2

Filter Design and Implementation

Filter design is the process of creating the filter coefficients to meet specific filtering requirements. Filter implementation involves choosing and applying a particular filter structure to those coefficients. Only after both design and implementation have been performed can data be filtered. The following chapter describes filter design and implementation in the Signal Processing Toolbox.

Filter Requirements and Specification (p. 2-2)	Overview of filter design
IIR Filter Design (p. 2-4)	Infinite impulse reponse filters (Butterworth, Chebyshev, elliptic, Bessel, Yule-Walker, and parametric methods)
FIR Filter Design (p. 2-17)	Finite impulse reponse filters (windowing, multiband, least squares, nonlinear phase, complex filters, raised cosine)
Special Topics in IIR Filter Design (p. 2-44)	Analog design, frequency transformation, filter discretization
Filter Implementation (p. 2-53)	Filtering with your filter
Selected Bibliography (p. 2-55)	Sources for additional information

Filter Requirements and Specification

The goal of filter design is to perform frequency dependent alteration of a data sequence. A possible requirement might be to remove noise above 30 Hz from a data sequence sampled at 100 Hz. A more rigorous specification might call for a specific amount of passband ripple, stopband attenuation, or transition width. A very precise specification could ask to achieve the performance goals with the minimum filter order, or it could call for an arbitrary magnitude shape, or it might require an FIR filter.

Filter design methods differ primarily in how performance is specified. For "loosely specified" requirements, as in the first case above, a Butterworth IIR filter is often sufficient. To design a fifth-order 30 Hz lowpass Butterworth filter and apply it to the data in vector x:

[b,a] = butter(5,30/50); Hd = dfilt.df2t(b,a); %Direct-form II transposed structure y = filter(Hd,x);

The second input argument to butter specifies the cutoff frequency, normalized to half the sampling frequency (the Nyquist frequency).

All of the filter design functions operate with normalized frequencies, so they do not require the system sampling rate as an extra input argument. This toolbox uses the convention that unit frequency is the Nyquist frequency, defined as half the sampling frequency. The normalized frequency, therefore, is always in the interval $0 \le f \le 1$. For a system with a 1000 Hz sampling frequency, 300 Hz is 300/500 = 0.6. To convert normalized frequency to angular frequency around the unit circle, multiply by π . To convert normalized frequency.

More rigorous filter requirements traditionally include passband ripple (Rp, in decibels), stopband attenuation (Rs, in decibels), and transition width (Ws-Wp, in hertz).

You can design Butterworth, Chebyshev Type I, Chebyshev Type II, and elliptic filters that meet this type of performance specification. The toolbox order selection functions estimate the minimum filter order that meets a given set of requirements.

To meet specifications with more rigid constraints like linear phase or arbitrary filter shape, use the FIR and direct IIR filter design routines.

IIR Filter Design

The primary advantage of IIR filters over FIR filters is that they typically meet a given set of specifications with a much lower filter order than a corresponding FIR filter. Although IIR filters have nonlinear phase, data processing within MATLAB is commonly performed "off-line," that is, the entire data sequence is available prior to filtering. This allows for a noncausal, zero-phase filtering approach (via the filtfilt function), which eliminates the nonlinear phase distortion of an IIR filter.

The classical IIR filters, Butterworth, Chebyshev Types I and II, elliptic, and Bessel, all approximate the ideal "brick wall" filter in different ways. This toolbox provides functions to create all these types of classical IIR filters in both the analog and digital domains (except Bessel, for which only the analog case is supported), and in lowpass, highpass, bandpass, and bandstop configurations. For most filter types, you can also find the lowest filter order that fits a given filter specification in terms of passband and stopband attenuation, and transition width(s).

The direct filter design function yulewalk finds a filter with magnitude response approximating a desired function. This is one way to create a multiband bandpass filter.

You can also use the parametric modeling or system identification functions to design IIR filters. These functions are discussed in "Parametric Modeling" on page 4-15.

The generalized Butterworth design function maxflat is discussed in the section "Generalized Butterworth Filter Design" on page 2-15.

The following table summarizes the various filter methods in the toolbox and lists the functions available to implement these methods.

Filter Method	Description	Filter Functions
Analog Prototyping	Using the poles and zeros of a classical lowpass prototype filter in the continuous (Laplace) domain, obtain a digital filter through frequency transformation and filter discretization.	Complete design functions: besself, butter, cheby1, cheby2, ellip Order estimation functions: buttord, cheb1ord, cheb2ord, ellipord Lowpass analog prototype functions: besselap, buttap, cheb1ap, cheb2ap, ellipap Frequency transformation functions: lp2bp, lp2bs, lp2hp, lp2lp Filter discretization functions: bilinear, impinvar
Direct Design	Design digital filter directly in the discrete time-domain by approximating a piecewise linear magnitude response.	yulewalk
Generalized Butterworth Design	Design lowpass Butterworth filters with more zeros than poles.	maxflat
Parametric Modeling	Find a digital filter that approximates a prescribed time or frequency domain response. (See the System Identification Toolbox documentation for an extensive collection of parametric modeling tools.)	Time-domain modeling functions: lpc, prony, stmcb Frequency-domain modeling functions: invfreqs, invfreqz

Classical IIR Filter Design Using Analog Prototyping

The principal IIR digital filter design technique this toolbox provides is based on the conversion of classical lowpass analog filters to their digital equivalents. The following sections describe how to design filters and summarize the characteristics of the supported filter types. See "Special Topics in IIR Filter Design" on page 2-44 for detailed steps on the filter design process.

Complete Classical IIR Filter Design

You can easily create a filter of any order with a lowpass, highpass, bandpass, or bandstop configuration using the filter design functions.

