
2

Filter Design and
Implementation

Filter design is the process of creating the filter coefficients to meet specific filtering requirements.

Filter implementation involves choosing and applying a particular filter structure to those

coefficients. Only after both design and implementation have been performed can data be filtered.

The following chapter describes filter design and implementation in the Signal Processing Toolbox.

Filter Requirements and Specification

(p. 2-2)

Overview of filter design

IIR Filter Design (p. 2-4) Infinite impulse reponse filters (Butterworth, Chebyshev,

elliptic, Bessel, Yule-Walker, and parametric methods)

FIR Filter Design (p. 2-17) Finite impulse reponse filters (windowing, multiband,

least squares, nonlinear phase, complex filters, raised

cosine)

Special Topics in IIR Filter Design

(p. 2-44)

Analog design, frequency transformation, filter

discretization

Filter Implementation (p. 2-53) Filtering with your filter

Selected Bibliography (p. 2-55) Sources for additional information

2 Filter Design and Implementation

2-2

Filter Requirements and Specification

The goal of filter design is to perform frequency dependent alteration of a data
sequence. A possible requirement might be to remove noise above 30 Hz from
a data sequence sampled at 100 Hz. A more rigorous specification might call for
a specific amount of passband ripple, stopband attenuation, or transition
width. A very precise specification could ask to achieve the performance goals
with the minimum filter order, or it could call for an arbitrary magnitude
shape, or it might require an FIR filter.

Filter design methods differ primarily in how performance is specified. For
“loosely specified” requirements, as in the first case above, a Butterworth IIR
filter is often sufficient. To design a fifth-order 30 Hz lowpass Butterworth
filter and apply it to the data in vector x:

[b,a] = butter(5,30/50);

Hd = dfilt.df2t(b,a); %Direct-form II transposed structure

y = filter(Hd,x);

The second input argument to butter specifies the cutoff frequency,
normalized to half the sampling frequency (the Nyquist frequency).

All of the filter design functions operate with normalized frequencies, so they
do not require the system sampling rate as an extra input argument. This
toolbox uses the convention that unit frequency is the Nyquist frequency,
defined as half the sampling frequency. The normalized frequency, therefore,
is always in the interval 0 ≤ f ≤ 1. For a system with a 1000 Hz sampling
frequency, 300 Hz is 300/500 = 0.6. To convert normalized frequency to angular
frequency around the unit circle, multiply by π. To convert normalized
frequency back to hertz, multiply by half the sample frequency.

More rigorous filter requirements traditionally include passband ripple (Rp, in
decibels), stopband attenuation (Rs, in decibels), and transition width (Ws-Wp,
in hertz).

Filter Requirements and Specification

2-3

You can design Butterworth, Chebyshev Type I, Chebyshev Type II, and
elliptic filters that meet this type of performance specification. The toolbox
order selection functions estimate the minimum filter order that meets a given
set of requirements.

To meet specifications with more rigid constraints like linear phase or
arbitrary filter shape, use the FIR and direct IIR filter design routines.

10-1 100 101
0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de

2 Filter Design and Implementation

2-4

IIR Filter Design

The primary advantage of IIR filters over FIR filters is that they typically meet
a given set of specifications with a much lower filter order than a corresponding
FIR filter. Although IIR filters have nonlinear phase, data processing within
MATLAB is commonly performed “off-line,” that is, the entire data sequence is
available prior to filtering. This allows for a noncausal, zero-phase filtering
approach (via the filtfilt function), which eliminates the nonlinear phase
distortion of an IIR filter.

The classical IIR filters, Butterworth, Chebyshev Types I and II, elliptic, and
Bessel, all approximate the ideal “brick wall” filter in different ways. This
toolbox provides functions to create all these types of classical IIR filters in both
the analog and digital domains (except Bessel, for which only the analog case
is supported), and in lowpass, highpass, bandpass, and bandstop
configurations. For most filter types, you can also find the lowest filter order
that fits a given filter specification in terms of passband and stopband
attenuation, and transition width(s).

The direct filter design function yulewalk finds a filter with magnitude
response approximating a desired function. This is one way to create a
multiband bandpass filter.

You can also use the parametric modeling or system identification functions to
design IIR filters. These functions are discussed in “Parametric Modeling” on
page 4-15.

The generalized Butterworth design function maxflat is discussed in the
section “Generalized Butterworth Filter Design” on page 2-15.

The following table summarizes the various filter methods in the toolbox and
lists the functions available to implement these methods.

IIR Filter Design

2-5

Filter Method Description Filter Functions

Analog

Prototyping

Using the poles and zeros of

a classical lowpass

prototype filter in the

continuous (Laplace)

domain, obtain a digital

filter through frequency

transformation and filter

discretization.

Complete design functions:

besself, butter, cheby1, cheby2, ellip

Order estimation functions:

buttord, cheb1ord, cheb2ord, ellipord

Lowpass analog prototype functions:

besselap, buttap, cheb1ap, cheb2ap, ellipap

Frequency transformation functions:

lp2bp, lp2bs, lp2hp, lp2lp

Filter discretization functions:

bilinear, impinvar

Direct Design Design digital filter directly

in the discrete time-domain

by approximating a

piecewise linear magnitude

response.

yulewalk

Generalized

Butterworth

Design

Design lowpass

Butterworth filters with

more zeros than poles.

maxflat

Parametric

Modeling

Find a digital filter that

approximates a prescribed

time or frequency domain

response. (See the System

Identification Toolbox

documentation for an

extensive collection of

parametric modeling tools.)

Time-domain modeling functions:

lpc, prony, stmcb

Frequency-domain modeling functions:

invfreqs, invfreqz

2 Filter Design and Implementation

2-6

Classical IIR Filter Design Using Analog Prototyping
The principal IIR digital filter design technique this toolbox provides is based
on the conversion of classical lowpass analog filters to their digital equivalents.
The following sections describe how to design filters and summarize the
characteristics of the supported filter types. See “Special Topics in IIR Filter
Design” on page 2-44 for detailed steps on the filter design process.

Complete Classical IIR Filter Design
You can easily create a filter of any order with a lowpass, highpass, bandpass,
or bandstop configuration using the filter design functions.

By default, each of these functions returns a lowpass filter; you need only
specify the desired cutoff frequency Wn in normalized frequency (Nyquist
frequency = 1 Hz). For a highpass filter, append the string 'high' to the
function’s parameter list. For a bandpass or bandstop filter, specify Wn as a
two-element vector containing the passband edge frequencies, appending the
string 'stop' for the bandstop configuration.

