notifyFlag is not nil, a job completion message is
echoed to the OCEAN interactive window.
Default value: t

Value Returned

t Returned if successful.

s_jobName For a distributed process, the job name specified or assigned by
the system to the analysis.

nil Returns nil and prints an error message.

Examples
cornerRun()

Runs all corners analysis defined in the .pcf and .dcf files and selected by the
selectProcess command.

cornerRun(?startTime 10 ?host "mach14" ?mail "preampGroup")

Runs all corners analysis defined in the .pcf and .dcf files and selected by the
selectProcess command in distributed mode with a startime of 10, using mach14 as
host, and notifying the mail group preampGroup when the analysis is complete.
June 2004 387 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
cornerRunTemp

cornerRunTemp(t_cornerName t_value)
=> t/nil

Description

Sets the analysis temperature (in degrees Celsius) to be used for a corner.

Arguments

t_cornerName Name of the corner.

t_value Temperature value in degrees Celsius.

Value Returned

t Returned if successful.

nil Returns nil and prints an error message.

Example
cornerRunTemp("slow" "50")

Sets the temperature to 50 for corner slow.
June 2004 388 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
residual

residual(x_scalarExpression ?upper x_upperValue ?target x_targetValue
?lower x_lowerValue)
=> t/nil

Description

Creates a residual plot of the given scalar expression given the upper and lower performance
bounds and target.

Arguments

x_scalarExpression
Scalar expression from a corners analysis.

x_upperValue Upper performance bound.

x_targetValue Target value.

x_lowerValue Lower performance bound.

Value Returned

t Returned if successful.

nil Returns nil and prints an error message.

Example
residual(bandwidth(v("net1"), 3, "low") ?upper 5 ?target 2.5 ?lower 0)

Creates a residual plot of v("net1") with an upper boundary of 5, a target of 2.5, and a
lower boundary of 0.
June 2004 389 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
selectProcess

selectProcess(t_processName)
=> t/nil

Description

Selects one of the processes already loaded with a loadPcf or loadDcf command.

Arguments

t_processName
Name of the process, as specified in the .pcf or .dcf file with
the corAddProcess function.

Value Returned

t Returned if successful.

nil Returns nil and prints an error message.

Example
selectProcess("fab6")

Selects the process fab6.
June 2004 390 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
Monte Carlo Analysis Commands

The commands for running Monte Carlo in the OCEAN environment are as follows.
June 2004 391 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
correlationTable

correlationTable(?suppress x_suppress)
=> t/nil

Description

Prints the correlation between all pairs of declared monteExpr expressions.

Pairs of the same expression, which have a correlation value of 1.0, are excluded. This
exclusion means that the correlationTable command prints only the off-diagonal terms
in the correlation matrix.

Arguments

x_suppress
Suppresses the printing for correlations less than this value.
Default value: .5

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
correlationTable()
June 2004 392 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
dataFilter

dataFilter(t_monteExprName ({?sigma x_sigma | ?upper x_upper ?lower x_lower}
?filterBy s_filterBy))
=> t/nil

Description

Eliminates bad data points (outliers) from a Monte Carlo data set.

Arguments

t_monteExprName
The monteExpr name with the appended swept parameter.

x_sigma
Filters data lying outside an established sigma point from the
mean. For instance, you might filter data lying outside 3 standard
deviations (sigma) from the mean. You can specify x_sigma or
you can specify x_upper and x_lower, but you cannot
specify both.
Default value: 3

x_upper
Filters data that is greater than an upper numerical limit.
Default value: inf

x_lower
Filters data that is less than a lower numerical limit.
Default value: -inf

s_filterBy
Type of filter to be used. This setting affects all of your data so
you only need to specify the type of filter once.
Valid values: ’dataSet, ’point
Default value: ’dataSet

’dataSet ignores all measurements for a point if the value of
any of the measurements for that point is outside the filter limits.

’point filters an outlying point only from the specific
measurement that recorded the outlying point.
June 2004 393 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
Value Returned

t Returned if successful.

nil Returned otherwise.

Example
dataFilter(’bandwidth ?upper 10Mhz

?lower 0.1Mhz) ;For nominal 1Mhz
dataFilter(’bandwidth ?sigma 3)

The second example sets the upper limit to
mean(bandwidth) + 3*sigma(bandwidth)
and sets the lower limit to
mean(bandwidth) - 3*sigma(bandwidth)
June 2004 394 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
histogram

histogram(t_monteExprName ?type s_type ?numBins x_numBins ?density b_density)
=> t/nil

Description

Plots a histogram of Monte Carlo data.

This command plots to an individual subwindow. The value of the s_type argument
determines the style of the line. Setting b_density to t causes the histogram command
to plot a smooth distribution curve for the data.

Arguments

t_monteExprName
The monteExpr name with the appended swept parameter.

s_type Style of line to be used.
Valid values: ’standard, ’passFail, ’cumulativeLine,
’cumulativeBox
Default value: ’standard (if you do not specify s_type)

’standard prints a bar graph of the output versus parameter.

’passFail requires that specification limits be specified. This
option plots a bar graph where the runs that pass are shown in
green and the runs that fail are shown in red.

’cumulativeLine uses a joined line style to plot the
cumulative distribution function. The cumulative distribution
function is the area under the standard histogram bars.

’cumulativeBox plots the same information as the
’cumulativeLine option but uses a bar plotting style.

x_numBins
Number of bins to be used for the histogram.
Default value: 10

b_density
If set to t, plots the probability density function for the data. Valid
values: t or nil.
June 2004 395 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
Value Returned

t Returned if successful.

nil Returned otherwise.

Example
monteExpr("bw" ’bandwidth(v("vout"),3,"low"))
monteExpr("DCgain" ’ymax(vdb("vout")))

histogram("bw_27")
histogram("bw_27" ?numBins 12 ?density t)
June 2004 396 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
iterVsValue

iterVsValue(t_monteExprName ?outputFormat s_outputFormat)
=> t/nil

Description

Prints the value of every scalar measurement for each Monte Carlo iteration.

Arguments

t_monteExprName
The monteExpr name with the appended swept parameter.

s_outputFormat
The output format for the printout.
Valid values: ’sorted, ’unsorted
Default value: ’sorted

’sorted sorts the output from highest to lowest value.

’unsorted prints the values without sorting.

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
iterVsValue("bw_27")
June 2004 397 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
monteCarlo

monteCarlo(
[?numIters x_numIters] [?startIter x_startIter]
[?analysisVariation s_analysisVariation] [?sweptParam t_sweptParam]
[?sweptParamVals l_sweptParamVals] [?saveData saveData] [?append b_append]
)
=> t/nil

Description

Sets up a Monte Carlo analysis.

To run the analysis, use the monteRun command described in “monteRun” on page 405.

Arguments

x_numIters Number of iterations (runs).
Default value: 100

x_startIter Starting iteration.
Default value: 1

Note: x_startIter must not be 1 when

■ You want to append to existing data. For example, you run 100 Monte Carlo analyses
and then want to run 100 more in addition to the previous 100. In this case,
x_startIter must be 101. If x_startIter is 1, the same results are recalculated
as before.

■ You want to rerun a particular run. In this case, startIter must be the number of that
particular run.

s_analysisVariation
Analysis variations.
Valid values: ’process, ’mismatch,
’processAndMismatch
Default value: ’process

t_sweptParam Design variable (or temperature) that can be swept with Monte
Carlo.
Default value: none (this is the inner loop)
June 2004 398 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
t_sweptParamVals
List of values of sweptParam.

saveData Indicates when to save data to allow family plots.
Default value: nil

b_append Appends the new results to data from a previous Monte Carlo
run.
Default value: nil

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
monteCarlo()

Sets up a Monte Carlo analysis using some of the defaults.

monteCarlo(?numRuns 300 ?analysisType ’processAndMismatch ?sweptParam temp
?sweptParamVals list(-50, 0, 50) ?nomRun n)
June 2004 399 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
monteCorrelate

monteCorrelate({t_param1 … t_paramN | t_deviceName1 … t_deviceNameN}
f_correlationValue)
=> t/nil

Description

Specifies a correlation coefficient for a list of process parameters or a list of devices specified
in individual subcircuits.

Use this command to specify matched pairs of devices or to specify mismatch of devices in
excess of that specified for the process. You must not mix devices and parameters on the
same command line.

Arguments

f_correlationValue
Value of the correlation coefficient that describes the correlation
among the listed parameters or devices.

t_param1 Name of the first process parameter to be correlated.

t_paramN Name of another process parameter to be correlated.

t_deviceName1 Name of the first device to be correlated.

t_deviceName2 Name of another device to be correlated.

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
monteCorrelate("cje_27 bw_27" 0.8)
June 2004 400 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
monteDisplay

monteDisplay()
=> undefined/nil

Description

Displays the currently defined Monte Carlo analysis, including all expressions that are
defined.

Arguments

None.

Value Returned

undefined The return value for this command/function is undefined.

nil Returns nil and prints an error message if the analysis is not
specified.

Example
monteDisplay()
June 2004 401 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
monteExpr

monteExpr(t_monteExprName s_expression)
=> t/nil

Description

Sets up the Monte Carlo scalar expressions that are used to create the histogram file.

Arguments

t_monteExprName
Name of the expression.

s_expression Expression.

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
monteExpr("bw" ’bandwidth(v(\"net7\") 3 \"low\"))
June 2004 402 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
monteOutputs

monteOutputs()
=> t/nil

Description

Returns the names of the monteExpr expressions, concatenating the monteExprName set
in the monteExpr command with the value of the swept variable.

If no variable is swept, the monteOutputs command concatenates the default temperature
to the monteExprName. For example, the returned name might be bw_27.

Arguments

None.

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
monteOutputs()
June 2004 403 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
monteResults

monteResults(?dataFileName t_scalarDataFile ?paramFileName t_parameterFile)
=> t/nil

Description

Initializes the Monte Carlo data analysis tools.