Filter Type	Design Function
Bessel (analog only)	<pre>[b,a] = besself(n,Wn,options) [z,p,k] = besself(n,Wn,options) [A,B,C,D] = besself(n,Wn,options)</pre>
Butterworth	<pre>[b,a] = butter(n,Wn,options) [z,p,k] = butter(n,Wn,options) [A,B,C,D] = butter(n,Wn,options)</pre>
Chebyshev Type I	<pre>[b,a] = cheby1(n,Rp,Wn,options) [z,p,k] = cheby1(n,Rp,Wn,options) [A,B,C,D] = cheby1(n,Rp,Wn,options)</pre>
Chebyshev Type II	<pre>[b,a] = cheby2(n,Rs,Wn,options) [z,p,k] = cheby2(n,Rs,Wn,options) [A,B,C,D] = cheby2(n,Rs,Wn,options)</pre>
Elliptic	<pre>[b,a] = ellip(n,Rp,Rs,Wn,options) [z,p,k] = ellip(n,Rp,Rs,Wn,options) [A,B,C,D] = ellip(n,Rp,Rs,Wn,options)</pre>

By default, each of these functions returns a lowpass filter; you need only specify the desired cutoff frequency Wn in normalized frequency (Nyquist frequency = 1 Hz). For a highpass filter, append the string 'high' to the function's parameter list. For a bandpass or bandstop filter, specify Wn as a two-element vector containing the passband edge frequencies, appending the string 'stop' for the bandstop configuration.

Here are some example digital filters:

```
[b,a] = butter(5,0.4); % Lowpass Butterworth
[b,a] = cheby1(4,1,[0.4 0.7]); % Bandpass Chebyshev Type I
[b,a] = cheby2(6,60,0.8,'high'); % Highpass Chebyshev Type II
[b,a] = ellip(3,1,60,[0.4 0.7],'stop'); % Bandstop elliptic
```

To design an analog filter, perhaps for simulation, use a trailing 's' and specify cutoff frequencies in rad/s:

[b,a] = butter(5,.4, 's'); % Analog Butterworth filter

All filter design functions return a filter in the transfer function, zero-pole-gain, or state-space linear system model representation, depending on how many output arguments are present.

Note All classical IIR lowpass filters are ill-conditioned for extremely low cut-off frequencies. Therefore, instead of designing a lowpass IIR filter with a very narrow passband, it can be better to design a wider passband and decimate the input signal.

Designing IIR Filters to Frequency Domain Specifications

This toolbox provides order selection functions that calculate the minimum filter order that meets a given set of requirements.

Filter Type	Order Estimation Function
Butterworth	<pre>[n,Wn] = buttord(Wp,Ws,Rp,Rs)</pre>
Chebyshev Type I	<pre>[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs)</pre>
Chebyshev Type II	<pre>[n,Wn] = cheb2ord(Wp,Ws,Rp,Rs)</pre>
Elliptic	<pre>[n,Wn] = ellipord(Wp,Ws,Rp,Rs)</pre>

These are useful in conjunction with the filter design functions. Suppose you want a bandpass filter with a passband from 1000 to 2000 Hz, stopbands starting 500 Hz away on either side, a 10 kHz sampling frequency, at most 1 dB

of passband ripple, and at least 60 dB of stopband attenuation. You can meet these specifications by using the butter function as follows.

An elliptic filter that meets the same requirements is given by

These functions also work with the other standard band configurations, as well as for analog filters.

Comparison of Classical IIR Filter Types

The toolbox provides five different types of classical IIR filters, each optimal in some way. This section shows the basic analog prototype form for each and summarizes major characteristics.

Butterworth Filter

The Butterworth filter provides the best Taylor Series approximation to the ideal lowpass filter response at analog frequencies $\Omega = 0$ and $\Omega = \infty$; for any order *N*, the magnitude squared response has 2*N*-1 zero derivatives at these locations (*maximally flat* at $\Omega = 0$ and $\Omega = \infty$). Response is monotonic overall, decreasing smoothly from $\Omega = 0$ to $\Omega = \infty$. $|H(j\Omega)| = \sqrt{1/2}$ at $\Omega = 1$.

Chebyshev Type I Filter

The Chebyshev Type I filter minimizes the absolute difference between the ideal and actual frequency response over the entire passband by incorporating an equal ripple of Rp dB in the passband. Stopband response is maximally flat. The transition from passband to stopband is more rapid than for the Butterworth filter. $|H(j\Omega)| = 10^{-Rp/20}$ at $\Omega = 1$.

Chebyshev Type II Filter

The Chebyshev Type II filter minimizes the absolute difference between the ideal and actual frequency response over the entire stopband by incorporating an equal ripple of Rs dB in the stopband. Passband response is maximally flat.

The stopband does not approach zero as quickly as the type I filter (and does not approach zero at all for even-valued filter order *n*). The absence of ripple in the passband, however, is often an important advantage. $|H(j\Omega)| = 10^{-Rs/20}$ at $\Omega = 1$.

Elliptic Filter

Elliptic filters are equiripple in both the passband and stopband. They generally meet filter requirements with the lowest order of any supported filter type. Given a filter order *n*, passband ripple Rp in decibels, and stopband ripple Rs in decibels, elliptic filters minimize transition width. $|H(j\Omega)| = 10^{-Rp/20}$ at $\Omega = 1$.

Bessel Filter

Analog Bessel lowpass filters have maximally flat group delay at zero frequency and retain nearly constant group delay across the entire passband. Filtered signals therefore maintain their waveshapes in the passband frequency range. Frequency mapped and digital Bessel filters, however, do not have this maximally flat property; this toolbox supports only the analog case for the complete Bessel filter design function.

Bessel filters generally require a higher filter order than other filters for satisfactory stopband attenuation. $|H(j\Omega)| < 1/\sqrt{2}$ at $\Omega = 1$ and decreases as filter order *n* increases.

Note The lowpass filters shown above were created with the analog prototype functions besselap, buttap, cheb1ap, cheb2ap, and ellipap. These functions find the zeros, poles, and gain of an order n analog filter of the appropriate type with cutoff frequency of 1 rad/s. The complete filter design functions (besself, butter, cheby1, cheby2, and ellip) call the prototyping functions as a first step in the design process. See ""Special Topics in IIR Filter Design" on page 2-44" for details.