Filter Type Design Function

Bessel (analog only) [b,a] = besself(n,Wn,options)

[z,p,k] = besself(n,Wn,options)

[A,B,C,D] = besself(n,Wn,options)

Butterworth [b,a] = butter(n,Wn,options)

[z,p,k] = butter(n,Wn,options)

[A,B,C,D] = butter(n,Wn,options)

Chebyshev Type I [b,a] = cheby1(n,Rp,Wn,options)

[z,p,k] = cheby1(n,Rp,Wn,options)

[A,B,C,D] = cheby1(n,Rp,Wn,options)

Chebyshev Type II [b,a] = cheby2(n,Rs,Wn,options)

[z,p,k] = cheby2(n,Rs,Wn,options)

[A,B,C,D] = cheby2(n,Rs,Wn,options)

Elliptic [b,a] = ellip(n,Rp,Rs,Wn,options)

[z,p,k] = ellip(n,Rp,Rs,Wn,options)

[A,B,C,D] = ellip(n,Rp,Rs,Wn,options)

IIR Filter Design

2-7

Here are some example digital filters:

[b,a] = butter(5,0.4); % Lowpass Butterworth

[b,a] = cheby1(4,1,[0.4 0.7]); % Bandpass Chebyshev Type I

[b,a] = cheby2(6,60,0.8,'high'); % Highpass Chebyshev Type II

[b,a] = ellip(3,1,60,[0.4 0.7],'stop'); % Bandstop elliptic

To design an analog filter, perhaps for simulation, use a trailing 's' and
specify cutoff frequencies in rad/s:

[b,a] = butter(5,.4,'s'); % Analog Butterworth filter

All filter design functions return a filter in the transfer function,
zero-pole-gain, or state-space linear system model representation, depending
on how many output arguments are present.

Note All classical IIR lowpass filters are ill-conditioned for extremely low
cut-off frequencies. Therefore, instead of designing a lowpass IIR filter with a
very narrow passband, it can be better to design a wider passband and
decimate the input signal.

Designing IIR Filters to Frequency Domain Specifications
This toolbox provides order selection functions that calculate the minimum
filter order that meets a given set of requirements.

These are useful in conjunction with the filter design functions. Suppose you
want a bandpass filter with a passband from 1000 to 2000 Hz, stopbands
starting 500 Hz away on either side, a 10 kHz sampling frequency, at most 1 dB

Filter Type Order Estimation Function

Butterworth [n,Wn] = buttord(Wp,Ws,Rp,Rs)

Chebyshev Type I [n,Wn] = cheb1ord(Wp, Ws, Rp, Rs)

Chebyshev Type II [n,Wn] = cheb2ord(Wp, Ws, Rp, Rs)

Elliptic [n,Wn] = ellipord(Wp, Ws, Rp, Rs)

2 Filter Design and Implementation

2-8

of passband ripple, and at least 60 dB of stopband attenuation. You can meet
these specifications by using the butter function as follows.

[n,Wn] = buttord([1000 2000]/5000,[500 2500]/5000,1,60)

n =

 12

Wn =

 0.1951 0.4080

[b,a] = butter(n,Wn);

An elliptic filter that meets the same requirements is given by

[n,Wn] = ellipord([1000 2000]/5000,[500 2500]/5000,1,60)

n =

 5

Wn =

 0.2000 0.4000

[b,a] = ellip(n,1,60,Wn);

These functions also work with the other standard band configurations, as well
as for analog filters.

IIR Filter Design

2-9

Comparison of Classical IIR Filter Types
The toolbox provides five different types of classical IIR filters, each optimal in
some way. This section shows the basic analog prototype form for each and
summarizes major characteristics.

Butterworth Filter
The Butterworth filter provides the best Taylor Series approximation to the
ideal lowpass filter response at analog frequencies and ; for any
order N, the magnitude squared response has 2N-1 zero derivatives at these
locations (maximally flat at and). Response is monotonic
overall, decreasing smoothly from to . at

.

Ω 0= Ω ∞=

Ω 0= Ω ∞=
Ω 0= Ω ∞= H jΩ() 1 2⁄=

Ω 1=

10-1 100 101
0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de

2 Filter Design and Implementation

2-10

Chebyshev Type I Filter
The Chebyshev Type I filter minimizes the absolute difference between the
ideal and actual frequency response over the entire passband by incorporating
an equal ripple of Rp dB in the passband. Stopband response is maximally flat.
The transition from passband to stopband is more rapid than for the
Butterworth filter. at .H jΩ() 10

Rp 20⁄–
= Ω 1=

10-1 100 101
0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de

IIR Filter Design

2-11

Chebyshev Type II Filter
The Chebyshev Type II filter minimizes the absolute difference between the
ideal and actual frequency response over the entire stopband by incorporating
an equal ripple of Rs dB in the stopband. Passband response is maximally flat.

The stopband does not approach zero as quickly as the type I filter (and does
not approach zero at all for even-valued filter order n). The absence of ripple in
the passband, however, is often an important advantage.
at .

H jΩ() 10
Rs 20⁄–

=
Ω 1=

10-1 100 101
0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de

2 Filter Design and Implementation

2-12

Elliptic Filter
Elliptic filters are equiripple in both the passband and stopband. They
generally meet filter requirements with the lowest order of any supported filter
type. Given a filter order n, passband ripple Rp in decibels, and stopband ripple
Rs in decibels, elliptic filters minimize transition width. at

.
H jΩ() 10

Rp 20⁄–
=

Ω 1=

10-1 100 101
0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de

IIR Filter Design

2-13

Bessel Filter
Analog Bessel lowpass filters have maximally flat group delay at zero
frequency and retain nearly constant group delay across the entire passband.
Filtered signals therefore maintain their waveshapes in the passband
frequency range. Frequency mapped and digital Bessel filters, however, do not
have this maximally flat property; this toolbox supports only the analog case
for the complete Bessel filter design function.

Bessel filters generally require a higher filter order than other filters for
satisfactory stopband attenuation. at and decreases as
filter order n increases.

Note The lowpass filters shown above were created with the analog
prototype functions besselap, buttap, cheb1ap, cheb2ap, and ellipap. These
functions find the zeros, poles, and gain of an order n analog filter of the
appropriate type with cutoff frequency of 1 rad/s. The complete filter design
functions (besself, butter, cheby1, cheby2, and ellip) call the prototyping
functions as a first step in the design process. See ““Special Topics in IIR
Filter Design” on page 2-44” for details.