The monteResults command reads in the specified data and parameter files, opens a new
Waveform window, and adds a statistical analysis menu to the Waveform window. The menu
items are equivalent to those found on the Monte Carlo Results menu in the Virtuoso®
Analog Design Environment.

Arguments

t_scalarDataFile
Name of scalar data file to be read in.
Default value: mcdata

t_parameterFile
Name of parameter file associated with scalar data.
Default value: mcparam

Value Returned

t Returned if successful.

nil Returned otherwise.

Examples
monteResults()

monteResults(?dataFileName "myData" ?paramFileName "myParams")
June 2004 404 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
monteRun

monteRun(
[?jobName t_jobName] [?host t_hostName] [?tasks x_tasks]
[?queue t_queueName] [?startTime t_startTime] [?termTime t_termTime]
[?dependentOn t_dependentOn] [?mail t_mailingList] [?block s_block]
[?notify s_notifyFlag])
=> s_jobName/nil/t

Description

Runs a Monte Carlo analysis previously set up with the monteCarlo and monteExpr
commands.

The monteRun command runs all the Monte Carlo processes defined in the .pcf and .dcf
files. You can load your .pcf and .dcf files with the loadPcf and loadDcf commands.
See the Artist SKILL Language Reference Manual for information on these commands.

Arguments

Note: Arguments to the monteRun command are valid only when running in distributed
(processing) mode.

t_jobName Used as the basis of the job name. The value entered for
t_jobName is used as the job name and return value if the run
command is successful. If the name given is not unique, a value
is appended to create a unique job name.

t_hostName Name of the host on which to run the analysis. If no host is
specified, the system assigns the analysis to an available host.

x_tasks Number of tasks in which to divide the Monte Carlo job.
Default value: calculated from your setup

t_queueName Name of the queue. If no queue is defined, the analysis is placed
in the default queue (your home machine).

t_startTime Desired start time for the job. If dependencies are specified, the
job does not start until all dependencies are satisfied.

t_termTime Termination time for job. If the job has not completed by
t_termTime, the job is terminated.
June 2004 405 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
t_dependentOn List of jobs on which the specified analysis is dependent. The
analysis is not started until after dependent jobs are complete.

t_mailingList List of users to be notified when the analysis is complete.

s_block When s_block is not nil, the OCEAN script halts until the job
is complete.
Default value: nil

s_notifyFlag When s_notifyFlag is not nil, a job completion message is
echoed to the OCEAN interactive window.
Default value: t

Value Returned

t Returned if successful.

nil Returned otherwise.

s_jobName For a distributed process, the job name that the system specified
or assigned to the analysis.

Example
monteRun()

Runs all the Monte Carlo analyses defined in the .pcf and .dcf files.
June 2004 406 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
monteSelectResults

monteSelectResults(?mcdataFileName t_mcdataFileName
?paramFileName t_paramFileName)
=> t/nil

Description

Selects the specified mcdata file, which is the file that contains the scalar data.

Before you use this command, you must have access to mcdata and param files, either
produced by an earlier successful Monte Carlo simulation or pointed to by a previous
openResults() command.

Arguments

t_mcdataFileName
The name of the mcdata file.
Default value: mcdata

t_paramFileName
The name of the param file.
Default value: param

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
monteSelectResults()
monteSelectResults(?mcdataFileName mcdataRun2

?paramFileName paramRun2)
June 2004 407 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
scatterplot

scatterplot(t_monteExprName_X t_monteExprName_Y ?bestFit b_bestFit)
=> t/nil

Description

Plots different statistical measurements against each other so you can determine whether
there is a relationship between two parameters.

Tightly correlated parameters show linear relationships.

Arguments

t_monteExprName_X
The monteExpr name with the appended swept parameter for
the X-axis variable.

t_monteExprName_Y
The monteExpr name with the appended swept parameter for
the Y-axis variable.

b_bestFit
If t, the scatterplot command computes and draws on the
plot the best fitting straight line through the data. The best line is
defined as the line that minimizes the sum of squares of the
distances between the data points and the line.

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
monteExpr("bw" ’bandwidth(v("vout"), 3, "low"))
monteExpr("DCgain" ’ymax(vdb("vout")))
scatterplot("bw_27" "DCgain_27" ?bestFit t)
June 2004 408 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
specLimits

specLimits(t_monteExprName ({?sigma x_sigma | ?upper x_upper ?lower x_lower}
))
=> t/nil

Description

Sets specification limits for yield analysis and histograms.

You can set specification limits for each of your measured values and then analyze how many
runs are outside those limits (pass/fail) or you can analyze the spec sensitivity of measured
quantities to changing input parameters.

You can specify limits using x_upper and x_lower options, or you can use the x_sigma
option to have limits calculated for you based on a specified number of standard deviations
of the actual data.

Note: You can specify x_sigma or you can specify x_upper and x_lower, but you
cannot specify both.

Arguments

t_monteExprName
The monteExpr name with the appended swept parameter.

x_sigma Identifies data lying outside an established sigma point from the
mean. For instance, you might identify data lying outside 3
standard deviations (sigma) from the mean.

x_upper Identifies data that is greater than this value.

x_lower Identifies data that is less than this value.

Value Returned

t Returned if successful.

nil Returned otherwise.
June 2004 409 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
Example
specLimits("bw_27" ?upper 15E+06 ?lower 5+06)
June 2004 410 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
yield

yield(s_type ?exprList l_monteExprName ?suppress x_suppress)
=> t/nil

Description

Prints simple, conditional, or multiconditional yield statistics for the Monte Carlo data set.

Arguments

s_type The type of statistics to print.
Valid values: ’simple, ’conditional, or
’multiconditional

’simple prints the yields for each measurement. Based upon
the specification limits you set, the ’simple option prints the
percentage of pass runs compared to the total number of Monte
Carlo runs. For example, you set your specification limits for
bandwidth, run 100 runs, and find that 60 of the runs pass the
specification limits. For this example, the yield command
calculates and displays a yield of 60% for bandwidth. The
command also displays the total yield number, which is used
when you have multiple measurements, each with its own limits.
Total yield is the total percentage of pass runs where every
parameter is within its specification limits for a Monte Carlo run.

’conditional prints conditional yields. To use a conditional
yield, you specify a single measurement against which all other
measurements are compared. The ’conditional option first
sorts all of the Monte Carlo runs and picks out only the runs
where the specified measurement passes. These passing runs
are the starting point for the conditional yield calculation. So, in
the bandwidth example above, instead of using 100 runs, the tool
uses 60 runs as the base. Next, all of the other measurements
are analyzed. For example, you have a second measurement
called maximum_25. Out of the base 60 runs, maximum_25
passes 30 times. It has a conditional yield of 50%. In addition to
the conditional yield, the tool prints the total yield (based on all
Monte Carlo runs) and the difference between the conditional
and total yield numbers.

’multiconditional prints multiconditional yields. As in
June 2004 411 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
calculating the conditional yield, multiconditional yields are
calculated from a base set of passing runs. However, instead of
using one parameter to build the base set, for multiconditional
yields you use two. Only runs where both measurements pass
become part of the base set. All other measurements are then
compared against that base.

l_monteExprName
The monteExpr name with the appended swept parameter.

x_suppress
If s_type is ’simple, suppresses the printing for yields
greater than this percentage of the value.
Default value: 98

If s_type is ’conditional or ’multiconditional,
suppresses the printing for delta yields less than this percentage
of the value.
Default value: 98

Value Returned

t Returned if successful.

nil Returned otherwise.

Example
yield(’simple ?exprList ’("bw_27" "slew_27") ?suppress 70)
yield(’conditional ?exprList ’("max_27" "slew_27"))
yield(’multiconditional ?exprList ’("max_27" "slew_27"))
June 2004 412 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
Optimization Commands

The commands for running optimization in the OCEAN environment are as follows.
June 2004 413 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
optimizeAlgoControl

optimizeAlgoControl(?relDelta x_relDelta ?relFunTol x_relFunTol ?relVarTol
x_relVarTol)
=> undefined/nil

Description

Changes the internal algorithm controls.

Arguments

x_relDelta Finite difference relative perturbation.
Default value: .005

x_relFunTol Relative function convergence tolerance.
Default value: .0001

x_relVarTol Relative variable convergence tolerance.
Default value: .0001

Value Returned

undefined The return value for this function is not defined.

nil Returns nil and an error message if there was a problem.

Example
optimizeAlgoControl(?relDelta .05)
June 2004 414 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
optimizeGoal

optimizeGoal(t_name t_expr s_direction x_target x_acceptable [?percent
b_percent])
=> undefined/nil

Description

Sets up the goals for optimization.

Arguments

t_name Name of the goal.

t_expr Expression defining the goal.

s_direction Valid values: ’max, ’min, ’match, ’le or ’ge
Default value: ’match

x_target The value to be matched or the lower or upper bound (depending
on s_direction).

x_acceptable Number or a waveform specifying the acceptable value. When a
waveform is entered, each target point has its own acceptable
value. Both x_target and x_acceptable must be
expressions. The expression returns a number or a waveform.

b_percent Specifies whether the x_acceptable field is a percentage of
the target. When this is specified, x_acceptable is ignored.

Value Returned

undefined The return value for this command is not defined.

nil Returns nil and an error message if there was a problem.

Example
optimizeGoal("bandwidth" ’bandwidth(v("/out") 3 "low") ’le 18M 15M)
June 2004 415 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
optimizePlotOption

optimizePlotOption(
?auto b_auto ?varHist b_varHist ?scalHist b_scalHist
?funcObjHist b_funcObjHist ?numIter x_numIter ?fontSize x_fontSize
?width x_width ?height x_height ?xloc xloc ?yloc yloc)
=> undefined/nil

Description

Sets the plot options used to view the optimization iterations.