To create similar plots, use n = 5 and, as needed, Rp = 0.5 and Rs = 20. For example, to create the elliptic filter plot:

[z,p,k] = ellipap(5,0.5,20); w = logspace(-1,1,1000); h = freqs(k*poly(z),poly(p),w); semilogx(w,abs(h)), grid

Direct IIR Filter Design

This toolbox uses the term *direct methods* to describe techniques for IIR design that find a filter based on specifications in the discrete domain. Unlike the analog prototyping method, direct design methods are not constrained to the standard lowpass, highpass, bandpass, or bandstop configurations. Rather, these functions design filters with an arbitrary, perhaps multiband, frequency response. This section discusses the yulewalk function, which is intended specifically for filter design; "Parametric Modeling" on page 4-15 discusses other methods that may also be considered direct, such as Prony's method, Linear Prediction, the Steiglitz-McBride method, and inverse frequency design.

The yulewalk function designs recursive IIR digital filters by fitting a specified frequency response. yulewalk's name reflects its method for finding the filter's denominator coefficients: it finds the inverse FFT of the ideal desired power spectrum and solves the "modified Yule-Walker equations" using the resulting autocorrelation function samples. The statement

[b,a] = yulewalk(n,f,m)

returns row vectors b and a containing the n+1 numerator and denominator coefficients of the order n IIR filter whose frequency-magnitude characteristics approximate those given in vectors f and m. f is a vector of frequency points ranging from 0 to 1, where 1 represents the Nyquist frequency. m is a vector containing the desired magnitude response at the points in f. f and m can describe any piecewise linear shape magnitude response, including a multiband response. The FIR counterpart of this function is fir2, which also designs a filter based on an arbitrary piecewise linear magnitude response. See ""FIR Filter Design" on page 2-17" for details.

Note that yulewalk does not accept phase information, and no statements are made about the optimality of the resulting filter.

Design a multiband filter with yulewalk, and plot the desired and actual frequency response:

```
m = [0 0 1 1 0 0 1 1 0 0];
f = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1];
[b,a] = yulewalk(10,f,m);
[h,w] = freqz(b,a,128)
plot(f,m,w/pi,abs(h))
```


Generalized Butterworth Filter Design

The toolbox function maxflat enables you to design generalized Butterworth filters, that is, Butterworth filters with differing numbers of zeros and poles. This is desirable in some implementations where poles are more expensive computationally than zeros. maxflat is just like the butter function, except that it you can specify *two* orders (one for the numerator and one for the denominator) instead of just one. These filters are *maximally flat*. This means that the resulting filter is optimal for any numerator and denominator orders, with the maximum number of derivatives at 0 and the Nyquist frequency $\omega = \pi$ both set to 0.

For example, when the two orders are the same, maxflat is the same as butter:

```
[b,a] = maxflat(3,3,0.25)
b =
                         0.0951
    0.0317
              0.0951
                                   0.0317
a =
    1.0000
             -1.4590
                         0.9104
                                  -0.1978
[b,a] = butter(3,0.25)
b =
    0.0317
              0.0951
                         0.0951
                                   0.0317
a =
    1.0000
             -1.4590
                         0.9104
                                  -0.1978
```

However, maxflat is more versatile because it allows you to design a filter with more zeros than poles:

The third input to maxflat is the *half-power frequency*, a frequency between 0 and 1 with a desired magnitude response of $1/\sqrt{2}$.

You can also design linear phase filters that have the maximally flat property using the 'sym' option:

For complete details of the maxflat algorithm, see Selesnick and Burrus [2].

FIR Filter Design

Digital filters with finite-duration impulse response (all-zero, or FIR filters) have both advantages and disadvantages compared to infinite-duration impulse response (IIR) filters.

FIR filters have the following primary advantages:

- They can have exactly linear phase.
- They are always stable.
- The design methods are generally linear.
- They can be realized efficiently in hardware.
- The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance. Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.

Filter Method	Description	Filter Functions
Windowing	Apply window to truncated inverse Fourier transform of desired "brick wall" filter	fir1, fir2, kaiserord
Multiband with Transition Bands	Equiripple or least squares approach over sub-bands of the frequency range	firls, firpm, firpmord
Constrained Least Squares	Minimize squared integral error over entire frequency range subject to maximum error constraints	fircls, fircls1
Arbitrary Response	Arbitrary responses, including nonlinear phase and complex filters	cfirpm
Raised Cosine	Lowpass response with smooth, sinusoidal transition	firrcos

Linear Phase Filters

Except for cfirpm, all of the FIR filter design functions design linear phase filters only. The filter coefficients, or "taps," of such filters obey either an even or odd symmetry relation. Depending on this symmetry, and on whether the order n of the filter is even or odd, a linear phase filter (stored in length n+1 vector b) has certain inherent restrictions on its frequency response.

Linear Phase Filter Type	Filter Order	Symmetry of Coefficients	Response H(f), f = 0	Response H(f), f = 1 (Nyquist)
Type I	Even	even: $l(l) = l(l+2, l) + l + 1$	No restriction	No restriction
Type II	Odd	$D(k) = D(n+2-k), \ k = 1,, n+1$	No restriction	H(1) = 0
Type III	Even	odd:	H(0) = 0	H(1) = 0
Type IV	Odd	b(k) = -b(n+2-k), k = 1,, n+1	H(0) = 0	No restriction

The phase delay and group delay of linear phase FIR filters are equal and constant over the frequency band. For an order n linear phase FIR filter, the group delay is n/2, and the filtered signal is simply delayed by n/2 time steps (and the magnitude of its Fourier transform is scaled by the filter's magnitude response). This property preserves the wave shape of signals in the passband; that is, there is no phase distortion.

The functions fir1, fir2, firls, firpm, fircls, fircls1, and firrcos all design type I and II linear phase FIR filters by default. Both firls and firpm design type III and IV linear phase FIR filters given a 'hilbert' or 'differentiator' flag. cfirpm can design any type of linear phase filter, and nonlinear phase filters as well.

Note Because the frequency response of a type II filter is zero at the Nyquist frequency ("high" frequency), fir1 does not design type II highpass and bandstop filters. For odd-valued n in these cases, fir1 adds 1 to the order and returns a type I filter.