H jΩ() 1 2⁄< Ω 1=

10-1 100 101
0

0.2

0.4

0.6

0.8

1

Frequency(rad/sec)

M
ag

ni
tu

de

2 Filter Design and Implementation

2-14

To create similar plots, use n = 5 and, as needed, Rp = 0.5 and Rs = 20. For
example, to create the elliptic filter plot:

[z,p,k] = ellipap(5,0.5,20);

w = logspace(-1,1,1000);

h = freqs(k*poly(z),poly(p),w);

semilogx(w,abs(h)), grid

Direct IIR Filter Design
This toolbox uses the term direct methods to describe techniques for IIR design
that find a filter based on specifications in the discrete domain. Unlike the
analog prototyping method, direct design methods are not constrained to the
standard lowpass, highpass, bandpass, or bandstop configurations. Rather,
these functions design filters with an arbitrary, perhaps multiband, frequency
response. This section discusses the yulewalk function, which is intended
specifically for filter design; “Parametric Modeling” on page 4-15 discusses
other methods that may also be considered direct, such as Prony’s method,
Linear Prediction, the Steiglitz-McBride method, and inverse frequency
design.

The yulewalk function designs recursive IIR digital filters by fitting a specified
frequency response. yulewalk’s name reflects its method for finding the filter’s
denominator coefficients: it finds the inverse FFT of the ideal desired power
spectrum and solves the “modified Yule-Walker equations” using the resulting
autocorrelation function samples. The statement

[b,a] = yulewalk(n,f,m)

returns row vectors b and a containing the n+1 numerator and denominator
coefficients of the order n IIR filter whose frequency-magnitude characteristics
approximate those given in vectors f and m. f is a vector of frequency points
ranging from 0 to 1, where 1 represents the Nyquist frequency. m is a vector
containing the desired magnitude response at the points in f. f and m can
describe any piecewise linear shape magnitude response, including a
multiband response. The FIR counterpart of this function is fir2, which also
designs a filter based on an arbitrary piecewise linear magnitude response. See
““FIR Filter Design” on page 2-17” for details.

Note that yulewalk does not accept phase information, and no statements are
made about the optimality of the resulting filter.

IIR Filter Design

2-15

Design a multiband filter with yulewalk, and plot the desired and actual
frequency response:

m = [0 0 1 1 0 0 1 1 0 0];

f = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1];

[b,a] = yulewalk(10,f,m);

[h,w] = freqz(b,a,128)

plot(f,m,w/pi,abs(h))

Generalized Butterworth Filter Design
The toolbox function maxflat enables you to design generalized Butterworth
filters, that is, Butterworth filters with differing numbers of zeros and poles.
This is desirable in some implementations where poles are more expensive
computationally than zeros. maxflat is just like the butter function, except
that it you can specify two orders (one for the numerator and one for the
denominator) instead of just one. These filters are maximally flat. This means
that the resulting filter is optimal for any numerator and denominator orders,
with the maximum number of derivatives at 0 and the Nyquist frequency ω = π
both set to 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

2 Filter Design and Implementation

2-16

For example, when the two orders are the same, maxflat is the same as butter:

[b,a] = maxflat(3,3,0.25)

b =

 0.0317 0.0951 0.0951 0.0317

a =

 1.0000 -1.4590 0.9104 -0.1978

[b,a] = butter(3,0.25)

b =

 0.0317 0.0951 0.0951 0.0317

a =

 1.0000 -1.4590 0.9104 -0.1978

However, maxflat is more versatile because it allows you to design a filter with
more zeros than poles:

[b,a] = maxflat(3,1,0.25)

b =

 0.0950 0.2849 0.2849 0.0950

a =

 1.0000 -0.2402

The third input to maxflat is the half-power frequency, a frequency between
0 and 1 with a desired magnitude response of .

You can also design linear phase filters that have the maximally flat property
using the 'sym' option:

maxflat(4,'sym',0.3)

ans =

 0.0331 0.2500 0.4337 0.2500 0.0331

 For complete details of the maxflat algorithm, see Selesnick and Burrus [2].

1 2⁄

FIR Filter Design

2-17

FIR Filter Design

Digital filters with finite-duration impulse response (all-zero, or FIR filters)
have both advantages and disadvantages compared to infinite-duration
impulse response (IIR) filters.

FIR filters have the following primary advantages:

• They can have exactly linear phase.

• They are always stable.

• The design methods are generally linear.

• They can be realized efficiently in hardware.

• The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much
higher filter order than IIR filters to achieve a given level of performance.
Correspondingly, the delay of these filters is often much greater than for an
equal performance IIR filter.

Filter Method Description Filter Functions

Windowing Apply window to truncated

inverse Fourier transform of

desired “brick wall” filter

fir1, fir2,

kaiserord

Multiband with

Transition

Bands

Equiripple or least squares

approach over sub-bands of the

frequency range

firls, firpm,

firpmord

Constrained

Least Squares

Minimize squared integral

error over entire frequency

range subject to maximum

error constraints

fircls, fircls1

Arbitrary

Response

Arbitrary responses, including

nonlinear phase and complex

filters

cfirpm

Raised Cosine Lowpass response with

smooth, sinusoidal transition

firrcos

2 Filter Design and Implementation

2-18

Linear Phase Filters
Except for cfirpm, all of the FIR filter design functions design linear phase
filters only. The filter coefficients, or “taps,” of such filters obey either an even
or odd symmetry relation. Depending on this symmetry, and on whether the
order n of the filter is even or odd, a linear phase filter (stored in length n+1
vector b) has certain inherent restrictions on its frequency response.

The phase delay and group delay of linear phase FIR filters are equal and
constant over the frequency band. For an order n linear phase FIR filter, the
group delay is n/2, and the filtered signal is simply delayed by n/2 time steps
(and the magnitude of its Fourier transform is scaled by the filter’s magnitude
response). This property preserves the wave shape of signals in the passband;
that is, there is no phase distortion.

The functions fir1, fir2, firls, firpm, fircls, fircls1, and firrcos all
design type I and II linear phase FIR filters by default. Both firls and firpm
design type III and IV linear phase FIR filters given a 'hilbert' or
'differentiator' flag. cfirpm can design any type of linear phase filter, and
nonlinear phase filters as well.

Note Because the frequency response of a type II filter is zero at the Nyquist
frequency (“high” frequency), fir1 does not design type II highpass and
bandstop filters. For odd-valued n in these cases, fir1 adds 1 to the order and
returns a type I filter.