Arguments

b_auto If set to t,auto plots after each iteration.
Default value: t

b_varHist If set to t, displays the history of the variables.
Default value: t

b_scalHist If set to t, displays the history of the scalars.
Default value: t

b_funcObjHist If set to t, displays the history of the functional objectives.
Default value: t

x_numIter Number of waveforms to display. There is one waveform stored
available per functional iteration.
Default value: 5

x_fontSize Font size used in the Waveform window.
Default value: 9

x_width Width of the Waveform window.
Default value: 630

x_height Height of the Waveform window.
Default value: 376

xloc Specifies the top boundary of the optimize window when it is
opened in the windowing environment.
Default value: 511
June 2004 416 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
yloc Specifies the left boundary of the optimize window when it is
opened in the windowing environment.
Default value: 377

Value Returned

undefined The return value is for this value is not defined.

nil Returns nil and an error message if there was a problem
setting plot options.

Example
optimizePlotOption(?delta .05)
June 2004 417 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
optimizeRun

optimizeRun(?goals l_goalNames ?vars l_varNames ?numIter x_numIter
?algo s_algoName ?continue b_continue)
=> t/nil

Description

Runs the optimizer using the goals specified with the optimizeGoal command.

Arguments

l_goalNames Names of the goals to be used with this run of the optimizer. If
none are specified, all declared goals are used.

l_varNames Names of the variables to be used with this run of the optimizer.
If none are specified, all declared variables are used.

x_numIter Number of iterations that you want the optimizer to perform.

s_algoName Algorithm that you want to use.
Valid values: ’lsq, ’cfsqp, ’auto

b_continue t indicates that this optimizeRun needs to continue from the
previous optimizeRun (using the last design variables
calculated from the last optimizeRun).

Value Returned

t If the command was successful.

nil Returns nil and an error message if there was a problem.

Example

optimizeRun()
optimizeRun(?goals ’("bandwidth" "slewrate")

?vars ’("rs" vs") ?numIter 5)
optimizeRun(?numIter 5 ?continue t)

Continues the previous optimizeRun for another 5 iterations.
June 2004 418 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
optimizeVar

optimizeVar(t_name x_initVal x_minVal x_maxVal)
=> undefined/nil

Description

Specifies the design variables to be used with optimization.

Arguments

t_name Name of the design variable.

x_initVal Initial value of the variable.

x_minVal Lower bound of the variable.

x_maxVal Upper bound of the variable.

Value Returned

undefined The return value for this function is not defined.

nil Returns nil and an error message if there was a problem.

Example
optimizeVar("res" 100 ?minVal 1 ?maxVal 1000)
June 2004 419 Product Version 5.1.41

OCEAN Reference
Advanced Analysis
June 2004 420 Product Version 5.1.41

OCEAN Reference
12
OCEAN Distributed Processing
Commands

The Open Command Environment for Analysis (OCEAN) distributed processing commands
let you run OCEAN jobs across a collection of computer systems.

This chapter contains information on the following commands:

■ deleteJob on page 422

■ digitalHostMode on page 423

■ digitalHostName on page 424

■ hostMode on page 425

■ hostName on page 426

■ killJob on page 427

■ monitor on page 428

■ remoteDir on page 429

■ resumeJob on page 430

■ suspendJob on page 431

■ wait on page 432

This chapter also provides sample OCEAN scripts that optimally use these commands. See
the section Sample Scripts on page 433.

For detailed information on distributed processing, refer to Virtuoso® Analog Distributed
Processing Option User Guide.
June 2004 421 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
deleteJob

deleteJob(t_jobName [t_jobName2 t_jobName3 … t_jobNameN])
=> t/nil

Description

Removes a job or series of jobs from the text-based job monitor.

Deleted jobs are no longer listed in the job monitor. The deleteJob command applies only
to ended jobs.

Arguments

t_jobName Name used to identify the job.

t_jobname2…t_jobnameN
Additional jobs that you want to delete.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
deleteJob(’myckt)
=> t

Deletes the myckt job.
June 2004 422 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
digitalHostMode

digitalHostMode({’local | ’remote})
=> t/nil

Description

For mixed-signal simulation, specifies whether the digital simulator will run locally or on a
remote host.

Arguments

’local Sets the simulation to run locally on the user’s machine.

’remote Sets the simulation to run on a remote host. If you use this
argument, you must specify the host name by using the
digitalHostName command.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
digitalHostMode(’local)

Sets the digital simulator to run locally on the user’s host.
June 2004 423 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
digitalHostName

digitalHostName(t_name)
=> t/nil

Description

For mixed-signal simulation, specifies the name of the remote host for the digital simulator.

When you use the digitalHostMode(’remote) command, use this command to specify
the name of the remote host.

Arguments

t_name Name used to identify the host for the digital simulator.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
digitalHostName("digitalhost")

Indicates that the digital simulator runs on the host called digitalhost.
June 2004 424 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
hostMode

hostMode({ ’local | ’remote | ’distributed })
=> t/nil

Description

Sets the simulation host mode.

The default value for hostMode is specified in the asimenv.startup file with the
hostMode environment variable.

Arguments

’local Sets the simulation to run locally on the user’s machine.

’remote Sets the simulation to run on a remote host queue. For this
release, the remote host is specified in the .cdsenv file.

’distributed Sets the simulation to run using the distributed processing
software.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
hostMode(’distributed)
=> t

Enables distributed processing on the current host.
June 2004 425 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
hostName

hostName(t_name)
=> t/nil

Description

Specifies the name of the remote host.

When you use the hostMode(’remote) command, use this command to specify the name
of the remote host.

Arguments

t_name Name used to identify the remote host.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
hostName("remotehost")

Specifies that the host called remotehost is to be used for remote simulation.
June 2004 426 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
killJob

killJob(t_jobName [t_jobName2 t_jobName3 … t_jobNameN])
=> t/nil

Description

Stops processing of a job or a series of jobs.

The job might still show up in the job monitor, but it cannot be restarted. Use the deleteJob
command to remove the job name from the job server and job monitor.

Arguments

t_jobName Name used to identify the job.

t_jobname2…t_jobnameN
Additional jobs that you want to stop.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
killJob(’myckt)
=> t

Aborts the job called myckt. If the job is in the queue and has not started running yet, it is
deleted from the queue.
June 2004 427 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
monitor

monitor([?taskMode s_taskMode])
=> t/nil

Description

Monitors the jobs submitted to the distributed system.

Arguments

s_taskMode When not nil, multitask jobs are expanded to show individual
jobs. A multitask job is one that contains several related jobs.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
monitor(?taskMode t)

Displays the name, host, and queue for all pending tasks sorted on a queue name.
June 2004 428 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
remoteDir

remoteDir(t_path)
=> t/nil

Description

Specifies the project directory on the remote host to be used for remote simulation.

When you use the hostMode(’remote) command, use this command to specify the project
directory on the remote host.

Arguments

t_path Specifies the path to the project directory on the remote host to
be used for remote simulation.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
remoteDir("~/simulation")

Specifies that the project directory is ~/simulation.
June 2004 429 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
resumeJob

resumeJob(t_jobName [t_jobName2 t_jobName3 … t_jobNameN])
=> t/nil

Description

Resumes the processing of a previously suspended job or series of jobs. The resumeJob
command applies only to jobs that are suspended.

Arguments

t_jobName Name used to identify the job.

t_jobName2…t_jobNameN
Additional jobs that you want to resume

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
resumeJob(’myckt)
=> t

Resumes the myckt job that was halted with the suspendJob command.
June 2004 430 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
suspendJob

suspendJob(t_jobName [t_jobName2 t_jobName3 … t_jobNameN])
=> t/nil

Description

Suspends the processing of a job or series of jobs. The suspendJob command applies only
to jobs that are pending or running.

Arguments

t_jobName Name used to identify the job.

t_jobName2…t_jobnameN
Additional jobs that you want to suspend.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
suspendJob(’myckt)
=> t

Suspends the job called myckt.
June 2004 431 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
wait

wait(jobName [jobName2 jobName3 … jobNameN])
=> t/nil

Description

Postpones processing of a script until the specified jobs complete. This command is ignored
if distributed processing is not available.

The wait command is very useful when you use the non-blocking mode of distributed
processing and you want to do some post-processing, such as selecting and viewing results
after a job is completed. The wait command is not required when you use the blocking mode
of distributed processing. To know more about blocking and non-blocking modes of DP, refer
to Virtuoso® Analog Distributed Processing Option User Guide.

Arguments

t_jobName Name used to identify the job. The job name is user defined or
system generated, depending on how the user submitted the job.

t_jobName2…t_jobnameN
Additional jobs that you want to postpone.

Value Returned

t Returns t if successful.

nil Returns nil and prints an error message if unsuccessful.

Example
wait(’myckt1)
=> t

Postpones execution of all subsequent OCEAN commands until the job myckt1 completes.
June 2004 432 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
Sample Scripts

This section provides sample scripts for the following:

■ To submit multiple jobs and show the use of the dependentOn argument in one job

■ To set up and run a simple analysis in blocking mode and select results

■ To set up and run a parametric analysis in blocking mode and select results

■ To set up and run a Corners analysis in blocking mode and select results

■ To set up and run a montecarlo analysis in blocking mode and select results

■ To submit multiple jobs without using wait or selecting results

■ To submit multiple jobs using wait and selection of results

To submit multiple jobs and show the use of the dependentOn argument in one job

This script can be used to submit multiple jobs while using the dependentOn argument in
one of these jobs.