Windowing Method

Consider the ideal, or "brick wall," digital lowpass filter with a cutoff frequency of ω_0 rad/s. This filter has magnitude 1 at all frequencies with magnitude less than ω_0 , and magnitude 0 at frequencies with magnitude between ω_0 and π . Its impulse response sequence h(n) is

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(\omega) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_0}^{\omega_0} e^{j\omega n} d\omega = \frac{\omega_0}{\pi} \operatorname{sinc}(\frac{\omega_0}{\pi}n)$$

This filter is not implementable since its impulse response is infinite and noncausal. To create a finite-duration impulse response, truncate it by applying a window. By retaining the central section of impulse response in this truncation, you obtain a linear phase FIR filter. For example, a length 51 filter with a lowpass cutoff frequency ω_0 of 0.4π rad/s is

b = 0.4*sinc(0.4*(-25:25));

The window applied here is a simple rectangular window. By Parseval's theorem, this is the length 51 filter that best approximates the ideal lowpass filter, in the integrated least squares sense. The following command displays the filter's frequency response in FVTool:

fvtool(b,1)

Note that the *y*-axis shown in the figure below is in Magnitude Squared. You can set this by right-clicking on the axis label and selecting **Magnitude Squared** from the menu.

Ringing and ripples occur in the response, especially near the band edge. This "Gibbs effect" does not vanish as the filter length increases, but a nonrectangular window reduces its magnitude. Multiplication by a window in the time domain causes a convolution or smoothing in the frequency domain. Apply a length 51 Hamming window to the filter and display the result using FVTool:

b = 0.4*sinc(0.4*(-25:25)); b = b.*hamming(51)'; fvtool(b,1) Note that the *y*-axis shown in the figure below is in Magnitude Squared. You can set this by right-clicking on the axis label and selecting **Magnitude Squared** from the menu.

Using a Hamming window greatly reduces the ringing. This improvement is at the expense of transition width (the windowed version takes longer to ramp from passband to stopband) and optimality (the windowed version does not minimize the integrated squared error).

The functions fir1 and fir2 are based on this windowing process. Given a filter order and description of an ideal desired filter, these functions return a windowed inverse Fourier transform of that ideal filter. Both use a Hamming

window by default, but they accept any window function. See the "Windows" on page 4-2 for an overview of windows and their properties.

Standard Band FIR Filter Design: fir1

fir1 implements the classical method of windowed linear phase FIR digital filter design. It resembles the IIR filter design functions in that it is formulated to design filters in standard band configurations: lowpass, bandpass, highpass, and bandstop.

The statements

n = 50; Wn = 0.4; b = fir1(n,Wn);

create row vector b containing the coefficients of the order n Hamming-windowed filter. This is a lowpass, linear phase FIR filter with cutoff frequency Wn. Wn is a number between 0 and 1, where 1 corresponds to the Nyquist frequency, half the sampling frequency. (Unlike other methods, here Wn corresponds to the 6 dB point.) For a highpass filter, simply append the string 'high' to the function's parameter list. For a bandpass or bandstop filter, specify Wn as a two-element vector containing the passband edge frequencies; append the string 'stop' for the bandstop configuration.

b = fir1(n,Wn,window) uses the window specified in column vector window for the design. The vector window must be n+1 elements long. If you do not specify a window, fir1 applies a Hamming window.

Kaiser Window Order Estimation. The kaiserord function estimates the filter order, cutoff frequency, and Kaiser window beta parameter needed to meet a given set of specifications. Given a vector of frequency band edges and a corresponding vector of magnitudes, as well as maximum allowable ripple, kaiserord returns appropriate input parameters for the fir1 function.

Multiband FIR Filter Design: fir2

The fir2 function also designs windowed FIR filters, but with an arbitrarily shaped piecewise linear frequency response. This is in contrast to fir1, which only designs filters in standard lowpass, highpass, bandpass, and bandstop configurations.

The commands

```
n = 50;
f = [0 .4 .5 1];
m = [1 1 0 0];
b = fir2(n,f,m);
```

return row vector b containing the n+1 coefficients of the order n FIR filter whose frequency-magnitude characteristics match those given by vectors f and m. f is a vector of frequency points ranging from 0 to 1, where 1 represents the Nyquist frequency. m is a vector containing the desired magnitude response at the points specified in f. (The IIR counterpart of this function is yulewalk, which also designs filters based on arbitrary piecewise linear magnitude responses. See "IIR Filter Design" on page 2-4 for details.)

Multiband FIR Filter Design with Transition Bands

The firls and firpm functions provide a more general means of specifying the ideal desired filter than the firl and fir2 functions. These functions design Hilbert transformers, differentiators, and other filters with odd symmetric coefficients (type III and type IV linear phase). They also let you include transition or "don't care" regions in which the error is not minimized, and perform band dependent weighting of the minimization.

The firls function is an extension of the firl and fir2 functions in that it minimizes the integral of the square of the error between the desired frequency response and the actual frequency response.

The firpm function implements the Parks-McClellan algorithm, which uses the Remez exchange algorithm and Chebyshev approximation theory to design filters with optimal fits between the desired and actual frequency responses. The filters are optimal in the sense that they minimize the maximum error between the desired frequency response and the actual frequency response; they are sometimes called *minimax* filters. Filters designed in this way exhibit an equiripple behavior in their frequency response, and hence are also known as *equiripple* filters. The Parks-McClellan FIR filter design algorithm is perhaps the most popular and widely used FIR filter design methodology.

The syntax for firls and firpm is the same; the only difference is their minimization schemes. The next example shows how filters designed with firls and firpm reflect these different schemes.

Basic Configurations

The default mode of operation of firls and firpm is to design type I or type II linear phase filters, depending on whether the order you desire is even or odd, respectively. A lowpass example with approximate amplitude 1 from 0 to 0.4 Hz, and approximate amplitude 0 from 0.5 to 1.0 Hz is

```
n = 20; % Filter order
f = [0 0.4 0.5 1]; % Frequency band edges
a = [1 1 0 0]; % Desired amplitudes
b = firpm(n,f,a);
```

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition band or "don't care" region. A transition band minimizes the error more in the bands that you do care about, at the expense of a slower transition rate. In this way, these types of filters have an inherent trade-off similar to FIR design by windowing.

To compare least squares to equiripple filter design, use firls to create a similar filter. Type

bb = firls(n,f,a);

and compare their frequency responses using FVTool:

fvtool(b,1,bb,1)

Note that the *y*-axis shown in the figure below is in Magnitude Squared. You can set this by right-clicking on the axis label and selecting **Magnitude Squared** from the menu.