Linear Phase
Filter Type

Filter
Order Symmetry of Coefficients

Response H(f),
f = 0

Response H(f),
f = 1 (Nyquist)

Type I Even even: No restriction No restriction

Type II Odd No restriction H(1) = 0

Type III Even odd: H(0) = 0 H(1) = 0

Type IV Odd H(0) = 0 No restriction

b k() b n 2 k–+() k 1= … n 1+, , ,=

b k() b– n 2 k–+() k 1= … n 1+, , ,=

FIR Filter Design

2-19

Windowing Method
Consider the ideal, or “brick wall,” digital lowpass filter with a cutoff frequency
of ω0 rad/s. This filter has magnitude 1 at all frequencies with magnitude less
than ω0, and magnitude 0 at frequencies with magnitude between ω0 and π. Its
impulse response sequence h(n) is

This filter is not implementable since its impulse response is infinite and
noncausal. To create a finite-duration impulse response, truncate it by
applying a window. By retaining the central section of impulse response in this
truncation, you obtain a linear phase FIR filter. For example, a length 51 filter
with a lowpass cutoff frequency ω0 of rad/s is

b = 0.4*sinc(0.4*(-25:25));

The window applied here is a simple rectangular window. By Parseval’s
theorem, this is the length 51 filter that best approximates the ideal lowpass
filter, in the integrated least squares sense. The following command displays
the filter’s frequency response in FVTool:

fvtool(b,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You
can set this by right-clicking on the axis label and selecting Magnitude

Squared from the menu.

h n()
1

2π
------ H ω()ejωn ωd

π–

π 1
2π
------ ejωn ωd

ω0–

ω0 ω0

π
-------sinc

ω0

π
-------n()= = =

0.4π

2 Filter Design and Implementation

2-20

Ringing and ripples occur in the response, especially near the band edge. This
“Gibbs effect” does not vanish as the filter length increases, but a
nonrectangular window reduces its magnitude. Multiplication by a window in
the time domain causes a convolution or smoothing in the frequency domain.
Apply a length 51 Hamming window to the filter and display the result using
FVTool:

b = 0.4*sinc(0.4*(-25:25));

b = b.*hamming(51)';

fvtool(b,1)

FIR Filter Design

2-21

Note that the y-axis shown in the figure below is in Magnitude Squared. You
can set this by right-clicking on the axis label and selecting Magnitude

Squared from the menu.

Using a Hamming window greatly reduces the ringing. This improvement is at
the expense of transition width (the windowed version takes longer to ramp
from passband to stopband) and optimality (the windowed version does not
minimize the integrated squared error).

The functions fir1 and fir2 are based on this windowing process. Given a
filter order and description of an ideal desired filter, these functions return a
windowed inverse Fourier transform of that ideal filter. Both use a Hamming

2 Filter Design and Implementation

2-22

window by default, but they accept any window function. See the “Windows” on
page 4-2 for an overview of windows and their properties.

Standard Band FIR Filter Design: fir1
fir1 implements the classical method of windowed linear phase FIR digital
filter design. It resembles the IIR filter design functions in that it is formulated
to design filters in standard band configurations: lowpass, bandpass, highpass,
and bandstop.

The statements

n = 50;

Wn = 0.4;

b = fir1(n,Wn);

create row vector b containing the coefficients of the order n
Hamming-windowed filter. This is a lowpass, linear phase FIR filter with cutoff
frequency Wn. Wn is a number between 0 and 1, where 1 corresponds to the
Nyquist frequency, half the sampling frequency. (Unlike other methods, here
Wn corresponds to the 6 dB point.) For a highpass filter, simply append the
string 'high' to the function’s parameter list. For a bandpass or bandstop
filter, specify Wn as a two-element vector containing the passband edge
frequencies; append the string 'stop' for the bandstop configuration.

b = fir1(n,Wn,window) uses the window specified in column vector window for
the design. The vector window must be n+1 elements long. If you do not specify
a window, fir1 applies a Hamming window.

Kaiser Window Order Estimation. The kaiserord function estimates the filter
order, cutoff frequency, and Kaiser window beta parameter needed to meet a
given set of specifications. Given a vector of frequency band edges and a
corresponding vector of magnitudes, as well as maximum allowable ripple,
kaiserord returns appropriate input parameters for the fir1 function.

Multiband FIR Filter Design: fir2
The fir2 function also designs windowed FIR filters, but with an arbitrarily
shaped piecewise linear frequency response. This is in contrast to fir1, which
only designs filters in standard lowpass, highpass, bandpass, and bandstop
configurations.

FIR Filter Design

2-23

The commands

n = 50;

f = [0 .4 .5 1];

m = [1 1 0 0];

b = fir2(n,f,m);

return row vector b containing the n+1 coefficients of the order n FIR filter
whose frequency-magnitude characteristics match those given by vectors f
and m. f is a vector of frequency points ranging from 0 to 1, where 1 represents
the Nyquist frequency. m is a vector containing the desired magnitude response
at the points specified in f. (The IIR counterpart of this function is yulewalk,
which also designs filters based on arbitrary piecewise linear magnitude
responses. See “IIR Filter Design” on page 2-4 for details.)

Multiband FIR Filter Design with Transition Bands
The firls and firpm functions provide a more general means of specifying the
ideal desired filter than the fir1 and fir2 functions. These functions design
Hilbert transformers, differentiators, and other filters with odd symmetric
coefficients (type III and type IV linear phase). They also let you include
transition or “don’t care” regions in which the error is not minimized, and
perform band dependent weighting of the minimization.

The firls function is an extension of the fir1 and fir2 functions in that it
minimizes the integral of the square of the error between the desired frequency
response and the actual frequency response.

The firpm function implements the Parks-McClellan algorithm, which uses
the Remez exchange algorithm and Chebyshev approximation theory to design
filters with optimal fits between the desired and actual frequency responses.
The filters are optimal in the sense that they minimize the maximum error
between the desired frequency response and the actual frequency response;
they are sometimes called minimax filters. Filters designed in this way exhibit
an equiripple behavior in their frequency response, and hence are also known
as equiripple filters. The Parks-McClellan FIR filter design algorithm is
perhaps the most popular and widely used FIR filter design methodology.

The syntax for firls and firpm is the same; the only difference is their
minimization schemes. The next example shows how filters designed with
firls and firpm reflect these different schemes.