; set up the environment for the jobs

simulator(’spectre)

hostMode(’distributed)

design("/home/simulation/test2/spectre/schematic/netlist/netlist")

resultsDir("/home/simulation/test2/spectre/schematic")

analysis(’tran ?stop "5u")

temp(27)

jobList = nil

; starting first job

jobList = append1(jobList run(?queue "test" ?host "menaka"))

analysis(’tran ?stop "50u")

; starting second job

jobList = append1(jobList run(?jobName "job_2" ?queue "test" ?host "menaka"))

analysis(’tran ?stop "10u")

; starting third job, which is dependent on job_2
June 2004 433 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
jobList= append1(jobList run(?jobName "disable" ?queue "test" ?dependentOn

 symbolToString(car(last(jobList)))))

; wait for all the jobs to complete

wait((append1 last(jobList) nil))

; open and plot the results of the jobs

openResults(car(last(jobList)))

selectResult(’tran)

newWindow()

plot(getData("/net61"))

openResults(nth(1 jobList))

selectResult(’tran)

newWindow()

plot(getData("/net61"))

To set up and run a simple analysis in blocking mode and select results
; set up the environment for Simple Analysis

simulator(’spectre)

hostMode(’distributed)

design(

"/home/amit/Artist446/simulation/ampTest/spectre/schematic/netlist/netlist")

resultsDir("/home/Artist446/simulation/ampTest/spectre/schematic")

modelFile(

 ’("/home/Artist446/Models/myModels.scs" "")

)

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

; submit the job in blocking mode, to the queue test and machine menaka

run(?queue "test" ?host "menaka" ?block t)

; select and plot the results

selectResult(’tran)

plot(getData("/out"))
June 2004 434 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
To set up and run a parametric analysis in blocking mode and select results
; set up the environment for parametric analysis.

simulator(’spectre)

hostMode(’distributed)

design(

"/home/amit/Artist446/simulation/ampTest/spectre/schematic/netlist/netlist")

resultsDir("/home/amit/Artist446/simulation/ampTest/spectre/schematic"

)

modelFile(

 ’("/home/amit/Artist446/Models/myModels.scs" "")

)

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

paramAnalysis("CAP" ?values ’(1e-13 2.5e-13 4e-13))

; submit the job in blocking mode, to the queue test and machine menaka

paramRun(?queue "fast" ?host "menaka" ?block t)

; select and plot the results

selectResult(’tran)

plot(getData("/out"))

To set up and run a Corners analysis in blocking mode and select results
; set up the environment for corners analysis

simulator(’spectre)

design("./netlist/netlist")

hostMode(’distributed)

analysis(’tran ?stop 50n)

keep(’allv)

definitionFile("model")

loadPcf("./singleNumeric.pcf")

loadDcf("./singleNumeric.dcf")

; submit the job in blocking mode, to the queue test and machine menaka

cornerRun(?block t ?queue "fast" ?host "menaka")

; select and print/plot the results

selectResults(’tran)

plot v("2")
June 2004 435 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
ocnPrint v("2")

To set up and run a montecarlo analysis in blocking mode and select results
; set up the environment for montecarlo analysis

simulator(’spectre)

hostMode("distributed")

design("./spectre/netlist/netlist")

resultsDir("./spectre")

path("./spectre/netlist")

modelFile(’("spectreLib.scs" "statistics"))

definitionFile("update" "init" "lowpassStats")

analysis(’ac ?start "1" ?stop "100M")

desVar("rout2" 3K)

desVar("rout1" 1K)

desVar("rin2" 5K)

desVar("rin1" 1K)

desVar("cloop" .001u)

desVar("cin" .017u)

temp(27)

monteCarlo(?numIters "100" ?startIter "1"

 ?analysisVariation "Process Only" ?sweptParam "None"

 ?sweptParamVals "27" ?saveData t

 ?nomRun nil ?append nil)

monteExpr("bw" "bandwidth(VF('OUT') 3 'low')")

monteExpr("phase" "value(phase(VF('OUT')) 100000)")

monteExpr("db20" "value(dB20(VF('OUT')) 100000)")

; submit the job in blocking mode, to the queue test and machine menaka

monteRun(?block t ?queue "fast" ?host "menaka")

; Initializes the Monte Carlo data analysis tools

monteResults()

To submit multiple jobs without using wait or selecting results
; set up the environment for the jobs

simulator(’spectre)

hostMode(’distributed)

design(

"/home/Artist446/simulation/ampTest/spectre/schematic/netlist/netlist")
June 2004 436 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
resultsDir("/home/Artist446/simulation/ampTest/spectre/schematic")

modelFile(

 ’("/home/Artist446/Models/myModels.scs" "")

)

; setup and submit first job

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

run(?queue "SUN5_5032" ?host "menaka")

; setup and submit second job

analysis(’ac ?start "1M" ?stop "2M")

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

run(?queue "SUN5_5032" ?host "menaka")

To submit multiple jobs using wait and selection of results
; set up the environment for the jobs

simulator(’spectre)

hostMode(’distributed)

design(

"/home/Artist446/simulation/ampTest/spectre/schematic/netlist/netlist")

resultsDir("/home/Artist446/simulation/ampTest/spectre/schematic")

modelFile(

 ’("/home/Artist446/Models/myModels.scs" "")

)

; initialize jobList to nil

jobList = nil

; setup and submit first job

analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

jobList = append1(jobList run(?queue "SUN5_5032" ?host "menaka"))

; setup and submit second job

analysis(’ac ?start "1M" ?stop "2M")
June 2004 437 Product Version 5.1.41

OCEAN Reference
OCEAN Distributed Processing Commands
analysis(’tran ?stop "3u")

desVar("CAP" 0.8p)

temp(27)

jobList = append1(jobList run(?queue "SUN5_5032" ?host "menaka"))

; wait for both the jobs to finish

wait((append1 jobList nil))

; open and plot the result of first job

openResults((car jobList))

selectResult(’tran)

plot(getData("/out"))

; open and plot the result of second job

openResults((cadr jobList))

selectResult(’tran)

plot(getData("/out"))

selectResult(’ac)

plot(getData("/out"))

; delete the jobs

foreach(x jobList deleteJob(x))
June 2004 438 Product Version 5.1.41

OCEAN Reference
13
Language Constructs

There are three types of SKILL language constructs:

■ Conditional statements

Conditional statements test for a condition and perform operations when that condition
is found. These statements are if, unless, and when.

■ Selection statements

A selection statement allows a list of elements, each with a corresponding operation. A
variable can then be compared to the list of elements. If the variable matches one of the
elements, the corresponding operation is performed. These statements include for,
foreach, and while.

■ Iterative statements

Iterative statements repeat an operation as long as a certain condition is met. These
statements include case and cond.

This chapter contains information on the following statements
case on page 449 if on page 440

cond on page 451 unless on page 442

for on page 444 when on page 443

foreach on page 446 while on page 448
June 2004 439 Product Version 5.1.41

OCEAN Reference
Language Constructs
if

if(g_condition g_thenExpression [g_elseExpression])
=> g_result

Description

Evaluates g_condition, typically a relational expression, and runs
g_thenExpression if the condition is true (that is, its value is non-nil); otherwise, runs
g_elseExpression.

The value returned by if is the value of the corresponding expression evaluated.

Arguments

g_condition Any Virtuoso® SKILL language expression.

g_thenExpression
Any SKILL expression.

g_elseExpression
Any SKILL expression.

Value Returned

g_result Returns the value of g_thenExpression if g_condition
has a non-nil value. The value of g_elseExpression is
returned otherwise.

Examples
x = 2
if(x > 5 1 0)
=> 0

Returns 0 because x is less than 5.

a ="npn"
if((a == "npn") print(a)) "npn"
=> nil

Prints the string npn and returns the result of print.

x = 5
if(x "non-nil" "nil")
=> "non-nil"
June 2004 440 Product Version 5.1.41

OCEAN Reference
Language Constructs
Returns "non-nil" because x was not nil. If x was nil, "nil" would be returned.

x = 7
if(x > 5 1 0)
=> 1

Returns 1 because x is greater than 5.
June 2004 441 Product Version 5.1.41

OCEAN Reference
Language Constructs
unless

unless(g_condition g_expr1 …)
=> g_result/nil

Description

Evaluates a condition. If the result is true (non-nil), it returns nil; otherwise it evaluates the
body expressions in sequence and returns the value of the last expression.

The semantics of this function can be read literally as “unless the condition is true, evaluate
the body expressions in sequence.”

Arguments

g_condition Any SKILL expression.

g_expr1… Any SKILL expression.

Value Returned

g_result Returns the value of the last expression of the sequence
g_expr1 … if g_condition evaluates to nil.

nil Returns nil if g_condition evaluates to non-nil.

Examples
x = -123

unless(x >= 0 println("x is negative") -x)
=> 123

Prints "x is negative" as a side effect.

unless(x < 0 println("x is positive ") x)
=> nil

Returns nil.
June 2004 442 Product Version 5.1.41

OCEAN Reference
Language Constructs
when

when(g_condition g_expr1 …)
=> g_result/nil

Description

Evaluates a condition.

If the result is non-nil, evaluates the sequence of expressions and returns the value of the last
expression. Otherwise, returns nil.

Arguments

g_condition Any SKILL expression.

g_expr1… Any SKILL expression.

Value Returned

g_result Returns the value of the last expression of the sequence
g_expr1 … if g_condition evaluates to non-nil.

nil returns nil if the g_condition expression evaluates to nil.

Examples
x = -123

when(x < 0 println("x is negative") -x)
=> 123

Prints "x is negative" as a side effect.

when(x >= 0 println("x is positive") x)
=> nil

Returns nil.
June 2004 443 Product Version 5.1.41

OCEAN Reference
Language Constructs
for

for(s_loopVar x_initialValue x_finalValue g_expr1 [g_expr2 …])
=> t

Description

Evaluates the sequence g_expr1 g_expr2 … for each loop variable value, beginning with
x_initialValue and ending with x_finalValue.

First evaluates the initial and final values, which set the initial value and final limit for the local
loop variable named s_loopVar. Both x_initialValue and x_finalValue must be
integer expressions. During each iteration, the sequence of expressions g_expr1
g_expr2 … is evaluated and the loop variable is then incremented by one. If the loop
variable is still less than or equal to the final limit, another iteration is performed. The loop
ends when the loop variable reaches a value greater than the limit. The loop variable must
not be changed inside the loop. It is local to the for loop and would not retain any meaningful
value upon exit from the for loop.

Note: Everything that can be done with a for loop can also be done with a while loop.