The filter designed with firpm exhibits equiripple behavior. Also note that the firls filter has a better response over most of the passband and stopband, but at the band edges (f = 0.4 and f = 0.5), the response is further away from the ideal than the firpm filter. This shows that the firpm filter's *maximum* error over the passband and stopband is smaller and, in fact, it is the smallest possible for this band edge configuration and filter length.

Think of frequency bands as lines over short frequency intervals. firpm and firls use this scheme to represent any piecewise linear desired function with any transition bands. firls and firpm design lowpass, highpass, bandpass, and bandstop filters; a bandpass example is

f = [0 0.3 0.4 0.7 0.8 1]; % Band edges in pairs
a = [0 0 1 1 0 0]; % Bandpass filter amplitude

Technically, these f and a vectors define five bands:

- Two stopbands, from 0.0 to 0.3 and from 0.8 to 1.0
- A passband from 0.4 to 0.7
- Two transition bands, from 0.3 to 0.4 and from 0.7 to 0.8

Example highpass and bandstop filters are

f = [0 0.7 0.8 1]; % Band edges in pairs
a = [0 0 1 1]; % Highpass filter amplitude
f = [0 0.3 0.4 0.5 0.8 1]; % Band edges in pairs
a = [1 1 0 0 1 1]; % Bandstop filter amplitude

An example multiband bandpass filter is

 $f = [0 \ 0.1 \ 0.15 \ 0.25 \ 0.3 \ 0.4 \ 0.45 \ 0.55 \ 0.6 \ 0.7 \ 0.75 \ 0.85 \ 0.9 \ 1]; \\ a = [1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1];$

Another possibility is a filter that has as a transition region the line connecting the passband with the stopband; this can help control "runaway" magnitude response in wide transition regions:

f = [0 0.4 0.42 0.48 0.5 1]; a = [1 1 0.8 0.2 0 0]; % Passband, linear transition, stopband

The Weight Vector

Both firls and firpm allow you to place more or less emphasis on minimizing the error in certain frequency bands relative to others. To do this, specify a weight vector following the frequency and amplitude vectors. An example lowpass equiripple filter with 10 times less ripple in the stopband than the passband is

n = 20; % Filter order f = [0 0.4 0.5 1]; % Frequency band edges a = [1 1 0 0]; % Desired amplitudes w = [1 10]; % Weight vector b = firpm(n,f,a,w);

A legal weight vector is always half the length of the f and a vectors; there must be exactly one weight per band.

Anti-Symmetric Filters / Hilbert Transformers

When called with a trailing 'h' or 'Hilbert' option, firpm and firls design FIR filters with odd symmetry, that is, type III (for even order) or type IV (for odd order) linear phase filters. An ideal Hilbert transformer has this anti-symmetry property and an amplitude of 1 across the entire frequency range. Try the following approximate Hilbert transformers and plot them using FVTool:

b = firpm(21,[0.05 1],[1 1],'h'); % Highpass Hilbert bb = firpm(20,[0.05 0.95],[1 1],'h'); % Bandpass Hilbert fvtool(b,1,bb,1)

You can find the delayed Hilbert transform of a signal x by passing it through these filters.

```
fs = 1000; % Sampling frequency
t = (0:1/fs:2)'; % Two second time vector
x = sin(2*pi*300*t); % 300 Hz sine wave example signal
xh = filter(bb,1,x); % Hilbert transform of x
```

The analytic signal corresponding to x is the complex signal that has x as its real part and the Hilbert transform of x as its imaginary part. For this FIR method (an alternative to the hilbert function), you must delay x by half the filter order to create the analytic signal:

xd = [zeros(10,1); x(1:length(x)-10)]; % Delay 10 samples

xa = xd + j*xh; % Analytic signal

This method does not work directly for filters of odd order, which require a noninteger delay. In this case, the hilbert function, described in "Specialized Transforms" on page 4-42, estimates the analytic signal. Alternatively, use the resample function to delay the signal by a noninteger number of samples.

Differentiators

Differentiation of a signal in the time domain is equivalent to multiplication of the signal's Fourier transform by an imaginary ramp function. That is, to differentiate a signal, pass it through a filter that has a response $H(\omega) = j\omega$. Approximate the ideal differentiator (with a delay) using firpm or firls with a 'd' or 'differentiator' option:

b = firpm(21,[0 1],[0 pi*fs],'d');

To obtain the correct derivative, scale by pi*fs rad/s, where fs is the sampling frequency in hertz. For a type III filter, the differentiation band should stop short of the Nyquist frequency, and the amplitude vector must reflect that change to ensure the correct slope:

bb = firpm(20,[0 0.9],[0 0.9*pi*fs],'d');

In the 'd' mode, firpm weights the error by $1/\omega$ in nonzero amplitude bands to minimize the maximum *relative* error. firls weights the error by $(1/\omega)^2$ in nonzero amplitude bands in the 'd' mode.

The following plots show the magnitude responses for the differentiators above.

fvtool(b,1,bb,1)

Constrained Least Squares FIR Filter Design

The Constrained Least Squares (CLS) FIR filter design functions implement a technique that enables you to design FIR filters without explicitly defining the transition bands for the magnitude response. The ability to omit the specification of transition bands is useful in several situations. For example, it may not be clear where a rigidly defined transition band should appear if noise and signal information appear together in the same frequency band. Similarly, it may make sense to omit the specification of transition bands if they appear only to control the results of Gibbs phenomena that appear in the filter's response. See Selesnick, Lang, and Burrus [2] for discussion of this method.

Instead of defining passbands, stopbands, and transition regions, the CLS method accepts a cutoff frequency (for the highpass, lowpass, bandpass, or bandstop cases), or passband and stopband edges (for multiband cases), for the desired response. In this way, the CLS method defines transition regions implicitly, rather than explicitly.

The key feature of the CLS method is that it enables you to define upper and lower thresholds that contain the maximum allowable ripple in the magnitude response. Given this constraint, the technique applies the least square error minimization technique over the frequency range of the filter's response, instead of over specific bands. The error minimization includes any areas of discontinuity in the ideal, "brick wall" response. An additional benefit is that the technique enables you to specify arbitrarily small peaks resulting from Gibbs' phenomena.