2 Filter Design and Implementation

2-24

Basic Configurations
The default mode of operation of firls and firpm is to design type I or type II
linear phase filters, depending on whether the order you desire is even or odd,
respectively. A lowpass example with approximate amplitude 1 from 0 to
0.4 Hz, and approximate amplitude 0 from 0.5 to 1.0 Hz is

n = 20; % Filter order

f = [0 0.4 0.5 1]; % Frequency band edges

a = [1 1 0 0]; % Desired amplitudes

b = firpm(n,f,a);

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition
band or “don’t care” region. A transition band minimizes the error more in the
bands that you do care about, at the expense of a slower transition rate. In this
way, these types of filters have an inherent trade-off similar to FIR design by
windowing.

To compare least squares to equiripple filter design, use firls to create a
similar filter. Type

bb = firls(n,f,a);

and compare their frequency responses using FVTool:

fvtool(b,1,bb,1)

Note that the y-axis shown in the figure below is in Magnitude Squared. You
can set this by right-clicking on the axis label and selecting Magnitude

Squared from the menu.

FIR Filter Design

2-25

The filter designed with firpm exhibits equiripple behavior. Also note that the
firls filter has a better response over most of the passband and stopband, but
at the band edges (f = 0.4 and f = 0.5), the response is further away from the
ideal than the firpm filter. This shows that the firpm filter’s maximum error
over the passband and stopband is smaller and, in fact, it is the smallest
possible for this band edge configuration and filter length.

2 Filter Design and Implementation

2-26

Think of frequency bands as lines over short frequency intervals. firpm and
firls use this scheme to represent any piecewise linear desired function with
any transition bands. firls and firpm design lowpass, highpass, bandpass,
and bandstop filters; a bandpass example is

f = [0 0.3 0.4 0.7 0.8 1]; % Band edges in pairs

a = [0 0 1 1 0 0]; % Bandpass filter amplitude

Technically, these f and a vectors define five bands:

• Two stopbands, from 0.0 to 0.3 and from 0.8 to 1.0

• A passband from 0.4 to 0.7

• Two transition bands, from 0.3 to 0.4 and from 0.7 to 0.8

Example highpass and bandstop filters are

f = [0 0.7 0.8 1]; % Band edges in pairs

a = [0 0 1 1]; % Highpass filter amplitude

f = [0 0.3 0.4 0.5 0.8 1]; % Band edges in pairs

a = [1 1 0 0 1 1]; % Bandstop filter amplitude

An example multiband bandpass filter is

f = [0 0.1 0.15 0.25 0.3 0.4 0.45 0.55 0.6 0.7 0.75 0.85 0.9 1];

a = [1 1 0 0 1 1 0 0 1 1 0 0 1 1];

Another possibility is a filter that has as a transition region the line connecting
the passband with the stopband; this can help control “runaway” magnitude
response in wide transition regions:

f = [0 0.4 0.42 0.48 0.5 1];

a = [1 1 0.8 0.2 0 0]; % Passband,linear transition,stopband

FIR Filter Design

2-27

The Weight Vector
Both firls and firpm allow you to place more or less emphasis on minimizing
the error in certain frequency bands relative to others. To do this, specify a
weight vector following the frequency and amplitude vectors. An example
lowpass equiripple filter with 10 times less ripple in the stopband than the
passband is

n = 20; % Filter order

f = [0 0.4 0.5 1]; % Frequency band edges

a = [1 1 0 0]; % Desired amplitudes

w = [1 10]; % Weight vector

b = firpm(n,f,a,w);

A legal weight vector is always half the length of the f and a vectors; there must
be exactly one weight per band.

Anti-Symmetric Filters / Hilbert Transformers
When called with a trailing 'h' or 'Hilbert' option, firpm and firls design
FIR filters with odd symmetry, that is, type III (for even order) or type IV (for
odd order) linear phase filters. An ideal Hilbert transformer has this
anti-symmetry property and an amplitude of 1 across the entire frequency
range. Try the following approximate Hilbert transformers and plot them
using FVTool:

b = firpm(21,[0.05 1],[1 1],'h'); % Highpass Hilbert

bb = firpm(20,[0.05 0.95],[1 1],'h'); % Bandpass Hilbert

fvtool(b,1,bb,1)

2 Filter Design and Implementation

2-28

You can find the delayed Hilbert transform of a signal x by passing it through
these filters.

fs = 1000; % Sampling frequency

t = (0:1/fs:2)'; % Two second time vector

x = sin(2*pi*300*t); % 300 Hz sine wave example signal

xh = filter(bb,1,x); % Hilbert transform of x

The analytic signal corresponding to x is the complex signal that has x as its
real part and the Hilbert transform of x as its imaginary part. For this FIR
method (an alternative to the hilbert function), you must delay x by half the
filter order to create the analytic signal:

xd = [zeros(10,1); x(1:length(x)-10)]; % Delay 10 samples

FIR Filter Design

2-29

xa = xd + j*xh; % Analytic signal

This method does not work directly for filters of odd order, which require a
noninteger delay. In this case, the hilbert function, described in “Specialized
Transforms” on page 4-42, estimates the analytic signal. Alternatively, use the
resample function to delay the signal by a noninteger number of samples.

Differentiators
Differentiation of a signal in the time domain is equivalent to multiplication of
the signal’s Fourier transform by an imaginary ramp function. That is, to
differentiate a signal, pass it through a filter that has a response H(ω) = jω.
Approximate the ideal differentiator (with a delay) using firpm or firls with
a 'd' or 'differentiator' option:

b = firpm(21,[0 1],[0 pi*fs],'d');

To obtain the correct derivative, scale by pi*fs rad/s, where fs is the sampling
frequency in hertz. For a type III filter, the differentiation band should stop
short of the Nyquist frequency, and the amplitude vector must reflect that
change to ensure the correct slope:

bb = firpm(20,[0 0.9],[0 0.9*pi*fs],'d');

In the 'd' mode, firpm weights the error by 1/ω in nonzero amplitude bands to
minimize the maximum relative error. firls weights the error by (1/ω)2 in
nonzero amplitude bands in the 'd' mode.

2 Filter Design and Implementation

2-30

The following plots show the magnitude responses for the differentiators
above.

fvtool(b,1,bb,1)

FIR Filter Design

2-31

Constrained Least Squares FIR Filter Design
The Constrained Least Squares (CLS) FIR filter design functions implement a
technique that enables you to design FIR filters without explicitly defining the
transition bands for the magnitude response. The ability to omit the
specification of transition bands is useful in several situations. For example, it
may not be clear where a rigidly defined transition band should appear if noise
and signal information appear together in the same frequency band. Similarly,
it may make sense to omit the specification of transition bands if they appear
only to control the results of Gibbs phenomena that appear in the filter’s
response. See Selesnick, Lang, and Burrus [2] for discussion of this method.