Arguments

s_loopVar Name of the local loop variable that must not be changed inside
the loop.

x_initialValue
Integer expression setting the initial value for the local loop
variable.

x_finalValue Integer expression giving final limit value for the loop.

g_expr1 Expression to evaluate inside loop.

g_expr2 … Additional expressions to evaluate inside loop.

Value Returned

t This construct always returns t.
June 2004 444 Product Version 5.1.41

OCEAN Reference
Language Constructs
Examples
sum = 0

for(i 1 10
sum = sum + i
printf("%d" sum))

=> t

Prints 10 numbers and returns t.

sum = 0

for(i 1 5
sum = sum + i
println(sum)
)

=> t

Prints the value of sum with a carriage return for each pass through the loop:

1
3
6
10
15
June 2004 445 Product Version 5.1.41

OCEAN Reference
Language Constructs
foreach

foreach(s_formalVar g_exprList g_expr1 [g_expr2 …])
=> l_valueList

foreach((s_formalVar1…s_formalVarN) g_exprList1… g_exprListN g_expr1
[g_expr2 …])
=> l_valueList

foreach(s_formalVar g_exprTable g_expr1 [g_expr2 …])
=> o_valueTable

Description

Evaluates one or more expressions for each element of a list of values.

The first syntax form,

foreach(s_formalVar g_exprList g_expr1 [g_expr2 …])
=> l_valueList

evaluates g_exprList, which returns a list l_valueList. It then assigns the first
element from l_valueList to the formal variable s_formalVar and processes the
expressions g_expr1 g_expr2 … in sequence. The function then assigns the second
element from l_valueList and repeats the process until l_valueList is exhausted.

The second syntax form,

foreach((s_formalVar1…s_formalVarN) g_exprList1… g_exprListN g_expr1
[g_expr2 …])=> l_valueList

can iterate over multiple lists to perform vector operations. Instead of a single formal variable,
the first argument is a list of formal variables followed by a corresponding number of
expressions for value lists and the expressions to be evaluated.

The third syntax form,

foreach(s_formalVar g_exprTable g_expr1 [g_expr2 …])
=> o_valueTable

can be used to process the elements of an association table. In this case, s_formalVar is
assigned each key of the association table one by one, and the body expressions are
evaluated each iteration. The syntax for association table processing is provided in this syntax
statement.
June 2004 446 Product Version 5.1.41

OCEAN Reference
Language Constructs
Arguments

s_formalVar Name of the variable.

g_exprList Expression whose value is a list of elements to assign to the
formal variable s_formalVar.

g_expr1 g_expr2 …
Expressions to execute.

g_exprTable Association table whose elements are to be processed.

Value Returned

l_valueList Returns the value of the second argument, g_exprList.

o_valueTable Returns the value of g_exprTable.

Examples
foreach(x '(1 2 3 4) println(x))
1
2
3
4
=> (1 2 3 4)

Prints the numbers 1 through 4 and returns the second argument to foreach.

foreach(key myTable printf("%L : %L" key myTable[key]))

Accesses an association table and prints each key and its associated data.

(foreach (x y) '(1 2 3) '(4 5 6) (println x+y))
5
7
9
=> (1 2 3)

Uses foreach with more than one loop variable.

Errors and Warnings

The error messages from foreach might at times appear cryptic because some foreach
forms get expanded to call the mapping functions mapc, mapcar, mapcan, and so forth.
June 2004 447 Product Version 5.1.41

OCEAN Reference
Language Constructs
while
while(g_condition g_expr1 …)
=> t

Description

Repeatedly evaluates g_condition and the sequence of expressions
g_expr1 … if the condition is true.

This process is repeated until g_condition evaluates to false (nil). Note that because
this form always returns t, it is principally used for its side effects.

Note: Everything that can be done with a for loop can also be done with a while loop.

Arguments

g_condition Any SKILL expression.

g_expr1 Any SKILL expression.

Value Returned

t Always returns t.

Example

i = 0

while((i <= 10) printf("%d" i++))
=> t

Prints the digits 0 through 10.
June 2004 448 Product Version 5.1.41

OCEAN Reference
Language Constructs
case

case(g_selectionExpr l_clause1 [l_clause2 …])
=> g_result/nil

Description

Evaluates the selection expression, matches the resulting selector values sequentially
against comparators defined in clauses, and runs the expressions in the matching clause.

Each l_clause is a list of the form (g_comparator g_expr1 [g_expr2…]), where a
comparator is either an atom (that is, a scalar) of any data type or a list of atoms. Comparators
are always treated as constants and are never evaluated. The g_selectionExpr
expression is evaluated and the resulting selector value is matched sequentially against
comparators defined in l_clause1 l_clause2…. A match occurs when either the
selector is equal to the comparator or the selector is equal to one of the elements in the list
given as the comparator. If a match is found, the expressions in that clause and that clause
only (that is, the first match) are run. The value of case is then the value of the last
expression evaluated (that is, the last expression in the clause selected). If there is no match,
case returns nil.

The symbol t has special meaning as a comparator: it matches anything. It is typically used
in the last clause to serve as a default case when no match is found with other clauses.

Arguments

g_selectionExpr
An expression whose value is evaluated and tested for equality
against the comparators in each clause. When a match is found,
the rest of the clause is evaluated.

l_clause1 An expression whose first element is an atom or list of atoms to
be compared against the value of g_selectionExpr. The
remainder of the l_clause is evaluated if a match is found.

l_clause2… Zero or more clauses of the same form as l_clause1.

Value Returned

g_result Returns the value of the last expression evaluated in the
matched clause.
June 2004 449 Product Version 5.1.41

OCEAN Reference
Language Constructs
nil Returns nil if there is no match.

Example
cornersType = "min"

type = case(cornersType
("min" path("./min"))
("typ" path("./typ"))
("max" path("./max"))
(t println("you have not chosen an appropriate

corner")))
=> path is set to "./min"

Sets path to ./min.
June 2004 450 Product Version 5.1.41

OCEAN Reference
Language Constructs
cond

cond(l_clause1 …)
=> g_result/nil

Description

Examines conditional clauses from left to right until either a clause is satisfied or there are no
more clauses remaining.

This command is useful when there is more than one test condition, but only the statements
of one test are to be carried out. Each clause is of the form (g_condition
g_expr1…). The cond function examines a clause by evaluating the condition associated
with the clause. The clause is satisfied if g_condition evaluates to non-nil, in which case
expressions in the rest of the clause are evaluated from left to right, and the value returned
by the last expression in the clause is returned as the value of the cond form. If
g_condition evaluates to nil, however, cond skips the rest of the clause and moves on
to the next clause.

Arguments

l_clause1 Each clause must be of the form (g_condition
g_expr1…). When g_condition evaluates to non-nil, all the
succeeding expressions are evaluated.

Value Returned

g_result Returns the value of the last expression of the satisfied clause.

nil Returns nil if no clause is satisfied.

Example
procedure(test(x)

cond(((null x) (println "Arg is null"))
((numberp x) (println "Arg is a number"))
((stringp x) (println "Arg is a string"))
(t (println "Arg is an unknown type")))

)

test(nil)
=> nil; Prints "Arg is null".
test(5)
=> nil; Prints "Arg is a number".
test(’sym)
=> nil; Prints "Arg is an unknown type".
June 2004 451 Product Version 5.1.41

OCEAN Reference
Language Constructs
Tests each of the arguments according to the conditions specified with cond.
June 2004 452 Product Version 5.1.41

OCEAN Reference
14
File Commands and Functions

This chapter contains information on the following commands:

close on page 454

fscanf on page 455

gets on page 457

infile on page 458

load on page 459

newline on page 461

outfile on page 462

printf on page 464

println on page 465
June 2004 453 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
close

close(p_port)
=> t

Description

Drains, closes, and frees a port.

When a file is closed, it frees the FILE* associated with p_port. Do not use this function
on piport, stdin, poport, stdout, or stderr.

Arguments

p_port Name of port to close.

Value Returned

t The port closed successfully.

Example
p = outfile("~/test/myFile") => port:"~/test/myFile"

close(p)
=> t

Drains, closes, and frees the /test/myFile port.
June 2004 454 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
fscanf

fscanf(p_inputPort t_formatString [s_var1 ...])
=> x_items/nil

Description

Reads input from a port according to format specifications and returns the number of items
read in.

The results are stored into corresponding variables in the call. The fscanf function can be
considered the inverse function of the fprintf output function. The fscanf function
returns the number of input items it successfully matched with its format string. It returns nil
if it encounters an end of file.

The maximum size of any input string being read as a string variable for fscanf is currently
limited to 8 K. Also, the function lineread is a faster alternative to fscanf for reading
Virtuoso® SKILL objects.

The common input formats accepted by fscanf are summarized below.

Arguments

p_inputPort Input port to read from.

t_formatString
Format string to match against in the reading.

s_var1… Name of the variable in which to store results.

Common Input Format Specifications

Format
Specification

Types of
Argument Scans for

%d fixnum An integer

%f flonum A floating-point number

%s string A string (delimited by spaces) in the input
June 2004 455 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
Value Returned

x_items Returns the number of input items it successfully read in. As a
side effect, the items read in are assigned to the corresponding
variables specified in the call.

nil Returns nil if an end of file is encountered

Example
fscanf(p "%d %f" i d)

Scans for an integer and a floating-point number from the input port p and stores the values
read in the variables i and d, respectively.

Assume a file testcase with one line:

hello 2 3 world

x = infile("testcase")
=> port:"testcase"

fscanf(x "%s %d %d %s" a b c d)
=> 4

(list a b c d) => ("hello" 2 3 "world")
June 2004 456 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
gets

gets(s_variableName [p_inputPort]) => t_string/nil

Description

Reads a line from the input port and stores the line as a string in the variable. This is a macro.

The string is also returned as the value of gets. The terminating newline character of the
line becomes the last character in the string.