There are two toolbox functions that implement this design technique.

Description	Function
Constrained least square multiband FIR filter design	fircls
Constrained least square filter design for lowpass and highpass linear phase filters	fircls1

For details on the calling syntax for these functions, see their reference descriptions in the Function Reference.

Basic Lowpass and Highpass CLS Filter Design

The most basic of the CLS design functions, fircls1, uses this technique to design lowpass and highpass FIR filters. As an example, consider designing a filter with order 61 impulse response and cutoff frequency of 0.3 (normalized). Further, define the upper and lower bounds that constrain the design process as:

- Maximum passband deviation from 1 (passband ripple) of 0.02.
- Maximum stopband deviation from 0 (stopband ripple) of 0.008.

$$1 - \frac{1}{1 - \frac{1}{1$$

To approach this design problem using fircls1, use the following commands:

n = 61; wo = 0.3; dp = 0.02; ds = 0.008; h = fircls1(n,wo,dp,ds); fvtool(h,1)

Note that the *y*-axis shown below is in Magnitude Squared. You can set this by right-clicking on the axis label and selecting **Magnitude Squared** from the menu.

Multiband CLS Filter Design

fircls uses the same technique to design FIR filters with a desired piecewise constant magnitude response. In this case, you can specify a vector of band edges and a corresponding vector of band amplitudes. In addition, you can specify the maximum amount of ripple for each band.

For example, assume the specifications for a filter call for:

- From 0 to 0.3 (normalized): amplitude 0, upper bound 0.005, lower bound -0.005
- From 0.3 to 0.5: amplitude 0.5, upper bound 0.51, lower bound 0.49
- From 0.5 to 0.7: amplitude 0, upper bound 0.03, lower bound -0.03
- From 0.7 to 0.9: amplitude 1, upper bound 1.02, lower bound 0.98
- From 0.9 to 1: amplitude 0, upper bound 0.05, lower bound -0.05

Design a CLS filter with impulse response order 129 that meets these specifications:

n = 129; f = [0 0.3 0.5 0.7 0.9 1]; a = [0 0.5 0 1 0]; up = [0.005 0.51 0.03 1.02 0.05]; lo = [-0.005 0.49 -0.03 0.98 -0.05]; h = fircls(n,f,a,up,lo); fvtool(h,1)

Note that the *y*-axis shown below is in Magnitude Squared. You can set this by right-clicking on the axis label and selecting **Magnitude Squared** from the menu.

Weighted CLS Filter Design

Weighted CLS filter design lets you design lowpass or highpass FIR filters with relative weighting of the error minimization in each band. The fircls1 function enables you to specify the passband and stopband edges for the least squares weighting function, as well as a constant k that specifies the ratio of the stopband to passband weighting.

For example, consider specifications that call for an FIR filter with impulse response order of 55 and cutoff frequency of 0.3 (normalized). Also assume maximum allowable passband ripple of 0.02 and maximum allowable stopband ripple of 0.004. In addition, add weighting requirements:

- Passband edge for the weight function of 0.28 (normalized)
- Stopband edge for the weight function of 0.32
- Weight error minimization 10 times as much in the stopband as in the passband

To approach this using fircls1, type

```
n = 55;
wo = 0.3;
dp = 0.02;
ds = 0.004;
wp = 0.28;
ws = 0.32;
k = 10;
h = fircls1(n,wo,dp,ds,wp,ws,k);
fvtool(h,1)
```

Note that the *y*-axis shown below is in Magnitude Squared. You can set this by right-clicking on the axis label and selecting **Magnitude Squared** from the menu.

Arbitrary-Response Filter Design

The cfirpm filter design function provides a tool for designing FIR filters with arbitrary complex responses. It differs from the other filter design functions in how the frequency response of the filter is specified: it accepts the name of a function which returns the filter response calculated over a grid of frequencies. This capability makes cfirpm a highly versatile and powerful technique for filter design.

This design technique may be used to produce nonlinear-phase FIR filters, asymmetric frequency-response filters (with complex coefficients), or more symmetric filters with custom frequency responses.

The design algorithm optimizes the Chebyshev (or minimax) error using an extended Remez-exchange algorithm for an initial estimate. If this exchange method fails to obtain the optimal filter, the algorithm switches to an ascent-descent algorithm that takes over to finish the convergence to the optimal solution.

Multiband Filter Design

Consider a multiband filter with the following special frequency-domain characteristics.

Band	Amplitude	Optimization Weighting
[-1 -0.5]	[5 1]	1
[-0.4 +0.3]	[2 2]	10
[+0.4 +0.8]	[2 1]	5

A linear-phase multiband filter may be designed using the predefined frequency-response function multiband, as follows:

b = cfirpm(38, [-1 -0.5 -0.4 0.3 0.4 0.8], ...
{'multiband', [5 1 2 2 2 1]}, [1 10 5]);

For the specific case of a multiband filter, we can use a shorthand filter design notation similar to the syntax for firpm:

b = cfirpm(38,[-1 -0.5 -0.4 0.3 0.4 0.8], ... [5 1 2 2 2 1], [1 10 5]);

As with firpm, a vector of band edges is passed to cfirpm. This vector defines the frequency bands over which optimization is performed; note that there are two transition bands, from -0.5 to -0.4 and from 0.3 to 0.4.

In either case, the frequency response is obtained and plotted using linear scale in FVTool:

fvtool(b,1)

Note that the range of data shown below is (-Fs/2,Fs/2). You can set this range by changing the *x*-axis units to **Frequency** (**Fs = 1 Hz**).

The filter response for this multiband filter is complex, which is expected because of the asymmetry in the frequency domain. The impulse response, which you can select from the FVTool toolbar, is shown below.

Filter Design with Reduced Delay

Consider the design of a 62-tap lowpass filter with a half-Nyquist cutoff. If we specify a negative offset value to the lowpass filter design function, the group delay offset for the design is significantly less than that obtained for a standard linear-phase design. This filter design may be computed as follows:

b = cfirpm(61,[0 0.5 0.55 1],{'lowpass',-16});

The resulting magnitude response is

fvtool(b,1)

Note that the range of data in this plot is (-Fs/2,Fs/2), which you can set changing the *x*-axis units to **Frequency**. The *y*-axis is in Magnitude Squared, which you can set by right-clicking on the axis label and selecting **Magnitude Squared** from the menu.