Instead of defining passbands, stopbands, and transition regions, the CLS
method accepts a cutoff frequency (for the highpass, lowpass, bandpass, or
bandstop cases), or passband and stopband edges (for multiband cases), for the
desired response. In this way, the CLS method defines transition regions
implicitly, rather than explicitly.

The key feature of the CLS method is that it enables you to define upper and
lower thresholds that contain the maximum allowable ripple in the magnitude
response. Given this constraint, the technique applies the least square error
minimization technique over the frequency range of the filter’s response,
instead of over specific bands. The error minimization includes any areas of
discontinuity in the ideal, “brick wall” response. An additional benefit is that
the technique enables you to specify arbitrarily small peaks resulting from
Gibbs’ phenomena.

There are two toolbox functions that implement this design technique.

For details on the calling syntax for these functions, see their reference
descriptions in the Function Reference.

Description Function

Constrained least square multiband FIR filter design fircls

Constrained least square filter design for lowpass and

highpass linear phase filters

fircls1

2 Filter Design and Implementation

2-32

Basic Lowpass and Highpass CLS Filter Design
The most basic of the CLS design functions, fircls1, uses this technique to
design lowpass and highpass FIR filters. As an example, consider designing a
filter with order 61 impulse response and cutoff frequency of 0.3 (normalized).
Further, define the upper and lower bounds that constrain the design process
as:

• Maximum passband deviation from 1 (passband ripple) of 0.02.

• Maximum stopband deviation from 0 (stopband ripple) of 0.008.

To approach this design problem using fircls1, use the following commands:

n = 61;

wo = 0.3;

dp = 0.02;

ds = 0.008;

h = fircls1(n,wo,dp,ds);

fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by
right-clicking on the axis label and selecting Magnitude Squared from the
menu.

0 ds = 0.0081
dp = 0.02

FIR Filter Design

2-33

2 Filter Design and Implementation

2-34

Multiband CLS Filter Design
fircls uses the same technique to design FIR filters with a desired piecewise
constant magnitude response. In this case, you can specify a vector of band
edges and a corresponding vector of band amplitudes. In addition, you can
specify the maximum amount of ripple for each band.

For example, assume the specifications for a filter call for:

• From 0 to 0.3 (normalized): amplitude 0, upper bound 0.005, lower

bound -0.005

• From 0.3 to 0.5: amplitude 0.5, upper bound 0.51, lower bound 0.49

• From 0.5 to 0.7: amplitude 0, upper bound 0.03, lower bound -0.03

• From 0.7 to 0.9: amplitude 1, upper bound 1.02, lower bound 0.98

• From 0.9 to 1: amplitude 0, upper bound 0.05, lower bound -0.05

Design a CLS filter with impulse response order 129 that meets these
specifications:

n = 129;

f = [0 0.3 0.5 0.7 0.9 1];

a = [0 0.5 0 1 0];

up = [0.005 0.51 0.03 1.02 0.05];

lo = [-0.005 0.49 -0.03 0.98 -0.05];

h = fircls(n,f,a,up,lo);

fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by
right-clicking on the axis label and selecting Magnitude Squared from the
menu.

FIR Filter Design

2-35

2 Filter Design and Implementation

2-36

Weighted CLS Filter Design
Weighted CLS filter design lets you design lowpass or highpass FIR filters with
relative weighting of the error minimization in each band. The fircls1
function enables you to specify the passband and stopband edges for the least
squares weighting function, as well as a constant k that specifies the ratio of
the stopband to passband weighting.

For example, consider specifications that call for an FIR filter with impulse
response order of 55 and cutoff frequency of 0.3 (normalized). Also assume
maximum allowable passband ripple of 0.02 and maximum allowable stopband
ripple of 0.004. In addition, add weighting requirements:

• Passband edge for the weight function of 0.28 (normalized)

• Stopband edge for the weight function of 0.32

• Weight error minimization 10 times as much in the stopband as in the

passband

To approach this using fircls1, type

n = 55;

wo = 0.3;

dp = 0.02;

ds = 0.004;

wp = 0.28;

ws = 0.32;

k = 10;

h = fircls1(n,wo,dp,ds,wp,ws,k);

fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set this by
right-clicking on the axis label and selecting Magnitude Squared from the
menu.

FIR Filter Design

2-37

2 Filter Design and Implementation

2-38

Arbitrary-Response Filter Design
The cfirpm filter design function provides a tool for designing FIR filters with
arbitrary complex responses. It differs from the other filter design functions in
how the frequency response of the filter is specified: it accepts the name of a
function which returns the filter response calculated over a grid of frequencies.
This capability makes cfirpm a highly versatile and powerful technique for
filter design.

This design technique may be used to produce nonlinear-phase FIR filters,
asymmetric frequency-response filters (with complex coefficients), or more
symmetric filters with custom frequency responses.

The design algorithm optimizes the Chebyshev (or minimax) error using an
extended Remez-exchange algorithm for an initial estimate. If this exchange
method fails to obtain the optimal filter, the algorithm switches to an
ascent-descent algorithm that takes over to finish the convergence to the
optimal solution.

Multiband Filter Design
Consider a multiband filter with the following special frequency-domain
characteristics.

A linear-phase multiband filter may be designed using the predefined
frequency-response function multiband, as follows:

b = cfirpm(38, [-1 -0.5 -0.4 0.3 0.4 0.8], ...

 {'multiband', [5 1 2 2 2 1]}, [1 10 5]);

Band Amplitude Optimization
Weighting

[-1 -0.5] [5 1] 1

[-0.4 +0.3] [2 2] 10

[+0.4 +0.8] [2 1] 5

FIR Filter Design

2-39

For the specific case of a multiband filter, we can use a shorthand filter design
notation similar to the syntax for firpm:

b = cfirpm(38,[-1 -0.5 -0.4 0.3 0.4 0.8], ...

 [5 1 2 2 2 1], [1 10 5]);

As with firpm, a vector of band edges is passed to cfirpm. This vector defines
the frequency bands over which optimization is performed; note that there are
two transition bands, from -0.5 to -0.4 and from 0.3 to 0.4.

In either case, the frequency response is obtained and plotted using linear scale
in FVTool:

fvtool(b,1)

Note that the range of data shown below is (-Fs/2,Fs/2). You can set this
range by changing the x-axis units to Frequency (Fs = 1 Hz).

2 Filter Design and Implementation

2-40

The filter response for this multiband filter is complex, which is expected
because of the asymmetry in the frequency domain. The impulse response,
which you can select from the FVTool toolbar, is shown below.