Arguments

s_variableName
Variable in which to store the input string.

p_inputPort Name of input port.
Default value: piport

Value Returned

t_string Returns the input string when successful.

nil Returns nil when the end of file is reached.
(s_variableName maintains its last value.)

Example

Assume the test1.data file has the following first two lines:

#This is the data for test1

0001 1100 1011 0111

p = infile("test1.data") => port:"test1.data"

gets(s p) => "#This is the data for test1"

gets(s p) => "0001 1100 1011 0111"

s => "0001 1100 1011 0111"

Gets a line from the test1.data file and stores it in the variable s. The s variable contains
the last string stored in it by the gets function.
June 2004 457 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
infile

infile(S_fileName)
=> p_inport/nil

Description

Opens an input port ready to read a file.

Always remember to close the port when you are done. The file name can be specified with
either an absolute path or a relative path. In the latter case, the current SKILL path is used if
it is not nil.

Arguments

S_fileName Name of the file to be read; it can be either a string or a symbol.

Value Returned

p_inport Returns the port opened for reading the named file.

nil Returns nil if the file does not exist or cannot be opened for
reading.

Examples
in = infile("~/test/input.il") => port:"~/test/input.il"

close(in)
=> t

Closes the /test/input.il port.

Opens the input port /test/input.il.

infile("myFile") => nil

Returns nil if myFile does not exist according to the current setting of the SKILL path or
exists but is not readable.
June 2004 458 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
load

load(t_fileName [t_password])
=> t

Description

Opens a file and repeatedly calls lineread to read in the file, immediately evaluating each
form after it is read in.

This function uses the file extension to determine the language mode (.il for SKILL, .ils
for SKILL++, and .ocn for a file containing OCEAN commands) for processing the language
expressions contained in the file. For a SKILL++ file, the loaded code is always evaluated in
the top-level environment.

load closes the file when the end of file is reached. Unless errors are discovered, the file is
read in quietly. If load is interrupted by pressing Control-c, the function skips the rest of
the file being loaded.

SKILL has an autoload feature that allows applications to load functions into SKILL on
demand. If a function being run is undefined, SKILL checks to see if the name of the function
(a symbol) has a property called autoload attached to it. If the property exists, its value,
which must be either a string or an expression that evaluates to a string, is used as the name
of a file to be loaded. The file should contain a definition for the function that triggered the
autoload. Processing proceeds normally after the function is defined.

Arguments

t_fileName File to be loaded. Uses the file name extension to determine the
language mode to use.
Valid values:

t_password Password, if t_fileName is an encrypted file.

.ils Means the file contains SKILL++ code.

.il Means the file contains SKILL code.

.ocn Means the file contains OCEAN commands (with
SKILL or SKILL++ commands)
June 2004 459 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
Value Returned

t Returns t if the file is successfully loaded.

Example
load("test.ocn")

Loads the test.ocn file.

procedure(trLoadSystem()
load("test.il") ;;; SKILL code
load("test.ils");;; SKILL++ code
) ; procedure

You might have an application partitioned into two files. Assume that test.il contains
SKILL code and test.ils contains SKILL/SKILL++ code. This example loads both files.
June 2004 460 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
newline

newline([p_outputPort])
=> nil

Description

Prints a newline (backslash n) character and then flushes the output port.

Arguments

p_outputPort Output port.
Defaults value: poport

Value Returned

nil Prints a newline and then returns nil.

Example
print("Hello") newline() print("World!")

"Hello"

"World!"

=> nil

Prints a newline character after Hello.
June 2004 461 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
outfile

outfile(S_fileName [t_mode])
=> p_outport/nil

Description

Opens an output port ready to write to a file.

Various print commands can write to this file. Commands write first to a character buffer,
which writes to the file when the character buffer is full. If the character buffer is not full, the
contents are not written to the file until the output port is closed or the drain command is
entered. Use the close or drain command to write the contents of the character buffer to the
file. The file can be specified with either an absolute path or a relative path. If a relative path
is given and the current SKILL path setting is not nil, all directory paths from SKILL path
are checked in order, for that file. If found, the system overwrites the first updatable file in the
list. If no updatable file is found, it places a new file of that name in the first writable directory.

Arguments

S_fileName Name of the file to open or create.

t_mode Mode in which to open the file. If a, the file is opened in append
mode; If w, a new file is created for writing (any existing file is
overwritten).
Default value: w

Value Returned

p_outport An output port ready to write to the specified file.

nil returns nil if the named file cannot be opened for writing. An
error is signaled if an illegal mode string is supplied.

Examples
p = outfile("/tmp/out.il" "w")
=> port:"/tmp/out.il"

Opens the /tmp/out.il port.

outfile("/bin/ls")
=> nil
June 2004 462 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
Returns nil, indicating that the specified port could not be opened.
June 2004 463 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
printf

printf(t_formatString [g_arg1 ...])
=> t

Description

Writes formatted output to poport, which is the standard output port.

The optional arguments following the format string are printed according to their
corresponding format specifications. Refer to the “Common Output Format Specifications”
table for fprintf in the SKILL Language User Guide.

printf is identical to fprintf except that it does not take the p_port argument and the
output is written to poport.

Arguments

t_formatString
Characters to be printed verbatim, intermixed with format
specifications prefixed by the “%” sign.

g_arg1… Arguments following the format string are printed according to
their corresponding format specifications.

Value Returned

t Prints the formatted output and returns t.

Example
x = 197.9687 => 197.9687

printf("The test measures %10.2f." x)

Prints the following line to poport and returns t.

The test measures 197.97. => t
June 2004 464 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
println

println(g_value [p_outputPort])
=> nil

Description

Prints a SKILL object using the default format for the data type of the value, and then prints
a newline character.

A newline character is automatically printed after printing g_value. The println function
flushes the output port after printing each newline character.

Arguments

g_value Any SKILL value.

p_outputPort Port to be used for output.
Default value: poport

Value Returned

nil Prints the given object and returns nil.

Example
for(i 1 3 println("hello"))
"hello"
"hello"
"hello"
=> t

Prints hello three times. for always returns t.
June 2004 465 Product Version 5.1.41

OCEAN Reference
File Commands and Functions
June 2004 466 Product Version 5.1.41

OCEAN Reference
A
OCEAN 4.4.6 Issues

For the 4.4.6 release of OCEAN, there are some restrictions and requirements.

The netlist file that you specify for the Spectre® circuit simulator interface with the design
command must be netlist. The full path can be specified. For example, /usr/netlist
is acceptable. The netlistHeader and netlistFooter files are searched in the same
directory where the netlist is located. Cadence recommends that you use the netlist
generated from the Virtuoso® Analog Design Environment. Netlists from other sources can
also be used, as long as they contain only connectivity. You might be required to make slight
modifications.

■ Cadence recommends full paths for the Spectre simulator model files, definition files,
and stimulus files.

■ The Cadence SPICE circuit simulator is still used to parse netlists for socket interfaces
(spectreS and cdsSpice, for example). Therefore, the netlist that you specify with the
design command must be in Cadence SPICE syntax. Cadence recommends that you
use the raw netlist generated from the Virtuoso® Analog Design Environment. Netlists
from other sources can also be used, as long as they can pass through Cadence SPICE.
You might be required to make slight modifications.

■ Any presimulation commands that you specify are appended to the final netlist (as is
currently the case in the design environment). Therefore, if you have control cards
already in your netlist, and specify simulation setup commands, you might duplicate
control cards, which causes a warning or an error from the simulator. You might want to
remove control cards from your netlist file to avoid the warnings.

■ Models, include files, stimulus files, and PWLF files must be found according to the path
specified with the path command.

Mixed-Signal in OCEAN 4.4.6

All of the analog OCEAN features are available in mixed-signal. This means you can set up
analyses, change options, change the path, and so forth.

There are limitations in the area of mixed-signal simulation.
June 2004 467 Product Version 5.1.41

OCEAN Reference
OCEAN 4.4.6 Issues
■ If mixed-signal simulation is run using a standalone OCEAN tool, then the complete
netlist must be created before running the simulation. The netlist can be created using
Affirma Analog Design Environment or by specifying the design as lib-cell-view using the
ocean command design in CIW of the workbench followed by the OCEAN commands
createNetlist and run.

For example:

design("mylib" "ampTest" "schematic")

; design using lib-cell-view can only be specified in CIW of
workbench

createNetlist()

run()

■ If mixed-signal simulation is run using OCEAN commands in the CIW of the workbench,
then the design should be specified as lib-cell-view.

Otherwise, if the design is specified as the path to the netlist, for example as design(
"./simulation/ampTest/specter/netlist", then the complete netlist should be
created before running the simulation using the procedure specified above.

In the 4.4.6 release, there are no commands that operate on Verilog-XL final netlists. If you
need to change anything in the final netlist, you must make those changes by hand.

However, you can change any of the command line arguments that are sent to the Verilog-XL
simulator. This means you can change any of the digital options or any of the mixed-signal
options. To see what these options are, choose Simulation – Options – Digital in the
Virtuoso® Analog Design Environment window.

For example, you can change acceleration, keep nodes, and library files.