The group delay of the filter reveals that the offset has been reduced from N/2 to N/2-16 (i.e., from 30.5 to 14.5). Now, however, the group delay is no longer flat in the passband region. To create this plot, click the **Group Delay** button on the toolbar.

If we compare this nonlinear-phase filter to a linear-phase filter that has exactly 14.5 samples of group delay, the resulting filter is of order 2*14.5, or 29. Using b = cfirpm(29,[0 0.5 0.55 1], 'lowpass'), the passband and stopband ripple is much greater for the order 29 filter. These comparisons can assist you in deciding which filter is more appropriate for a specific application.

Special Topics in IIR Filter Design

The classic IIR filter design technique includes the following steps.

- **1** Find an analog lowpass filter with cutoff frequency of 1 and translate this "prototype" filter to the desired band configuration
- **2** Transform the filter to the digital domain.
- **3** Discretize the filter.

The toolbox provides functions for each of these steps.

Design Task	Available functions
Analog lowpass prototype	buttap, cheb1ap, besselap, ellipap, cheb2ap
Frequency transformation	lp2lp, lp2hp, lp2bp, lp2bs
Discretization	bilinear, impinvar

Alternatively, the butter, cheby1, cheb2ord, ellip, and besself functions perform all steps of the filter design and the buttord, cheb1ord, cheb2ord, and ellipord functions provide minimum order computation for IIR filters. These functions are sufficient for many design problems, and the lower level functions are generally not needed. But if you do have an application where you need to transform the band edges of an analog filter, or discretize a rational transfer function, this section describes the tools with which to do so.

Analog Prototype Design

This toolbox provides a number of functions to create lowpass analog prototype filters with cutoff frequency of 1, the first step in the classical approach to IIR filter design. The table below summarizes the analog prototype design functions for each supported filter type; plots for each type are shown in "IIR Filter Design" on page 2-4.

Filter Type	Analog Prototype Function
Bessel	[z,p,k] = besselap(n)
Butterworth	<pre>[z,p,k] = buttap(n)</pre>
Chebyshev Type I	<pre>[z,p,k] = cheb1ap(n,Rp)</pre>
Chebyshev Type II	<pre>[z,p,k] = cheb2ap(n,Rs)</pre>
Elliptic	<pre>[z,p,k] = ellipap(n,Rp,Rs)</pre>

Frequency Transformation

The second step in the analog prototyping design technique is the frequency transformation of a lowpass prototype. The toolbox provides a set of functions to transform analog lowpass prototypes (with cutoff frequency of 1 rad/s) into bandpass, highpass, bandstop, and lowpass filters of the desired cutoff frequency.

Freq. Transformation	Transformation Function
Lowpass to lowpass $s' = s/\omega_0$	<pre>[numt,dent] = lp2lp(num,den,Wo) [At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)</pre>
Lowpass to highpass $s' = \frac{\omega_0}{s}$	<pre>[numt,dent] = lp2hp(num,den,Wo) [At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)</pre>
Lowpass to bandpass $s' = \frac{\omega_0}{B_{\omega}} \frac{(s/\omega_0)^2 + 1}{s/\omega_0}$	<pre>[numt,dent] = lp2bp(num,den,Wo,Bw) [At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)</pre>
Lowpass to bandstop $s' = \frac{B_{\omega}}{\omega_0} \frac{s/\omega_0}{(s/\omega_0)^2 + 1}$	<pre>[numt,dent] = lp2bs(num,den,Wo,Bw) [At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)</pre>

As shown, all of the frequency transformation functions can accept two linear system models: transfer function and state-space form. For the bandpass and bandstop cases

$$\omega_0 = \sqrt{\omega_1 \omega_2}$$

and

$$B_{\omega} = \omega_2 - \omega_1$$

where ω_1 is the lower band edge and ω_2 is the upper band edge.

The frequency transformation functions perform frequency variable substitution. In the case of 1p2bp and 1p2bs, this is a second-order

substitution, so the output filter is twice the order of the input. For 1p21p and 1p2hp, the output filter is the same order as the input.

To begin designing an order 10 bandpass Chebyshev Type I filter with a value of 3 dB for passband ripple, enter

[z,p,k] = cheb1ap(5,3);

Outputs z, p, and k contain the zeros, poles, and gain of a lowpass analog filter with cutoff frequency Ω_c equal to 1 rad/s. Use the 1p2bp function to transform this lowpass prototype to a bandpass analog filter with band edges $\Omega_1 = \pi/5$ and $\Omega_2 = \pi$. First, convert the filter to state-space form so the 1p2bp function can accept it:

[A,B,C,D] = zp2ss(z,p,k); % Convert to state-space form.

Now, find the bandwidth and center frequency, and call 1p2bp:

u1 = 0.1*2*pi; u2 = 0.5*2*pi; % In radians per second Bw = u2-u1; Wo = sqrt(u1*u2); [At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

Finally, calculate the frequency response and plot its magnitude:

<pre>[b,a] = ss2tf(At,Bt,Ct,Dt);</pre>	% Convert to TF form.
w = linspace(0.01,1,500)*2*pi;	% Generate frequency vector.
h = freqs(b,a,w);	% Compute frequency response.
<pre>semilogy(w/2/pi,abs(h)), grid</pre>	% Plot log magnitude vs. freq.
xlabel('Frequency (Hz)');	

Filter Discretization

The third step in the analog prototyping technique is the transformation of the filter to the discrete-time domain. The toolbox provides two methods for this: the impulse invariant and bilinear transformations. The filter design functions butter, cheby1, cheby2, and ellip use the bilinear transformation for discretization in this step.