FIR Filter Design

2-41

Filter Design with Reduced Delay
Consider the design of a 62-tap lowpass filter with a half-Nyquist cutoff. If we
specify a negative offset value to the lowpass filter design function, the group
delay offset for the design is significantly less than that obtained for a standard
linear-phase design. This filter design may be computed as follows:

b = cfirpm(61,[0 0.5 0.55 1],{'lowpass',-16});

The resulting magnitude response is

fvtool(b,1)

2 Filter Design and Implementation

2-42

Note that the range of data in this plot is (-Fs/2,Fs/2), which you can set
changing the x-axis units to Frequency. The y-axis is in Magnitude Squared,
which you can set by right-clicking on the axis label and selecting Magnitude

Squared from the menu.

The group delay of the filter reveals that the offset has been reduced from N/2
to N/2-16 (i.e., from 30.5 to 14.5). Now, however, the group delay is no longer
flat in the passband region. To create this plot, click the Group Delay button
on the toolbar.

FIR Filter Design

2-43

If we compare this nonlinear-phase filter to a linear-phase filter that has
exactly 14.5 samples of group delay, the resulting filter is of order 2*14.5, or 29.
Using b = cfirpm(29,[0 0.5 0.55 1],'lowpass'), the passband and
stopband ripple is much greater for the order 29 filter. These comparisons can
assist you in deciding which filter is more appropriate for a specific application.

2 Filter Design and Implementation

2-44

Special Topics in IIR Filter Design

The classic IIR filter design technique includes the following steps.

1 Find an analog lowpass filter with cutoff frequency of 1 and translate this

“prototype” filter to the desired band configuration

2 Transform the filter to the digital domain.

3 Discretize the filter.

The toolbox provides functions for each of these steps.

Alternatively, the butter, cheby1, cheb2ord, ellip, and besself functions
perform all steps of the filter design and the buttord, cheb1ord, cheb2ord, and
ellipord functions provide minimum order computation for IIR filters. These
functions are sufficient for many design problems, and the lower level functions
are generally not needed. But if you do have an application where you need to
transform the band edges of an analog filter, or discretize a rational transfer
function, this section describes the tools with which to do so.

Design Task Available functions

Analog lowpass prototype buttap, cheb1ap, besselap, ellipap, cheb2ap

Frequency

transformation

lp2lp, lp2hp, lp2bp, lp2bs

Discretization bilinear, impinvar

Special Topics in IIR Filter Design

2-45

Analog Prototype Design
This toolbox provides a number of functions to create lowpass analog prototype
filters with cutoff frequency of 1, the first step in the classical approach to IIR
filter design. The table below summarizes the analog prototype design
functions for each supported filter type; plots for each type are shown in “IIR
Filter Design” on page 2-4.

Frequency Transformation
The second step in the analog prototyping design technique is the frequency
transformation of a lowpass prototype. The toolbox provides a set of functions
to transform analog lowpass prototypes (with cutoff frequency of 1 rad/s) into
bandpass, highpass, bandstop, and lowpass filters of the desired cutoff
frequency.

Filter Type Analog Prototype Function

Bessel [z,p,k] = besselap(n)

Butterworth [z,p,k] = buttap(n)

Chebyshev Type I [z,p,k] = cheb1ap(n,Rp)

Chebyshev Type II [z,p,k] = cheb2ap(n,Rs)

Elliptic [z,p,k] = ellipap(n,Rp,Rs)

2 Filter Design and Implementation

2-46

As shown, all of the frequency transformation functions can accept two linear
system models: transfer function and state-space form. For the bandpass and
bandstop cases

and

where ω1 is the lower band edge and ω2 is the upper band edge.

The frequency transformation functions perform frequency variable
substitution. In the case of lp2bp and lp2bs, this is a second-order

Freq. Transformation Transformation Function

Lowpass to lowpass [numt,dent] = lp2lp(num,den,Wo)

[At,Bt,Ct,Dt] = lp2lp(A,B,C,D,Wo)

Lowpass to highpass [numt,dent] = lp2hp(num,den,Wo)

[At,Bt,Ct,Dt] = lp2hp(A,B,C,D,Wo)

Lowpass to bandpass [numt,dent] = lp2bp(num,den,Wo,Bw)

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw)

Lowpass to bandstop [numt,dent] = lp2bs(num,den,Wo,Bw)

[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)

s' s ω0⁄=

s'
ω0

s
-------=

s'
ω0

Bω

s ω0⁄()2 1+

s ω0⁄
-------------------------------=

s'
Bω
ω0

s ω0⁄

s ω0⁄()2 1+
-------------------------------=

ω0 ω1ω2=

Bω ω2 ω1–=

Special Topics in IIR Filter Design

2-47

substitution, so the output filter is twice the order of the input. For lp2lp and
lp2hp, the output filter is the same order as the input.

To begin designing an order 10 bandpass Chebyshev Type I filter with a value
of 3 dB for passband ripple, enter

[z,p,k] = cheb1ap(5,3);

Outputs z, p, and k contain the zeros, poles, and gain of a lowpass analog filter
with cutoff frequency Ωc equal to 1 rad/s. Use the lp2bp function to transform
this lowpass prototype to a bandpass analog filter with band edges
and . First, convert the filter to state-space form so the lp2bp function
can accept it:

[A,B,C,D] = zp2ss(z,p,k); % Convert to state-space form.

Now, find the bandwidth and center frequency, and call lp2bp:

u1 = 0.1*2*pi; u2 = 0.5*2*pi; % In radians per second

Bw = u2-u1;

Wo = sqrt(u1*u2);

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

Finally, calculate the frequency response and plot its magnitude:

[b,a] = ss2tf(At,Bt,Ct,Dt); % Convert to TF form.

w = linspace(0.01,1,500)*2*pi; % Generate frequency vector.

h = freqs(b,a,w); % Compute frequency response.

semilogy(w/2/pi,abs(h)), grid % Plot log magnitude vs. freq.

xlabel('Frequency (Hz)');

Ω1 π 5⁄=
Ω2 π=

2 Filter Design and Implementation

2-48

Filter Discretization
The third step in the analog prototyping technique is the transformation of the
filter to the discrete-time domain. The toolbox provides two methods for this:
the impulse invariant and bilinear transformations. The filter design functions
butter, cheby1, cheby2, and ellip use the bilinear transformation for
discretization in this step.