For detailed information, please refer to the Virtuoso® Mixed-Signal Circuit Design
Environment User Guide.
June 2004 468 Product Version 5.1.41

OCEAN Reference
Index
Symbols
&& (and) operator 47
,... in syntax 16
... in syntax 16
/ in syntax 16
[] in syntax 16
{} in syntax 16
| in syntax 16
|| (or) operator 47

Numerics
1 17
2 18

A
abs 223
abs function 223
ac 73
acos 224
add1 225
addSubwindow 163
addSubwindowTitle 164
addTitle 165
addWaveLabel 166
addWindowLabel 168
aliases 215
Allocating an Array of a Given Size 58
alphalessp function 59
alphaNumCmp function 60
analysis 75
Appending a maximum number of

characters from two input strings
(strncat) 59

appendPath 66
arithmetic

operators 44
predefined functions 221

Arithmetic and Logical Expressions 51
Arithmetic Operators 44
Arrays 58
arrays

declaring 58
definition 58

asin 226
atan 227
Atoms 57
average 244
awvPlaceXMarker 246
awvPlaceYMarker 247

B
b1f 248
bandwidth 249
binary minus operator 49
Blocking and Nonblocking Modes 29
Blocking Mode 29
braces in syntax 16
brackets in syntax 16
buildString function 58

C
C language comparison

escape characters 58
parentheses 50
strings 57

case 449
case statement 449
clearAll 169
clearSubwindow 170
clip 250
clip function 250
close 454
close function 454
command types 20
commands

corner
cornerDesVar 384
cornerMeas 385
cornerRun 386
cornerRunTemp 388
residual 389
selectProcess 390

data access
June 2004 469 Product Version 5.1.41

OCEAN Reference
dataTypes 123
getData 124
i 127
noiseSummary 189
ocnHelp 129
ocnPrint 193, 196
openResults 28, 131
outputParams 133
outputs 135
pv 139
report 206
results 143
selectResult 144
sweepNames 148
sweepValues 150
v 153

plotting
addSubwindow 163
addSubwindowTitle 164
addTitle 165
addWaveLabel 166
addWindowLabel 168
clearAll 169
clearSubwindow 170
currentSubwindow 171
currentWindow 172
dbCompressionPlot 173
deleteSubwindow 174
deleteWaveform 179
displayMode 180, 181
graphicsOff 182
graphicsOn 183
hardCopy 184
hardCopyOptions 185
ip3Plot 187
newWindow 188
plot 198
plotStyle 200
removeLabel 205
xLimit 209
yLimit 210

return values 25
simulation

ac 73
analysis 75
appendPath 66
createFinalNetlist 78
dc 82
delete 85
design 87
desVar 89

envOption 91
forcenode 93
ic 94, 101, 102
includeFile 95
monteCarlo 398
monteExpr 402
monteRun 405
nodeset 97
noise 98
ocnDisplay 99
off 103
optimizeAlgoControl 414
optimizeGoal 415
optimizePlotOption 416
optimizeRun 418
optimizeVar 419
option 104
paramAnalysis 27, 378
paramRun 382
path 67
prependPath 68
restore 106
resultsDir 107
run 108
save 111
simulator 115
store 118
temp 119
tran 120

commenting code 49
Comments 49
Common SKILL Syntax Characters Used In

OCEAN 21
Comparing Strings 59
Comparing Two String or Symbol Names

Alphanumerically or Numerically
(alphaNumCmp) 60

Comparing Two Strings Alphabetically
(strcmp) 60

Comparing Two Strings or Symbol Names
Alphabetically (alphalessp) 59

complex 259
complexp 260
compression 252
compressionVRI 254
compressionVRICurves 256
Concatenating a list of strings with

separation characters
(buildString) 58

Concatenating Strings (Lists) 58
Concatenating two or more input strings
June 2004 470 Product Version 5.1.41

OCEAN Reference
(strcat) 59
cond 451
cond statement 451
conjugate 258
conjugate function 258
Constants 52
constants 52
Constants and Variables 57
Convention 22, 23, 24
conventions

for user-defined arguments 16
for user-entered text 16

convolve 261
convolve function 261
cornerDesVar 384
cornerMeas 385
cornerRun 386
cornerRunTemp 388
Corners Analysis commands 383
correlationTable 392
cos 228
cPwrContour 263
createFinalNetlist 78
createNetlist 79
Creating Arithmetic and Logical

Expressions 53
Creating OCEAN Scripts 35
Creating Scripts from Analog Artist 35
Creating Scripts from the Analog Design

Environment 35
Creating Scripts Using Sample Script

Files 35
cReflContour 265
cross 267
currentSubwindow 171
currentWindow 172

D
data access commands. See commands,

data access
Data Access Without Running a

Simulation 28
Data Types 55
data types

SKILL 24
supported 55

Data Types Used in OCEAN 24
dataFilter 393
dataTypes 123

db10 269
db20 270
dbCompressionPlot 173
dbm 271
dc 82
declare function 58
Declaring a SKILL Function 60
Defining Function Parameters 61
Defining Local Variables (let) 61
definitionFile 84
delay 272
delete 85
deleteJob 422
deleteSubwindow 174, 178
deleteWaveform 179
deriv 275
design 87
design variables 25
Design Variables in OCEAN 25
desVar 89
dft 276, 278
dftbb 278
displayMode 180, 181
Distributed Processing 28
double quotes 21

E
envOption 91
Errors and Warnings 447
exp 229
expressions, nested 50
eyeDigram 280

F
file commands and functions

See functions, file
flip 281
floating-point numbers 24, 45, 56
for 444
for statement 444
forcenode 93
foreach 446
fourEval 282
frequency 283
From a UNIX Shell 38
From the CIW 38
fscanf 455
June 2004 471 Product Version 5.1.41

OCEAN Reference
function body 63
functions

file
close 454
fscanf 455
gets 457
inline 458
load 459
newline 461
outfile 462

SKILL
abs 223
acos 224
add 1 225
asin 226
atan 227
cos 228
exp 229
max 233
min 234
mod 235
phaseNoise 137
random 236
resultParam 141
round 237
sin 238
sp 146
sqrt 239
srandom 240
sub1 241
tan 242
vswr 155
zm 157
zref 159

waveform
average 244
b1f 248
bandwidth 249
clip 250
compression 252
conjugate 258
convolve 261
cross 267
db10 269
db20 270
dbm 271
delay 272
deriv 275
dft 276, 278
flip 281
fourEval 282

frequency 283
ga 284
gac 285
gainBwProd 287
gainMargin 289
gmax 290
gmin 291
gmux 293
gpc 295
groupDelay 297
gsmg 292
gt 298
Harmonic 299
harmonicList 303
iinteg 305
imag 306
integ 307
ipn 309
kf 318
ln 319
log10 320
lsb 321
lshift 322
mag 323
nc 324
overshoot 326
peakToPeak 328
phase 329
phaseDeg 331
phaseDegUnwrapped 332
phaseMargin 333
phaseRad 335
phaseRadUnwrapped 336
pow 337
psd 339
psdbb 343
real 347
riseTime 348
rms 350
rmsNoise 351
root 352
rshift 354
sample 355
settingTime 357
slewRate 359
spectralPower 361
ssb 362, 363
tangent 364
thd 365
value 367
xmax 369
June 2004 472 Product Version 5.1.41

OCEAN Reference
xmin 371
xval 373
ymax 374
ymin 375

G
ga 284
gac 285
gainBwProd 287
gainMargin 289
getAsciiWave 181
getData 124
getResult 126
gets 457
gmax 290
gmin 291
gmsg 292
gmux 293
gp 294
gpc 295
graphicsOff 182
graphicsOn 183
groupDelay 297
gt 298

H
hardCopy 184
hardCopyOptions 185
harmonic 299
harmonicFreqList 301
harmonicList 303
help

command examples 20
online 20

histogram 395
hostMode 425
hostmode 425

I
i 127
ic 94, 101, 102
if 440
if statement 440
iim alias 216
iinteg 305

im alias 216
imag 306
includeFile 95
infile 458
infix arithmetic operators 48
infix operators 51, 53
input lines 51
integ 307
integer 55
Interactive Session Demonstrating the

OCEAN Use Model 34
ip alias 216
ip3Plot 187
ipn 309
ipnVRI 312
ipnVRICurves 315
ir alias 216
italics in syntax 16
iterVsValue 397

K
keywords 16
kf 318
killJob 427

L
let 61
Line Continuation 51
linRg 230
literal characters 15
ln 319
load 459
Loading OCEAN Scripts 38
local variables 61
log 231
log10 320
Logical Operators 47
logical operators 47
logRg 232
lsb 321
lshift 322

M
mag 323
max 233
June 2004 473 Product Version 5.1.41

OCEAN Reference
min 234
Mixed-Signal in OCEAN 4.4.6 467
mod 235
modelFile 96
monitor 428
Monte Carlo Analysis commands 391
monteCarlo 398
monteCorrelate 400
monteDisplay 401
monteExpr 402
monteOutputs 403
monteResults 395, 404
monteRun 405
monteSelectResults 407

N
Naming Conventions 44
nc 324
nesting, expressions 50
newline 461
newWindow 188
NF 212
NFmin 212
NNR 212
nodeset 97
noise 98
noiseSummary 189
Nonblocking Mode 29
Numbers 56
numbers

floating-point 24, 45, 56
integer 55

numbers, scaling factors 44

O
OCEAN

aliases 215
definition 19
design variables 25

OCEAN in Non-Graphical Mode 32
OCEAN Online Help 20
OCEAN Return Values 25
OCEAN Syntax Overview 21
OCEAN Tips 41
OCEAN Use Models 31
ocnDisplay 99
ocnGetWaveformTool 101

ocnHelp 129
ocnPrint 193, 196
ocnWaveformTool 102
ocnYvsYPlot 196
off 103
online help 20
openResults 28, 131
operators

arithmetic 44
binary minus 49
infix 48, 53
introduction 44
logical 47
relational 46
unary minus 49

Optimization Commands 413
optimizeAlgoControl 414
optimizeGoal 415
optimizePlotOption 416
optimizeRun 418
optimizeVar 419
option 104
Or-bars in syntax 16
order of evaluation 50
outfile 462
outputParams 133
outputs 135
outputs() in OCEAN 26
overshoot 326

P
paramAnalysis 378
parameters, definition 62
Parametric Analysis 27
parametric analysis 27
Parametric Analysis Commands 377
paramRun 382
paramValPair Format 70
Parentheses 21
parentheses 21, 50
Parentheses in C 50
Parentheses in SKILL 50
path 67
peakToPeak 328
phase 329
phaseDeg 331
phaseDegUnwrapped 332
phaseMargin 333
phaseNoise 137
June 2004 474 Product Version 5.1.41

OCEAN Reference
phaseRad 335
phaseRadUnwrapped 336
plot 198
plotStyle 200
Plotting and Printing SpectreRF Functions in