Analog to Digital Transformation	Transformation Function
Impulse invariance	[numd,dend] = impinvar(num,den,fs)
Bilinear transform	<pre>[zd,pd,kd] = bilinear(z,p,k,fs,Fp) [numd,dend] = bilinear(num,den,fs,Fp) [Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs,Fp)</pre>

Impulse Invariance

The toolbox function impinvar creates a digital filter whose impulse response is the samples of the continuous impulse response of an analog filter. This function works only on filters in transfer function form. For best results, the analog filter should have negligible frequency content above half the sampling frequency, because such high frequency content is aliased into lower bands upon sampling. Impulse invariance works for some lowpass and bandpass filters, but is not appropriate for highpass and bandstop filters.

Design a Chebyshev Type I filter and plot its frequency and phase response using FVTool:

[bz,az] = impinvar(b,a,2); fvtool(bz,az)

Click on the Magnitude and Phase Response toolbar button.

Impulse invariance retains the cutoff frequencies of 0.1 Hz and 0.5 Hz.

Bilinear Transformation

The bilinear transformation is a nonlinear mapping of the continuous domain to the discrete domain; it maps the *s*-plane into the *z*-plane by

$$H(z) = H(s)\Big|_{s = k\frac{z-1}{z+1}}$$

Bilinear transformation maps the $j\Omega$ -axis of the continuous domain to the unit circle of the discrete domain according to

$$\omega = 2 \tan^{-1} \left(\frac{\Omega}{k} \right)$$

The toolbox function bilinear implements this operation, where the frequency warping constant k is equal to twice the sampling frequency (2*fs) by default, and equal to $2\pi f_p / \tan(\pi f_p / f_s)$ if you give bilinear a trailing argument that represents a "match" frequency Fp. If a match frequency Fp (in hertz) is present, bilinear maps the frequency $\Omega = 2\pi f_p$ (in rad/s) to the same frequency in the discrete domain, normalized to the sampling rate: $\omega = 2\pi f_p / f_s$ (in rad/sample).

The bilinear function can perform this transformation on three different linear system representations: zero-pole-gain, transfer function, and state-space form. Try calling bilinear with the state-space matrices that describe the Chebyshev Type I filter from the previous section, using a sampling frequency of 2 Hz, and retaining the lower band edge of 0.1 Hz:

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,2,0.1);

The frequency response of the resulting digital filter is

[bz,az] = ss2tf(Ad,Bd,Cd,Dd); % convert to TF
fvtool(bz,az)

Click on the Magnitude and Phase Response toolbar button.

The lower band edge is at 0.1 Hz as expected. Notice, however, that the upper band edge is slightly less than 0.5 Hz, although in the analog domain it was exactly 0.5 Hz. This illustrates the nonlinear nature of the bilinear transformation. To counteract this nonlinearity, it is necessary to create analog domain filters with "prewarped" band edges, which map to the correct locations upon bilinear transformation. Here the prewarped frequencies u1 and u2 generate Bw and Wo for the 1p2bp function:

fs = 2; % Sampling frequency (hertz)
u1 = 2*fs*tan(0.1*(2*pi/fs)/2); % Lower band edge (rad/s)
u2 = 2*fs*tan(0.5*(2*pi/fs)/2); % Upper band edge (rad/s)
Bw = u2 - u1; % Bandwidth
Wo = sqrt(u1*u2); % Center frequency

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

A digital bandpass filter with correct band edges 0.1 and 0.5 times the Nyquist frequency is

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs);

The example bandpass filters from the last two sections could also be created in one statement using the complete IIR design function cheby1. For instance, an analog version of the example Chebyshev filter is

[b,a] = cheby1(5,3,[0.1 0.5]*2*pi,'s');

Note that the band edges are in rad/s for analog filters, whereas for the digital case, frequency is normalized:

[bz,az] = cheby1(5,3,[0.1 0.5]);

All of the complete design functions call bilinear internally. They prewarp the band edges as needed to obtain the correct digital filter.

Filter Implementation

After the filter design process has generated the filter coefficient vectors, b and a, two functions are available in the Signal Processing Toolbox for implementing your filter:

- dfilt—lets you specify the filter structure and creates a digital filter object.
- filter—for b and a coefficient input, implements a direct-form II transposed structure and filters the data. For dfilt input, filter uses the structure specified with dfilt and filters the data.

Note Using filter on b and a coefficients normalizes the filter by forcing the a_0 coefficient to be equal to 1. Using filter on a dfilt object does not normalize the filter.

Choosing the best filter structure depends on the task the filter will perform. Some structures are more suited to or may be more computationally efficient for particular tasks. For example, often it is not possible to build recursive (IIR) filters to run at very high speeds and instead, you would use a nonrecursive (FIR) filter. FIR filters are always stable and have well-behaved roundoff noise characteristics. Direct-form IIR filters are usually realized in second-order-sections because they are sensitive to roundoff noise.

Using dfilt

Implementing your digital filter using dfilt lets you specify the filter structure and creates a single filter object from the filter coefficient vectors. dfilt objects have many predefined methods which can provide information about the filter that is not easily obtained directly from the filter coefficients alone. For a complete list of these methods and for more information, see dfilt. After you have created a dfilt object, you can use filter to apply your implemented filter to data. The complete process of designing, implementing, and applying a filter using a dfilt object is described below:

- 1 Generate the filter coefficients using any IIR or FIR filter design function.
- **2** Create the filter object from the filter coefficients and the specified filter structure using dfilt.
- **3** Apply the dfilt filter object to the data, x using filter.

For example, to design, implement as a direct-form II transposed structure, and apply a Butterworth filter to the data in x:

[b,a] = butter(5,0.4); Hd = dfilt.df2t(b,a); filter(Hd,x)

%Implement direct-form II transposed

Another way to implement a direct-form II structure is with filter:

[b,a] = butter(5,0.4); filter(b,a,x)

Note filter implements only a direct-form II structure and does not create a filter object.

Selected Bibliography

[1] Karam, L.J., and J.H. McClellan. "Complex Chebyshev Approximation for FIR Filter Design." *IEEE Trans. on Circuits and Systems II*. March 1995.

[2] Selesnick, I.W., and C.S. Burrus. "Generalized Digital Butterworth Filter Design." *Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing.* Vol. 3 (May 1996).

[3] Selesnick, I.W., M. Lang, and C.S. Burrus. "Constrained Least Square Design of FIR Filters without Specified Transition Bands." *Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing.* Vol. 2 (May 1995). Pgs. 1260-1263.