Impulse Invariance
The toolbox function impinvar creates a digital filter whose impulse response
is the samples of the continuous impulse response of an analog filter. This
function works only on filters in transfer function form. For best results, the
analog filter should have negligible frequency content above half the sampling
frequency, because such high frequency content is aliased into lower bands

Analog to Digital
Transformation

Transformation Function

Impulse invariance [numd,dend] = impinvar(num,den,fs)

Bilinear transform [zd,pd,kd] = bilinear(z,p,k,fs,Fp)

[numd,dend] = bilinear(num,den,fs,Fp)

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs,Fp)

0 0.2 0.4 0.6 0.8 1
10−7

10
−6

10−5

10
−4

10
−3

10−2

10
−1

100

Frequency (Hz)

Special Topics in IIR Filter Design

2-49

upon sampling. Impulse invariance works for some lowpass and bandpass
filters, but is not appropriate for highpass and bandstop filters.

Design a Chebyshev Type I filter and plot its frequency and phase response
using FVTool:

[bz,az] = impinvar(b,a,2);

fvtool(bz,az)

Click on the Magnitude and Phase Response toolbar button.

Impulse invariance retains the cutoff frequencies of 0.1 Hz and 0.5 Hz.

2 Filter Design and Implementation

2-50

Bilinear Transformation
The bilinear transformation is a nonlinear mapping of the continuous domain
to the discrete domain; it maps the s-plane into the z-plane by

Bilinear transformation maps the -axis of the continuous domain to the unit
circle of the discrete domain according to

The toolbox function bilinear implements this operation, where the frequency
warping constant k is equal to twice the sampling frequency (2*fs) by default,
and equal to if you give bilinear a trailing argument that
represents a “match” frequency Fp. If a match frequency Fp (in hertz) is
present, bilinear maps the frequency (in rad/s) to the same
frequency in the discrete domain, normalized to the sampling rate:

 (in rad/sample).

The bilinear function can perform this transformation on three different
linear system representations: zero-pole-gain, transfer function, and
state-space form. Try calling bilinear with the state-space matrices that
describe the Chebyshev Type I filter from the previous section, using a
sampling frequency of 2 Hz, and retaining the lower band edge of 0.1 Hz:

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,2,0.1);

The frequency response of the resulting digital filter is

[bz,az] = ss2tf(Ad,Bd,Cd,Dd); % convert to TF

fvtool(bz,az)

Click on the Magnitude and Phase Response toolbar button.

H z() H s()
s k

z 1–
z 1+
------------=

=

jΩ

ω 2tan 1– Ω
k
----=

2πfp πfp fs⁄()tan⁄

Ω 2πfp=

ω 2πfp fs⁄=

Special Topics in IIR Filter Design

2-51

The lower band edge is at 0.1 Hz as expected. Notice, however, that the upper
band edge is slightly less than 0.5 Hz, although in the analog domain it was
exactly 0.5 Hz. This illustrates the nonlinear nature of the bilinear
transformation. To counteract this nonlinearity, it is necessary to create analog
domain filters with “prewarped” band edges, which map to the correct locations
upon bilinear transformation. Here the prewarped frequencies u1 and u2
generate Bw and Wo for the lp2bp function:

fs = 2; % Sampling frequency (hertz)

u1 = 2*fs*tan(0.1*(2*pi/fs)/2); % Lower band edge (rad/s)

u2 = 2*fs*tan(0.5*(2*pi/fs)/2); % Upper band edge (rad/s)

Bw = u2 - u1; % Bandwidth

Wo = sqrt(u1*u2); % Center frequency

2 Filter Design and Implementation

2-52

[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

A digital bandpass filter with correct band edges 0.1 and 0.5 times the Nyquist
frequency is

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs);

The example bandpass filters from the last two sections could also be created
in one statement using the complete IIR design function cheby1. For instance,
an analog version of the example Chebyshev filter is

[b,a] = cheby1(5,3,[0.1 0.5]*2*pi,'s');

Note that the band edges are in rad/s for analog filters, whereas for the digital
case, frequency is normalized:

[bz,az] = cheby1(5,3,[0.1 0.5]);

All of the complete design functions call bilinear internally. They prewarp the
band edges as needed to obtain the correct digital filter.

Filter Implementation

2-53

Filter Implementation

After the filter design process has generated the filter coefficient vectors, b and
a, two functions are available in the Signal Processing Toolbox for
implementing your filter:

• dfilt—lets you specify the filter structure and creates a digital filter object.

• filter—for b and a coefficient input, implements a direct-form II transposed

structure and filters the data. For dfilt input, filter uses the structure

specified with dfilt and filters the data.

Note Using filter on b and a coefficients normalizes the filter by forcing the
a0 coefficient to be equal to 1. Using filter on a dfilt object does not
normalize the filter.

Choosing the best filter structure depends on the task the filter will perform.
Some structures are more suited to or may be more computationally efficient
for particular tasks. For example, often it is not possible to build recursive (IIR)
filters to run at very high speeds and instead, you would use a nonrecursive
(FIR) filter. FIR filters are always stable and have well-behaved roundoff noise
characteristics. Direct-form IIR filters are usually realized in
second-order-sections because they are sensitive to roundoff noise.

Using dfilt
Implementing your digital filter using dfilt lets you specify the filter
structure and creates a single filter object from the filter coefficient vectors.
dfilt objects have many predefined methods which can provide information
about the filter that is not easily obtained directly from the filter coefficients
alone. For a complete list of these methods and for more information, see dfilt.

2 Filter Design and Implementation

2-54

After you have created a dfilt object, you can use filter to apply your
implemented filter to data. The complete process of designing, implementing,
and applying a filter using a dfilt object is described below:

1 Generate the filter coefficients using any IIR or FIR filter design function.

2 Create the filter object from the filter coefficients and the specified filter
structure using dfilt.

3 Apply the dfilt filter object to the data, x using filter.

For example, to design, implement as a direct-form II transposed structure,
and apply a Butterworth filter to the data in x:

[b,a] = butter(5,0.4);

Hd = dfilt.df2t(b,a); %Implement direct-form II transposed

filter(Hd,x)

Another way to implement a direct-form II structure is with filter:

[b,a] = butter(5,0.4);

filter(b,a,x)

Note filter implements only a direct-form II structure and does not create
a filter object.

Selected Bibliography

2-55

Selected Bibliography

[1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev Approximation for
FIR Filter Design.” IEEE Trans. on Circuits and Systems II. March 1995.

[2] Selesnick, I.W., and C.S. Burrus. “Generalized Digital Butterworth Filter
Design.” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing.
Vol. 3 (May 1996).

[3] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square
Design of FIR Filters without Specified Transition Bands.” Proceedings of the

IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 2 (May 1995).
Pgs. 1260-1263.