OCEAN 212
plotting commands. See commands,

plotting and printing
pow 337
Predefined Arithmetics 221
prependPath 68
primitives 51
printf 464
println 465
procedure 62
procedures, definition 62

See also SKILL functions
psd 339
psdbb 343
pv 139
pzSummary 203

Q
Question Mark 23
question mark 23

R
random 236
real 347
Recovering from an Omitted Double

Quote 22
Related Documents 15
Relational and Logical Operators 46
Relational Operators 46
relational operators 46
removeLabel 205
report 206
residual 389
restore 106
resultParam 141
results 143
resultsDir 107
resumeJob 430
return value (=>) 62
return values 25
right arrow in syntax 16
riseTime 348

rms 350
rmsNoise 351
RN 212
Role of Parentheses 50
root 352
round 237
rshift 354
run 108
Running Multiple Simulators 41

S
sample 355
save 111
saveOption 113
Scaling Factors 44
scaling factors 44
scatterplot 408
Selectively Creating Scripts 35
selectProcess 390
selectResult 144
settingTime 357
settlingTime 357
setup 69
simulation commands

See commands, simulation
simulator 115
sin 238
Single Quotes 23
single quotes 23
SKILL

commenting code 49
primitives 51
white space in code 49

SKILL data types 24
Skill Function Return Values 62
SKILL functions

arguments 62
declaring 60
defining parameters 61
definition 62
parameters 62
terminology 62

Skill Functions 55
SKILL functions, syntax conventions 17
SKILL Syntax 48
SKILL syntax 21
SKILL Syntax Examples 17
slash in syntax 16
slewRate 359
June 2004 475 Product Version 5.1.41

OCEAN Reference
sp 146
Special Characters 48
specLimits 409
spectralPower 361
sqrt 239
srandom 240
ssb 362, 363
stddev 363
stimulusFile 116
store 118
strcat function 59
strcmp function 60
Strings 57
strings

comparing 59
concatenating 58
definition 57

strncat function 59
sub1 241
sub1 function 241
suspendJob 431
sweepNames 148
sweepValues 150
sweepVarValues 151
syntax 48

double quotes 21
functions 62
overview 21
parentheses 21
question mark 23
single quotes 23

syntax conventions 15
Syntax Functions for Defining

Functions 62

T
tan 242
tan function 242
tangent 364
temp 119
Terms and Definitions 62
thd 365
The Advantages of SKILL 43
tran 120
types of commands 20
Types of OCEAN Commands 20
Typographic and Syntax Conventions 15

U
unary minus operator 49
unbound variables 57
unless 442
unless statement 442
Using && 47
Using || 48
Using OCEAN from a UNIX Shell 32
Using OCEAN from the CIW 33
Using OCEAN Interactively 32
Using Variables 52

V
v 153
value 367
value function 367
Variables 52
variables

defining local 61
definition 52
introduction 52
unbound 57

vdb alias 215
vertical bars in syntax 16
vim alias 216
vm alias 215
vp alias 215
vr alias 216
vswr 155

W
wait 432
Waveform (Calculator) Functions 243
when 443
when statement 443
while 448
while statement 448
White Space 49
white space 49

X
xLimit 209
xmax 369
June 2004 476 Product Version 5.1.41

OCEAN Reference
xmin 371
xval 373

Y
yield 411
yLimit 210
ymax 374
ymin 375

Z
zm 157
zref 159
June 2004 477 Product Version 5.1.41

OCEAN Reference
June 2004 478 Product Version 5.1.41

	Contents
	Preface
	Related Documents
	Typographic and Syntax Conventions
	SKILL Syntax Examples

	Introduction to OCEAN
	Types of OCEAN Commands
	OCEAN Online Help
	OCEAN Syntax Overview
	Common SKILL Syntax Characters Used in OCEAN
	Parentheses
	Quotation Marks
	Single Quotation Marks
	Question Mark
	Data Types Used in OCEAN
	OCEAN Return Values
	Design Variables in OCEAN
	outputs() in OCEAN

	Parametric Analysis
	Data Access Without Running a Simulation

	Distributed Processing
	Blocking and Nonblocking Modes

	Waveform Tool Selection

	Using OCEAN
	OCEAN Use Models
	Using OCEAN Interactively
	Using OCEAN from a UNIX Shell
	Using OCEAN from the CIW
	Interactive Session Demonstrating the OCEAN Use Model

	Creating OCEAN Scripts
	Creating Scripts Using Sample Script Files
	Creating Scripts from the Analog Design Environment
	Selectively Creating Scripts
	Loading OCEAN Scripts

	Selecting Results
	Selecting Results Run from Worst Case Scripts for Cross-Probing or Back Annotating Operating Points
	Selecting Results Run from Spectre Stand Alone

	Running Multiple Simulators
	OCEAN Tips

	Introduction to SKILL
	The Advantages of SKILL
	Naming Conventions
	Arithmetic Operators
	Scaling Factors
	Relational and Logical Operators
	Relational Operators
	Logical Operators

	SKILL Syntax
	Special Characters
	White Space
	Comments
	Role of Parentheses
	Line Continuation

	Arithmetic and Logical Expressions
	Constants
	Variables

	Working with SKILL
	Skill Functions
	Data Types
	Numbers
	Atoms
	Constants and Variables
	Strings

	Arrays
	Allocating an Array of a Given Size

	Concatenating Strings (Lists)
	Comparing Strings

	Declaring a SKILL Function
	Defining Function Parameters
	Defining Local Variables (let)

	Skill Function Return Values
	Syntax Functions for Defining Functions
	procedure
	Terms and Definitions

	OCEAN Environment Commands
	appendPath
	path
	prependPath
	setup

	Simulation Commands
	ac
	analysis
	createFinalNetlist
	createNetlist
	converge
	dc
	definitionFile
	delete
	design
	desVar
	envOption
	forcenode
	ic
	includeFile
	modelFile
	nodeset
	noise
	ocnDisplay
	ocnGetWaveformTool
	ocnWaveformTool
	off
	option
	restore
	resultsDir
	run
	save
	saveOption
	simulator
	stimulusFile
	store
	temp
	tran

	Data Access Commands
	dataTypes
	getData
	getResult
	i
	ocnHelp
	openResults
	outputParams
	outputs
	phaseNoise
	pv
	resultParam
	results
	selectResult
	sp
	sweepNames
	sweepValues
	sweepVarValues
	v
	vswr
	zm
	zref

	Plotting and Printing Commands
	addSubwindow
	addSubwindowTitle
	addTitle
	addWaveLabel
	addWindowLabel
	clearAll
	clearSubwindow
	currentSubwindow
	currentWindow
	dbCompressionPlot
	dcmatchSummary
	deleteSubwindow
	deleteWaveform
	displayMode
	getAsciiWave
	graphicsOff
	graphicsOn
	hardCopy
	hardCopyOptions
	ip3Plot
	newWindow
	noiseSummary
	ocnPrint
	ocnYvsYPlot
	plot
	plotStyle
	pzPlot
	pzSummary
	removeLabel
	report
	xLimit
	yLimit
	Plotting and Printing SpectreRF Functions in OCEAN

	OCEAN Aliases
	Predefined Functions and Waveform (Calculator) Functions
	Predefined Arithmetic Functions
	abs
	acos
	add1
	asin
	atan
	cos
	exp
	linRg
	log
	logRg
	max
	min
	mod
	random
	round
	sin
	sqrt
	srandom
	sub1
	tan

	Waveform (Calculator) Functions
	average
	awvPlaceXMarker
	awvPlaceYMarker
	b1f
	bandwidth
	clip
	compression
	compressionVRI
	compressionVRICurves
	conjugate
	complex
	complexp
	convolve
	cPwrContour
	cReflContour
	cross
	db10
	db20
	dbm
	delay
	deriv
	dft
	dftbb
	eyeDiagram
	flip
	fourEval
	frequency
	ga
	gac
	gainBwProd
	gainMargin
	gmax
	gmin
	gmsg
	gmux
	gp
	gpc
	groupDelay
	gt
	harmonic
	harmonicFreqList
	harmonicList
	iinteg
	imag
	integ
	ipn
	ipnVRI
	ipnVRICurves
	kf
	ln
	log10
	lsb
	lshift
	mag
	nc
	overshoot
	peakToPeak
	phase
	phaseDeg
	phaseDegUnwrapped
	phaseMargin
	phaseRad
	phaseRadUnwrapped
	pow
	psd
	psdbb
	real
	riseTime
	rms
	rmsNoise
	root
	rshift
	sample
	settlingTime
	slewRate
	spectralPower
	ssb
	stddev
	tangent
	thd
	value
	xmax
	xmin
	xval
	ymax
	ymin

	Advanced Analysis
	Parametric Analysis Commands
	paramAnalysis
	paramRun

	Corners Analysis Commands
	cornerDesVar
	cornerMeas
	cornerRun
	cornerRunTemp
	residual
	selectProcess

	Monte Carlo Analysis Commands
	correlationTable
	dataFilter
	histogram
	iterVsValue
	monteCarlo
	monteCorrelate
	monteDisplay
	monteExpr
	monteOutputs
	monteResults
	monteRun
	monteSelectResults
	scatterplot
	specLimits
	yield

	Optimization Commands
	optimizeAlgoControl
	optimizeGoal
	optimizePlotOption
	optimizeRun
	optimizeVar

	OCEAN Distributed Processing Commands
	deleteJob
	digitalHostMode
	digitalHostName
	hostMode
	hostName
	killJob
	monitor
	remoteDir
	resumeJob
	suspendJob
	wait
	Sample Scripts

	Language Constructs
	if
	unless
	when
	for
	foreach
	while
	case
	cond

	File Commands and Functions
	close
	fscanf
	gets
	infile
	load
	newline
	outfile
	printf
	println

	OCEAN 4.4.6 Issues
	Mixed-Signal in OCEAN 4.4.6

	Index

